狠狠操网,91中文字幕在线观看,精品久久香蕉国产线看观看亚洲,亚洲haose在线观看

數(shù)學(xué)的知識點(diǎn)總結(jié)

數(shù)學(xué)的知識點(diǎn)總結(jié)

  總結(jié)是對過去一定時期的工作、學(xué)習(xí)或思想情況進(jìn)行回顧、分析,并做出客觀評價的書面材料,它可以給我們下一階段的學(xué)習(xí)和工作生活做指導(dǎo),讓我們一起認(rèn)真地寫一份總結(jié)吧。那么如何把總結(jié)寫出新花樣呢?下面是小編為大家整理的數(shù)學(xué)的知識點(diǎn)總結(jié),希望對大家有所幫助。

  數(shù)學(xué)的知識點(diǎn)總結(jié) 篇1

  一、勾股定理

  1、勾股定理

  直角三角形兩直角邊a,b的平方和等于斜邊c的平方,即a2+b2=c2。

  2、勾股定理的逆定理

  如果三角形的三邊長a,b,c有這種關(guān)系,那么這個三角形是直角三角形。

  3、勾股數(shù)

  滿足的三個正整數(shù),稱為勾股數(shù)。

  常見的勾股數(shù)組有:(3,4,5);(5,12,13);(8,15,17);(7,24,25);(20,21,29);(9,40,41)……(這些勾股數(shù)組的倍數(shù)仍是勾股數(shù))。

  二、證明

  1、對事情作出判斷的句子,就叫做命題。即:命題是判斷一件事情的句子。

  2、三角形內(nèi)角和定理:三角形三個內(nèi)角的和等于180度。

  (1)證明三角形內(nèi)角和定理的思路是將原三角形中的三個角湊到一起組成一個平角。一般需要作輔助。

  (2)三角形的外角與它相鄰的內(nèi)角是互為補(bǔ)角。

  3、三角形的外角與它不相鄰的內(nèi)角關(guān)系

  (1)三角形的一個外角等于和它不相鄰的兩個內(nèi)角的和。

  (2)三角形的一個外角大于任何一個和它不相鄰的內(nèi)角。

  4、證明一個命題是真命題的基本步驟

  (1)根據(jù)題意,畫出圖形。

  (2)根據(jù)條件、結(jié)論,結(jié)合圖形,寫出已知、求證。

  (3)經(jīng)過分析,找出由已知推出求證的途徑,寫出證明過程。在證明時需注意:

 、僭谝话闱闆r下,分析的過程不要求寫出來。

 、谧C明中的每一步推理都要有根據(jù)。如果兩條直線都和第三條直線平行,那么這兩條直線也相互平行。

  數(shù)學(xué)的知識點(diǎn)總結(jié) 篇2

  (一)運(yùn)用公式法

  我們知道整式乘法與因式分解互為逆變形。如果把乘法公式反過來就是把多項(xiàng)式分解因式。于是有:

  a2-b2=(a+b)(a-b)

  a2+2ab+b2=(a+b)2

  a2-2ab+b2=(a-b)2

  如果把乘法公式反過來,就可以用來把某些多項(xiàng)式分解因式。這種分解因式的方法叫做運(yùn)用公式法。

  (二)平方差公式

  平方差公式

  (1)式子:a2-b2=(a+b)(a-b)

  (2)語言:兩個數(shù)的平方差,等于這兩個數(shù)的和與這兩個數(shù)的差的積。這個公式就是平方差公式。

  (三)因式分解

  1.因式分解時,各項(xiàng)如果有公因式應(yīng)先提公因式,再進(jìn)一步分解。

  2.因式分解,必須進(jìn)行到每一個多項(xiàng)式因式不能再分解為止。

  (四)完全平方公式

  (1)把乘法公式(a+b)2=a2+2ab+b2和(a-b)2=a2-2ab+b2反過來,就可以得到:

  a2+2ab+b2=(a+b)2

  a2-2ab+b2=(a-b)2

  這就是說,兩個數(shù)的平方和,加上(或者減去)這兩個數(shù)的積的2倍,等于這兩個數(shù)的和(或者差)的平方。

  把a(bǔ)2+2ab+b2和a2-2ab+b2這樣的式子叫完全平方式。

  上面兩個公式叫完全平方公式。

  (2)完全平方式的形式和特點(diǎn)

 、夙(xiàng)數(shù):三項(xiàng)

 、谟袃身(xiàng)是兩個數(shù)的的平方和,這兩項(xiàng)的符號相同。

 、塾幸豁(xiàng)是這兩個數(shù)的積的兩倍。

  (3)當(dāng)多項(xiàng)式中有公因式時,應(yīng)該先提出公因式,再用公式分解。

  (4)完全平方公式中的a、b可表示單項(xiàng)式,也可以表示多項(xiàng)式。這里只要將多項(xiàng)式看成一個整體就可以了。

  (5)分解因式,必須分解到每一個多項(xiàng)式因式都不能再分解為止。

  (五)分組分解法

  我們看多項(xiàng)式am+an+bm+bn,這四項(xiàng)中沒有公因式,所以不能用提取公因式法,再看它又不能用公式法分解因式.

  如果我們把它分成兩組(am+an)和(bm+bn),這兩組能分別用提取公因式的方法分別分解因式.

  原式=(am+an)+(bm+bn)

  =a(m+n)+b(m+n)

  做到這一步不叫把多項(xiàng)式分解因式,因?yàn)樗环弦蚴椒纸獾囊饬x.但不難看出這兩項(xiàng)還有公因式(m+n),因此還能繼續(xù)分解,所以

  原式=(am+an)+(bm+bn)

  =a(m+n)+b(m+n)

  =(m+n)×(a+b).

  數(shù)學(xué)的知識點(diǎn)總結(jié) 篇3

  1、多邊形:由一些線段首尾順次連結(jié)組成的圖形,叫做多邊形。

  2、多邊形的邊:組成多邊形的各條線段叫做多邊形的邊。

  3、多邊形的頂點(diǎn):多邊形每相鄰兩邊的公共端點(diǎn)叫做多邊形的頂點(diǎn)。

  4、多邊形的對角線:連結(jié)多邊形不相鄰的兩個頂點(diǎn)的線段叫做多邊形的對角線。

  5、多邊形的周長:多邊形各邊的長度和叫做多邊形的周長。

  6、凸多邊形:把多邊形的任何一條邊向兩方延長,如果多邊形的其他各邊都在延長線所得直線的問旁,這樣的多邊形叫凸多邊形。

  說明:一個多邊形至少要有三條邊,有三條邊的叫做三角形;有四條邊的叫做四邊形;有幾條邊的叫做幾邊形。今后所說的多邊形,如果不特別聲明,都是指凸多邊形。

  7、多邊形的角:多邊形相鄰兩邊所組成的角叫做多邊形的內(nèi)角,簡稱多邊形的角。

  8、多邊形的外角:多邊形的角的一邊與另一邊的反向延長線所組成的角叫做多邊形的外角。

  注意:多邊形的外角也就是與它有公共頂點(diǎn)的內(nèi)角的鄰補(bǔ)角。

  9、多邊形內(nèi)角和定理:n邊形內(nèi)角和等于(n-2)180°。

  10、多邊形內(nèi)角和定理的推論:n邊形的外角和等于360°。

  說明:多邊形的外角和是一個常數(shù)(與邊數(shù)無關(guān)),利用它解決有關(guān)計(jì)算題比利用多邊形內(nèi)角和公式及對角線求法公式簡單。無論用哪個公式解決有關(guān)計(jì)算,都要與解方程聯(lián)系起來,掌握計(jì)算方法。

  數(shù)學(xué)的知識點(diǎn)總結(jié) 篇4

  1.點(diǎn)與圓的位置關(guān)系及其數(shù)量特征:如果圓的半徑為r,點(diǎn)到圓心的距離為d,則

 、冱c(diǎn)在圓上<===>d=r;

  ②點(diǎn)在圓內(nèi)<===>dd>r.

  圓的對稱性:

  1.與圓相關(guān)的概念:

 、芡膱A:圓心相同,半徑不等的兩個圓叫做同心圓。

 、莸葓A:能夠完全重合的兩個圓叫做等圓,半徑相等的兩個圓是等圓。

 、薜然。涸谕瑘A或等圓中,能夠互相重合的弧叫做等弧。

 、邎A心角:頂點(diǎn)在圓心的角叫做圓心角.

 、嘞倚木:從圓心到弦的距離叫做弦心距.

  2.圓是軸對稱圖形,直徑所在的直線是它的對稱軸,圓有無數(shù)條對稱軸。

  3.垂徑定理:垂直于弦的直徑平分這條弦,并且平分弦所對的兩條弧。

  推論:平分弦(不是直徑)的直徑垂直于弦,并且平分弦所對的兩條弧。

  說明:根據(jù)垂徑定理與推論可知對于一個圓和一條直線來說,如果具備:

 、龠^圓心;

 、诖怪庇谙;

 、燮椒窒;

  ④平分弦所對的優(yōu)弧;

 、萜椒窒宜鶎Φ牧踊。

  上述五個條件中的任何兩個條件都可推出其他三個結(jié)論。

  4.定理:在同圓或等圓中,相等的圓心角所對弧相等、所對的弦相等、所對的弦心距相等。

  推論:在同圓或等圓中,如果兩個圓心角、兩條弧、兩條弦或兩條弦的弦心距中有一組量相等,那么它們所對應(yīng)的其余各組量都分別相等.

  圓周角和圓心角的關(guān)系:

  1.圓周角的定義:頂點(diǎn)在圓上,并且兩邊都與圓相交的角,叫做圓周角.

  2.圓周角定理;一條弧所對的圓周角等于它所對的圓心角的一半.

  推論1:同弧或等弧所對圓周角相等;反之,在同圓或等圓中,相等圓周角所對弧也相等;

  推論2:半圓或直徑所對的圓周角是直角;90°的圓周角所對的弦是直徑;

  確定圓的條件:

  1.理解確定一個圓必須的具備兩個條件:

  經(jīng)過一點(diǎn)可以作無數(shù)個圓,經(jīng)過兩點(diǎn)也可以作無數(shù)個圓,其圓心在這個兩點(diǎn)線段的垂直平分線上.

  2.定理:不在同一直線上的三個點(diǎn)確定一個圓.

  3.三角形的外接圓、三角形的外心、圓的內(nèi)接三角形的概念:

  (1)三角形的外接圓和圓的內(nèi)接三角形:經(jīng)過一個三角形三個頂點(diǎn)的圓叫做這個三角形的外接圓,這個三角形叫做圓的內(nèi)接三角形.

  (2)三角形的外心:三角形外接圓的圓心叫做這個三角形的外心.

  (3)三角形的外心的性質(zhì):三角形外心到三頂點(diǎn)的距離相等.

  數(shù)學(xué)的知識點(diǎn)總結(jié) 篇5

  1.有理數(shù)的加法運(yùn)算

  同號兩數(shù)來相加,絕對值加不變號。

  異號相加大減小,大數(shù)決定和符號。

  互為相反數(shù)求和,結(jié)果是零須記好。

  “大”減“小”是指絕對值的大小。

  2.有理數(shù)的減法運(yùn)算

  減正等于加負(fù),減負(fù)等于加正。

  有理數(shù)的乘法運(yùn)算符號法則。

  同號得正異號負(fù),一項(xiàng)為零積是零。

  3.有理數(shù)混合運(yùn)算的四種運(yùn)算技巧

  轉(zhuǎn)化法:一是將除法轉(zhuǎn)化為乘法,二是將乘方轉(zhuǎn)化為乘法,三是在乘除混合運(yùn)算中,通常將小數(shù)轉(zhuǎn)化為分?jǐn)?shù)進(jìn)行約分計(jì)算。

  湊整法:在加減混合運(yùn)算中,通常將和為零的兩個數(shù),分母相同的兩個數(shù),和為整數(shù)的兩個數(shù),乘積為整數(shù)的兩個數(shù)分別結(jié)合為一組求解。

  分拆法:先將帶分?jǐn)?shù)分拆成一個整數(shù)與一個真分?jǐn)?shù)的和的形式,然后進(jìn)行計(jì)算。

  巧用運(yùn)算律:在計(jì)算中巧妙運(yùn)用加法運(yùn)算律或乘法運(yùn)算律往往使計(jì)算更簡便。

  數(shù)學(xué)的知識點(diǎn)總結(jié) 篇6

  1.單項(xiàng)式:在代數(shù)式中,若只含有乘法(包括乘方)運(yùn)算;螂m含有除法運(yùn)算,但除式中不含字母的一類代數(shù)式叫單項(xiàng)式;數(shù)字或字母的乘積叫單項(xiàng)式(單獨(dú)的一個數(shù)字或字母也是單項(xiàng)式)。

  2.系數(shù):單項(xiàng)式中的數(shù)字因數(shù)叫做這個單項(xiàng)式的系數(shù)。所有字母的指數(shù)之和叫做這個單項(xiàng)式的次數(shù)。任何一個非零數(shù)的零次方等于1.

  3.多項(xiàng)式:幾個單項(xiàng)式的和叫多項(xiàng)式。

  4.多項(xiàng)式的項(xiàng)數(shù)與次數(shù):多項(xiàng)式中所含單項(xiàng)式的個數(shù)就是多項(xiàng)式的項(xiàng)數(shù),每個單項(xiàng)式叫多項(xiàng)式的項(xiàng);多項(xiàng)式里,次數(shù)最高項(xiàng)的次數(shù)叫多項(xiàng)式的次數(shù)。

  5.常數(shù)項(xiàng):不含字母的項(xiàng)叫做常數(shù)項(xiàng)。

  6.多項(xiàng)式的排列

  (1)把一個多項(xiàng)式按某一個字母的指數(shù)從大到小的順序排列起來,叫做把多項(xiàng)式按這個字母降冪排列。

  (2)把一個多項(xiàng)式按某一個字母的指數(shù)從小到大的順序排列起來,叫做把多項(xiàng)式按這個字母升冪排列。

  7.多項(xiàng)式的排列時注意:

  (1)由于單項(xiàng)式的項(xiàng),包括它前面的性質(zhì)符號,因此在排列時,仍需把每一項(xiàng)的性質(zhì)符號看作是這一項(xiàng)的一部分,一起移動。

  (2)有兩個或兩個以上字母的多項(xiàng)式,排列時,要注意:

  a.先確認(rèn)按照哪個字母的指數(shù)來排列。

  b.確定按這個字母向里排列,還是向外排列。

  (3)整式:

  單項(xiàng)式和多項(xiàng)式統(tǒng)稱為整式。

  8.多項(xiàng)式的加法:

  多項(xiàng)式的加法,是指多項(xiàng)式的同類項(xiàng)的系數(shù)相加(即合并同類項(xiàng))。

  9.同類項(xiàng):所含字母相同,并且相同字母的次數(shù)也分別相同的項(xiàng)叫做同類項(xiàng)。

  10.合并同類項(xiàng):多項(xiàng)式中的同類項(xiàng)可以合并,叫做合并同類項(xiàng),合并同類項(xiàng)的法則是:同類項(xiàng)的系數(shù)相加,所得的結(jié)果作為系數(shù),字母與字母的指數(shù)不變。

  11.掌握同類項(xiàng)的概念時注意:

  (1)判斷幾個單項(xiàng)式或項(xiàng),是否是同類項(xiàng),就要掌握兩個條件:

 、偎帜赶嗤。

 、谙嗤帜傅拇螖(shù)也相同。

  (2)同類項(xiàng)與系數(shù)無關(guān),與字母排列的順序也無關(guān)。

  (3)所有常數(shù)項(xiàng)都是同類項(xiàng)。

  12.合并同類項(xiàng)步驟:

  (1)準(zhǔn)確的找出同類項(xiàng);

  (2)逆用分配律,把同類項(xiàng)的系數(shù)加在一起(用小括號),字母和字母的指數(shù)不變;

  (3)寫出合并后的結(jié)果。

  13.在掌握合并同類項(xiàng)時注意:

  (1)如果兩個同類項(xiàng)的系數(shù)互為相反數(shù),合并同類項(xiàng)后,結(jié)果為0;

  (2)不要漏掉不能合并的項(xiàng);

  (3)只要不再有同類項(xiàng),就是結(jié)果(可能是單項(xiàng)式,也可能是多項(xiàng)式)。

  14.整式的拓展

  整式的乘除:重點(diǎn)是整式的乘除,尤其是其中的乘法公式。乘法公式的結(jié)構(gòu)特征以及公式中的字母的廣泛含義,學(xué)生不易掌握.因此,乘法公式的靈活運(yùn)用是難點(diǎn),添括號(或去括號)時,括號中符號的處理是另一個難點(diǎn)。添括號(或去括號)是對多項(xiàng)式的變形,要根據(jù)添括號(或去括號)的法則進(jìn)行。在整式的乘除中,單項(xiàng)式的乘除是關(guān)鍵,這是因?yàn)椋话愣囗?xiàng)式的乘除都要“轉(zhuǎn)化”為單項(xiàng)式的乘除。

  整式四則運(yùn)算的主要題型有:

  (1)單項(xiàng)式的四則運(yùn)算

  此類題目多以選擇題和應(yīng)用題的形式出現(xiàn),其特點(diǎn)是考查單項(xiàng)式的四則運(yùn)算。

  (2)單項(xiàng)式與多項(xiàng)式的運(yùn)算

  數(shù)學(xué)的知識點(diǎn)總結(jié) 篇7

 。1)線

  直線:直線沒有端點(diǎn);長度無限;過一點(diǎn)可以畫無數(shù)條,過兩點(diǎn)只能畫一條直線。

  射線:射線只有一個端點(diǎn);長度無限。

  線段:線段有兩個端點(diǎn),它是直線的一部分;長度有限;兩點(diǎn)的連線中,線段為最短。

  平行線:在同一平面內(nèi),不相交的兩條直線叫做平行線。

  兩條平行線之間的垂線長度都相等。

  垂線:兩條直線相交成直角時,這兩條直線叫做互相垂直,其中一條直線叫做另一條直線的垂線,相交的點(diǎn)叫做垂足。

  從直線外一點(diǎn)到這條直線所畫的垂線的長叫做這點(diǎn)到直線的距離。

 。2)角

  (1)從一點(diǎn)引出兩條射線,所組成的圖形叫做角。這個點(diǎn)叫做角的頂點(diǎn),這兩條射線叫做角的邊。

  (2)角的分類

  銳角:小于90°的角叫做銳角。

  直角:等于90°的角叫做直角。

  鈍角:大于90°而小于180°的角叫做鈍角。

  平角:角的兩邊成一條直線,這時所組成的角叫做平角。平角180°。

  周角:角的一邊旋轉(zhuǎn)一周,與另一邊重合。周角是360°。

  數(shù)學(xué)的知識點(diǎn)總結(jié) 篇8

  一、數(shù)的分類

  其中:有理數(shù)(即可比數(shù))即有限小數(shù)或無限循環(huán)小數(shù);無理數(shù)即無限不循環(huán)小數(shù)。

  二、數(shù)軸

  (1)三要素:原點(diǎn)、正方向、單位長度。

  (2)實(shí)數(shù)數(shù)軸上的點(diǎn)。

  (3)利用數(shù)軸可比較數(shù)的大小,理解實(shí)數(shù)及其相反數(shù)、絕對值等概念。

  三、絕對值

  (1)幾何定義:數(shù)軸上,表示數(shù)a的點(diǎn)與原點(diǎn)的距離叫做數(shù)a的絕對值,記做。

  (2)代數(shù)定義:=

  四、相反數(shù)、倒數(shù)

  (1)a、b互為相反數(shù)a+b=0(或a=-b);

  (2)a、b互為倒數(shù)ab=1(或a=)。

  五、運(yùn)算順序

  1.同級:左右

  2.不同級:高低(先乘方和開方,再乘除,最后加減)

  3.有括號:里外(先去小括號、再去中括號、最后去大括號)

  數(shù)學(xué)的知識點(diǎn)總結(jié) 篇9

  分?jǐn)?shù)乘法

  分?jǐn)?shù)乘法意義:

  1、分?jǐn)?shù)乘整數(shù)是求幾個相同加數(shù)的和的簡便運(yùn)算,與整數(shù)乘法的意義相同。

  2、分?jǐn)?shù)乘分?jǐn)?shù)是求一個數(shù)的幾分之幾是多少。

  分?jǐn)?shù)的化簡:分子、分母同時除以它們的最大公因數(shù)。

  關(guān)于分?jǐn)?shù)乘法的計(jì)算:可在乘的過程中約分,提倡在計(jì)算過程中約分,這樣簡便。

  分?jǐn)?shù)的基本性質(zhì):分子分母同時乘或者除以一個相同的數(shù)時(0除外),分?jǐn)?shù)值不變。

  倒數(shù)的意義:乘積為1的兩個數(shù)互為倒數(shù)。

  特別強(qiáng)調(diào):互為倒數(shù),即倒數(shù)是兩個數(shù)的關(guān)系,它們互相依存,倒數(shù)不能單獨(dú)存在。

  求倒數(shù)的方法:

  1、求分?jǐn)?shù)的倒數(shù)是交換分子分母的位置。

  2、求整數(shù)的倒數(shù)是把整數(shù)看做分母是1的分?jǐn)?shù),再交換分子分母的位置。

  1的倒數(shù)是它本身。因?yàn)?x1=1

  0沒有倒數(shù)。0乘任何數(shù)都得0=0x1,1/0(分母不能為0)

  分?jǐn)?shù)除法

  分?jǐn)?shù)除法是分?jǐn)?shù)乘法的逆運(yùn)算,就是已知兩個數(shù)的積與其中一個因數(shù),求另一個因數(shù)的運(yùn)算。

  除以一個數(shù)是乘這個數(shù)的倒數(shù),除以幾就是乘這個數(shù)的幾分之一。

  分?jǐn)?shù)除法的基本性質(zhì):強(qiáng)調(diào)0除外

  比:兩個數(shù)相除也叫兩個數(shù)的比。比表示兩個數(shù)的關(guān)系,可以寫成比的形式,也可以用分?jǐn)?shù)表示,但仍讀幾比幾。比值是一個數(shù),可以是整數(shù),分?jǐn)?shù),也可以是小數(shù)。比可以表示兩個相同量的關(guān)系,即倍數(shù)關(guān)系。也可以表示兩個不同量的比,得到一個新量。例:路程/速度=時間。

  化簡比:

  1、用比的前項(xiàng)和后項(xiàng)同時除以它們的最大公約數(shù)。

  2、兩個分?jǐn)?shù)的比,用前項(xiàng)后項(xiàng)同時乘分母的最小公倍數(shù),再按化簡整數(shù)比的方法來化簡。

  3、兩個小數(shù)的比,向右移動小數(shù)點(diǎn)的位置。也是先化成整數(shù)比。

  比和除法、分?jǐn)?shù)的區(qū)別:除法是一種運(yùn)算,分?jǐn)?shù)是一個數(shù),比表示兩個數(shù)的關(guān)系。

  常用來做判斷的:

  一個數(shù)除以小于1的數(shù),商大于被除數(shù)。

  一個數(shù)除以1,商等于被除數(shù)。

  一個數(shù)除以大于1的數(shù),商小于被除數(shù)。

  百分?jǐn)?shù)

  百分?jǐn)?shù)的約分:百分?jǐn)?shù)化成分?jǐn)?shù),寫成分?jǐn)?shù)形式,再約分。

  分?jǐn)?shù)表是一個數(shù),也可以表示兩個數(shù)的關(guān)系,百分?jǐn)?shù)只表示兩個數(shù)的關(guān)系,沒有單位。

  百分?jǐn)?shù)的意義:表示一個數(shù)是另一個數(shù)的百分之幾,也叫百分率或者百分比。

  一般來講,出勤率、成活率、合格率、正確率能達(dá)到100%,出米率、出油率達(dá)不到100%,完成率、增長了百分之幾等可以超過100%。一般出粉率在70、80%,出油率在30、40%。

  統(tǒng)計(jì)

  條形統(tǒng)計(jì)圖可以知道每個數(shù)量的多少。

  折現(xiàn)統(tǒng)計(jì)圖可以知數(shù)量的增減。

  扇形統(tǒng)計(jì)圖可以知道部分和總量的關(guān)系。

  數(shù)學(xué)的知識點(diǎn)總結(jié) 篇10

  其實(shí)角的大小與邊的長短沒有關(guān)系,角的大小決定于角的兩條邊張開的程度。

  角的靜態(tài)定義

  具有公共端點(diǎn)的兩條射線組成的圖形叫做角(angle)。這個公共端點(diǎn)叫做角的頂點(diǎn),這兩條射線叫做角的兩條邊。

  角的動態(tài)定義

  一條射線繞著它的端點(diǎn)從一個位置旋轉(zhuǎn)到另一個位置所形成的圖形叫做角。所旋轉(zhuǎn)射線的端點(diǎn)叫做角的頂點(diǎn),開始位置的射線叫做角的始邊,終止位置的射線叫做角的終邊

  角的符號

  角的符號:∠

  角的種類

  在動態(tài)定義中,取決于旋轉(zhuǎn)的方向與角度。角可以分為銳角、直角、鈍角、平角、周角、負(fù)角、正角、優(yōu)角、劣角、0角這10種。以度、分、秒為單位的角的度量制稱為角度制。此外,還有密位制、弧度制等。

  銳角:大于0°,小于90°的角叫做銳角。

  直角:等于90°的角叫做直角。

  鈍角:大于90°而小于180°的角叫做鈍角。

  平角:等于180°的角叫做平角。

  優(yōu)角:大于180°小于360°叫優(yōu)角。

  劣角:大于0°小于180°叫做劣角,銳角、直角、鈍角都是劣角。

  角周角:等于360°的'角叫做周角。

  負(fù)角:按照順時針方向旋轉(zhuǎn)而成的角叫做負(fù)角。

  正角:逆時針旋轉(zhuǎn)的角為正角。

  0角:等于零度的角。

  特殊角

  余角和補(bǔ)角:兩角之和為90°則兩角互為余角,兩角之和為180°則兩角互為補(bǔ)角。等角的余角相等,等角的補(bǔ)角相等。

  對頂角:兩條直線相交后所得的只有一個公共頂點(diǎn)且兩個角的兩邊互為反向延長線,這樣的兩個角叫做互為對頂角。兩條直線相交,構(gòu)成兩對對頂角;閷斀堑膬蓚角相等。

  鄰補(bǔ)角:兩個角有一條公共邊,它們的另一條邊互為反向延長線,具有這種關(guān)系的兩個角,互為鄰補(bǔ)角。

  內(nèi)錯角:互相平行的兩條直線直線,被第三條直線所截,如果兩個角都在兩條直線的

  內(nèi)側(cè),并且在第三條直線的兩側(cè),那么這樣的一對角叫做內(nèi)錯角。如:∠1和∠6,∠2和∠5

  同旁內(nèi)角:兩個角都在截線的同一側(cè),且在兩條被截線之間,具有這樣位置關(guān)系的一對角互為同旁內(nèi)角。如:∠1和∠5,∠2和∠6

  同位角:兩個角都在截線的同旁,又分別處在被截的兩條直線同側(cè),具有這樣位置關(guān)系的一對角叫做同位角:∠1和∠8,∠2和∠7

  外錯角:兩條直線被第三條直線所截,構(gòu)成了八個角。如果兩個角都在兩條被截線的外側(cè),并且在截線的兩側(cè),那么這樣的一對角叫做外錯角。例如:∠4與∠7,∠3與∠8。

  同旁外角:兩個角都在截線的同一側(cè),且在兩條被截線之外,具有這樣位置關(guān)系的一對角互為同旁外角。如:∠4和∠8,∠3和∠7

  終邊相同的角:具有共同始邊和終邊的角叫終邊相同的角。與角a終邊相同的角屬于集合:

  A{bb=k_360+a,k∈Z}表示角度制;

  B{bb=2kπ+a,k∈Z}表示弧度制

  數(shù)學(xué)的知識點(diǎn)總結(jié) 篇11

  戴氏航天學(xué)校老師總結(jié)加法與減法的代數(shù)運(yùn)算:

  (1)若a=(x1,y1),b=(x2,y2)則ab=(x1+x2,y1+y2).

  向量加法與減法的幾何表示:平行四邊形法則、三角形法則。

  戴氏航天學(xué)校老師總結(jié)向量加法有如下規(guī)律:+=+(交換律);+(+c)=(+)+c(結(jié)合律);

  兩個向量共線的充要條件:

  (1)向量b與非零向量共線的充要條件是有且僅有一個實(shí)數(shù),使得b=.

  (2)若=(),b=()則‖b.

  平面向量基本定理:

  若e1、e2是同一平面內(nèi)的兩個不共線向量,那么對于這一平面內(nèi)的任一向量,戴氏航天學(xué)校老師提醒有且只有一對實(shí)數(shù),,使得=e1+e2

  數(shù)學(xué)的知識點(diǎn)總結(jié) 篇12

  1.數(shù)列的定義

  按一定次序排列的一列數(shù)叫做數(shù)列,數(shù)列中的每一個數(shù)都叫做數(shù)列的項(xiàng).

  (1)從數(shù)列定義可以看出,數(shù)列的數(shù)是按一定次序排列的,如果組成數(shù)列的數(shù)相同而排列次序不同,那么它們就不是同一數(shù)列,例如數(shù)列1,2,3,4,5與數(shù)列5,4,3,2,1是不同的數(shù)列.

  (2)在數(shù)列的定義中并沒有規(guī)定數(shù)列中的數(shù)必須不同,因此,在同一數(shù)列中可以出現(xiàn)多個相同的數(shù)字,如:-1的1次冪,2次冪,3次冪,4次冪,…構(gòu)成數(shù)列:-1,1,-1,1….

  (4)數(shù)列的項(xiàng)與它的項(xiàng)數(shù)是不同的,數(shù)列的項(xiàng)是指這個數(shù)列中的某一個確定的數(shù),是一個函數(shù)值,也就是相當(dāng)于f(n),而項(xiàng)數(shù)是指這個數(shù)在數(shù)列中的位置序號,它是自變量的值,相當(dāng)于f(n)中的n.

  (5)次序?qū)τ跀?shù)列來講是十分重要的,有幾個相同的數(shù),由于它們的排列次序不同,構(gòu)成的數(shù)列就不是一個相同的數(shù)列,顯然數(shù)列與數(shù)集有本質(zhì)的區(qū)別.如:2,3,4,5,6這5個數(shù)按不同的次序排列時,就會得到不同的數(shù)列,而{2,3,4,5,6}中元素不論按怎樣的次序排列都是同一個集合.

  2.數(shù)列的分類

  (1)根據(jù)數(shù)列的項(xiàng)數(shù)多少可以對數(shù)列進(jìn)行分類,分為有窮數(shù)列和無窮數(shù)列.在寫數(shù)列時,對于有窮數(shù)列,要把末項(xiàng)寫出,例如數(shù)列1,3,5,7,9,…,2n-1表示有窮數(shù)列,如果把數(shù)列寫成1,3,5,7,9…或1,3,5,7,9…2n-1…它就表示無窮數(shù)列.

  (2)按照項(xiàng)與項(xiàng)之間的大小關(guān)系或數(shù)列的增減性可以分為以下幾類:遞增數(shù)列、遞減數(shù)列、擺動數(shù)列、常數(shù)列.

  3.數(shù)列的通項(xiàng)公式

  數(shù)列是按一定次序排列的一列數(shù),其內(nèi)涵的本質(zhì)屬性是確定這一列數(shù)的規(guī)律,這個規(guī)律通常是用式子f(n)來表示的,這兩個通項(xiàng)公式形式上雖然不同,但表示同一個數(shù)列,正像每個函數(shù)關(guān)系不都能用解析式表達(dá)出來一樣,也不是每個數(shù)列都能寫出它的通項(xiàng)公式;有的數(shù)列雖然有通項(xiàng)公式,但在形式上,又不一定是的,僅僅知道一個數(shù)列前面的有限項(xiàng),無其他說明,數(shù)列是不能確定的,通項(xiàng)公式更非.如:數(shù)列1,2,3,4…

  由公式寫出的后續(xù)項(xiàng)就不一樣了,因此,通項(xiàng)公式的歸納不僅要看它的前幾項(xiàng),更要依據(jù)數(shù)列的構(gòu)成規(guī)律,多觀察分析,真正找到數(shù)列的內(nèi)在規(guī)律,由數(shù)列前幾項(xiàng)寫出其通項(xiàng)公式,沒有通用的方法可循.

  再強(qiáng)調(diào)對于數(shù)列通項(xiàng)公式的理解注意以下幾點(diǎn):

  (1)數(shù)列的通項(xiàng)公式實(shí)際上是一個以正整數(shù)集N.或它的有限子集{1,2…n}為定義域的函數(shù)的表達(dá)式.

  (2)如果知道了數(shù)列的通項(xiàng)公式,那么依次用1,2,3…去替代公式中的n就可以求出這個數(shù)列的各項(xiàng);同時,用數(shù)列的通項(xiàng)公式也可判斷某數(shù)是否是某數(shù)列中的一項(xiàng),如果是的話,是第幾項(xiàng).

  (3)如所有的函數(shù)關(guān)系不一定都有解析式一樣,并不是所有的數(shù)列都有通項(xiàng)公式.

  如2的不足近似值,精確到1,0.1,0.01,0.001,0.0001…所構(gòu)成的數(shù)列1,1.4,1.41,1.414,1.4142…就沒有通項(xiàng)公式.

  (4)有的數(shù)列的通項(xiàng)公式,形式上不一定是的,正如舉例中的:

  (5)有些數(shù)列,只給出它的前幾項(xiàng),并沒有給出它的構(gòu)成規(guī)律,那么僅由前面幾項(xiàng)歸納出的數(shù)列通項(xiàng)公式并不.

  數(shù)學(xué)的知識點(diǎn)總結(jié) 篇13

  數(shù)據(jù)的分析

  將一組數(shù)據(jù)按照由小到大(或由大到小)的順序排列,如果數(shù)據(jù)的個數(shù)是奇數(shù),則處于中間位置的數(shù)就是這組數(shù)據(jù)的中位數(shù)(median);如果數(shù)據(jù)的個數(shù)是偶數(shù),則中間兩個數(shù)據(jù)的平均數(shù)就是這組數(shù)據(jù)的中位數(shù)。

  一組數(shù)據(jù)中出現(xiàn)次數(shù)最多的數(shù)據(jù)就是這組數(shù)據(jù)的眾數(shù)(mode)。

  一組數(shù)據(jù)中的最大數(shù)據(jù)與最小數(shù)據(jù)的差叫做這組數(shù)據(jù)的極差(range)。

  方差越大,數(shù)據(jù)的波動越大;方差越小,數(shù)據(jù)的波動越小,就越穩(wěn)定。

  數(shù)據(jù)的收集與整理的步驟:

  1.收集數(shù)據(jù)

  2.整理數(shù)據(jù)

  3.描述數(shù)據(jù)

  4.分析數(shù)據(jù)

  5.撰寫調(diào)查報告

  平面直角坐標(biāo)系

  在平面內(nèi)畫兩條互相垂直、原點(diǎn)重合的數(shù)軸,組成平面直角坐標(biāo)系。

  水平的數(shù)軸稱為x軸或橫軸,豎直的數(shù)軸稱為y軸或縱軸,兩坐標(biāo)軸的交點(diǎn)為平面直角坐標(biāo)系的原點(diǎn)。

  平面直角坐標(biāo)系的要素:

  ①在同一平面

 、趦蓷l數(shù)軸

  ③互相垂直

 、茉c(diǎn)重合

  三個規(guī)定:

  ①正方向的規(guī)定橫軸取向右為正方向,縱軸取向上為正方向

  ②單位長度的規(guī)定;一般情況,橫軸、縱軸單位長度相同;實(shí)際有時也可不同,但同一數(shù)軸上必須相同。

 、巯笙薜囊(guī)定:右上為第一象限、左上為第二象限、左下為第三象限、右下為第四象限。

  相信上面對平面直角坐標(biāo)系知識的講解學(xué)習(xí),同學(xué)們已經(jīng)能很好的掌握了吧,希望同學(xué)們都能考試成功。

  初中數(shù)學(xué)知識點(diǎn):平面直角坐標(biāo)系的構(gòu)成

  對于平面直角坐標(biāo)系的構(gòu)成內(nèi)容,下面我們一起來學(xué)習(xí)哦。

  平面直角坐標(biāo)系的構(gòu)成

  在同一個平面上互相垂直且有公共原點(diǎn)的兩條數(shù)軸構(gòu)成平面直角坐標(biāo)系,簡稱為直角坐標(biāo)系。通常,兩條數(shù)軸分別置于水平位置與鉛直位置,取向右與向上的方向分別為兩條數(shù)軸的正方向。水平的數(shù)軸叫做X軸或橫軸,鉛直的數(shù)軸叫做Y軸或縱軸,X軸或Y軸統(tǒng)稱為坐標(biāo)軸,它們的公共原點(diǎn)O稱為直角坐標(biāo)系的原點(diǎn)。

  建立了平面直角坐標(biāo)系后,對于坐標(biāo)系平面內(nèi)的任何一點(diǎn),我們可以確定它的坐標(biāo)。反過來,對于任何一個坐標(biāo),我們可以在坐標(biāo)平面內(nèi)確定它所表示的一個點(diǎn)。

  對于平面內(nèi)任意一點(diǎn)C,過點(diǎn)C分別向X軸、Y軸作垂線,垂足在X軸、Y軸上的對應(yīng)點(diǎn)a,b分別叫做點(diǎn)C的橫坐標(biāo)、縱坐標(biāo),有序?qū)崝?shù)對(a,b)叫做點(diǎn)C的坐標(biāo)。

  一個點(diǎn)在不同的象限或坐標(biāo)軸上,點(diǎn)的坐標(biāo)不一樣。

  希望上面對點(diǎn)的坐標(biāo)的性質(zhì)知識講解學(xué)習(xí),同學(xué)們都能很好的掌握,相信同學(xué)們會在考試中取得優(yōu)異成績的。

  初中數(shù)學(xué)知識點(diǎn):因式分解的一般步驟

  關(guān)于數(shù)學(xué)中因式分解的一般步驟內(nèi)容學(xué)習(xí),我們做下面的知識講解。

  因式分解的一般步驟

  如果多項(xiàng)式有公因式就先提公因式,沒有公因式的多項(xiàng)式就考慮運(yùn)用公式法;若是四項(xiàng)或四項(xiàng)以上的多項(xiàng)式,

  通常采用分組分解法,最后運(yùn)用十字相乘法分解因式。因此,可以概括為:“一提”、“二套”、“三分組”、“四十字”。

  注意:因式分解一定要分解到每一個因式都不能再分解為止,否則就是不完全的因式分解,若題目沒有明確指出在哪個范圍內(nèi)因式分解,應(yīng)該是指在有理數(shù)范圍內(nèi)因式分解,因此分解因式的結(jié)果,必須是幾個整式的積的形式。

  因式分解

  因式分解定義:把一個多項(xiàng)式化成幾個整式的積的形式的變形叫把這個多項(xiàng)式因式分解。

  因式分解要素:

  ①結(jié)果必須是整式

 、诮Y(jié)果必須是積的形式

 、劢Y(jié)果是等式

  ④因式分解與整式乘法的關(guān)系:m(a+b+c)

  公因式:

  一個多項(xiàng)式每項(xiàng)都含有的公共的因式,叫做這個多項(xiàng)式各項(xiàng)的公因式。

  公因式確定方法:

 、傧禂(shù)是整數(shù)時取各項(xiàng)最大公約數(shù)。

  ②相同字母取最低次冪

 、巯禂(shù)最大公約數(shù)與相同字母取最低次冪的積就是這個多項(xiàng)式各項(xiàng)的公因式。

  提取公因式步驟:

 、俅_定公因式。

 、诖_定商式

 、酃蚴脚c商式寫成積的形式。

  分解因式注意;

 、俨粶(zhǔn)丟字母

  ②不準(zhǔn)丟常數(shù)項(xiàng)注意查項(xiàng)數(shù)

 、垭p重括號化成單括號

  ④結(jié)果按數(shù)單字母單項(xiàng)式多項(xiàng)式順序排列

 、菹嗤蚴綄懗蓛绲男问

  ⑥首項(xiàng)負(fù)號放括號外

 、呃ㄌ杻(nèi)同類項(xiàng)合并。

  數(shù)學(xué)的知識點(diǎn)總結(jié) 篇14

  1、大于0的數(shù)是正數(shù)。

  2、有理數(shù)分類:正有理數(shù)、0、負(fù)有理數(shù)。

  3、有理數(shù)分類:整數(shù)(正整數(shù)、0、負(fù)整數(shù))、分?jǐn)?shù)(正分?jǐn)?shù)、負(fù)分?jǐn)?shù))

  4、規(guī)定了原點(diǎn),單位長度,正方向的直線稱為數(shù)軸。

  5、數(shù)的大小比較:

 、僬龜(shù)大于0,0大于負(fù)數(shù),正數(shù)大于負(fù)數(shù)。

  ②兩個負(fù)數(shù)比較,絕對值大的反而小。

  6、只有符號不同的兩個數(shù)稱互為相反數(shù)。

  7、若a+b=0,則a,b互為相反數(shù)

  8、表示數(shù)a的點(diǎn)到原點(diǎn)的距離稱為數(shù)a的絕對值

  9、絕對值的三句:正數(shù)的絕對值是它本身,

  負(fù)數(shù)的絕對值是它的相反數(shù),0的絕對值是0。

  10、有理數(shù)的計(jì)算:先算符號、再算數(shù)值。

  11、加減:

  ①正+正

 、诖-小

  ③小-大=-(大-小)

 、-☆-О=-(☆+О)

  12、乘除:同號得正,異號的負(fù)

  13、乘方:表示n個相同因數(shù)的乘積。

  14、負(fù)數(shù)的奇次冪是負(fù)數(shù),負(fù)數(shù)的偶次冪是正數(shù)。

  15、混合運(yùn)算:先乘方,再乘除,后加減,同級運(yùn)算從左到右,有括號的先算括號。

  16、科學(xué)計(jì)數(shù)法:用ax10n表示一個數(shù)。(其中a是整數(shù)數(shù)位只有一位的數(shù))

  17、左邊第一個非零的數(shù)字起,所有的數(shù)字都是有效數(shù)字。

  數(shù)學(xué)的知識點(diǎn)總結(jié) 篇15

  1.分?jǐn)?shù)乘法:分?jǐn)?shù)乘法的意義與整數(shù)乘法的意義相同,就是求幾個相同加數(shù)和的簡便運(yùn)算。

  2.分?jǐn)?shù)乘法的計(jì)算法則

  分?jǐn)?shù)乘整數(shù),用分?jǐn)?shù)的分子和整數(shù)相乘的積作分子,分母不變;分?jǐn)?shù)乘分?jǐn)?shù),用分子相乘的積作分子,分母相乘的積作分母。但分子分母不能為零.。

  3.分?jǐn)?shù)乘法意義

  分?jǐn)?shù)乘整數(shù)的意義與整數(shù)乘法的意義相同,就是求幾個相同加數(shù)的和的簡便運(yùn)算。一個數(shù)與分?jǐn)?shù)相乘,可以看作是求這個數(shù)的幾分之幾是多少。

  4.分?jǐn)?shù)乘整數(shù):數(shù)形結(jié)合、轉(zhuǎn)化化歸

  5.倒數(shù):乘積是1的兩個數(shù)叫做互為倒數(shù)。

  6.分?jǐn)?shù)的倒數(shù)

  找一個分?jǐn)?shù)的倒數(shù),例如3/4把3/4這個分?jǐn)?shù)的分子和分母交換位置,把原來的分子做分母,原來的分母做分子。則是4/3。3/4是4/3的倒數(shù),也可以說4/3是3/4的倒數(shù)。

  7.整數(shù)的倒數(shù)

  找一個整數(shù)的倒數(shù),例如12,把12化成分?jǐn)?shù),即12/1,再把12/1這個分?jǐn)?shù)的分子和分母交換位置,把原來的分子做分母,原來的分母做分子。則是1/12,12是1/12的倒數(shù)。

  8.小數(shù)的倒數(shù)

  普通算法:找一個小數(shù)的倒數(shù),例如0.25,把0.25化成分?jǐn)?shù),即1/4,再把1/4這個分?jǐn)?shù)的分子和分母交換位置,把原來的分子做分母,原來的分母做分子,則是4/1。

  9.用1計(jì)算法:也可以用1去除以這個數(shù),例如0.25,1/0.25等于4,所以0.25的倒數(shù)4,因?yàn)槌朔e是1的兩個數(shù)互為倒數(shù)。分?jǐn)?shù)、整數(shù)也都使用這種規(guī)律。

  10.分?jǐn)?shù)除法:分?jǐn)?shù)除法是分?jǐn)?shù)乘法的逆運(yùn)算。

  11.分?jǐn)?shù)除法計(jì)算法則:

  甲數(shù)除以乙數(shù)(0除外),等于甲數(shù)乘乙數(shù)的倒數(shù)。

  12.分?jǐn)?shù)除法的意義:與整數(shù)除法的意義相同,都是已知兩個因數(shù)的積與其中一個因數(shù)求另一個因數(shù)。

  13.分?jǐn)?shù)除法應(yīng)用題:先找單位1。單位1已知,求部分量或?qū)?yīng)分率用乘法,求單位1用除法。

  數(shù)學(xué)的知識點(diǎn)總結(jié) 篇16

  一、平移變換:

  1、概念:在平面內(nèi),將一個圖形沿著某個方向移動一定的距離,這樣的圖形運(yùn)動叫做平移。

  2、性質(zhì):(1)平移前后圖形全等;

  (2)對應(yīng)點(diǎn)連線平行或在同一直線上且相等。

  3、平移的作圖步驟和方法:

  (1)分清題目要求,確定平移的方向和平移的距離;

  (2)分析所作的圖形,找出構(gòu)成圖形的關(guān)健點(diǎn);

 。3)沿一定的方向,按一定的距離平移各個關(guān)健點(diǎn);

 。4)連接所作的各個關(guān)鍵點(diǎn),并標(biāo)上相應(yīng)的字母;

 。5)寫出結(jié)論。

  二、旋轉(zhuǎn)變換:

  1、概念:在平面內(nèi),將一個圖形繞一個定點(diǎn)沿某個方向轉(zhuǎn)動一個角度,這樣的圖形運(yùn)動叫做旋轉(zhuǎn)。

  說明:

 。1)圖形的旋轉(zhuǎn)是由旋轉(zhuǎn)中心和旋轉(zhuǎn)的角度所決定的;

 。2)旋轉(zhuǎn)過程中旋轉(zhuǎn)中心始終保持不動。

 。3)旋轉(zhuǎn)過程中旋轉(zhuǎn)的方向是相同的。

 。4)旋轉(zhuǎn)過程靜止時,圖形上一個點(diǎn)的旋轉(zhuǎn)角度是一樣的。

 。5)旋轉(zhuǎn)不改變圖形的大小和形狀。

  2、性質(zhì):

 。1)對應(yīng)點(diǎn)到旋轉(zhuǎn)中心的距離相等;

  (2)對應(yīng)點(diǎn)與旋轉(zhuǎn)中心所連線段的夾角等于旋轉(zhuǎn)角;

 。3)旋轉(zhuǎn)前、后的圖形全等。

  3、旋轉(zhuǎn)作圖的步驟和方法:

 。1)確定旋轉(zhuǎn)中心及旋轉(zhuǎn)方向、旋轉(zhuǎn)角;

  (2)找出圖形的關(guān)鍵點(diǎn);

 。3)將圖形的關(guān)鍵點(diǎn)和旋轉(zhuǎn)中心連接起來,然后按旋轉(zhuǎn)方向分別將它們旋轉(zhuǎn)一個旋轉(zhuǎn)角度數(shù),得到這些關(guān)鍵點(diǎn)的對應(yīng)點(diǎn);

 。4)按原圖形順次連接這些對應(yīng)點(diǎn),所得到的圖形就是旋轉(zhuǎn)后的圖形。

  說明:在旋轉(zhuǎn)作圖時,一對對應(yīng)點(diǎn)與旋轉(zhuǎn)中心的夾角即為旋轉(zhuǎn)角。

  數(shù)學(xué)的知識點(diǎn)總結(jié) 篇17

  圓的方程

  1、圓的定義:平面內(nèi)到一定點(diǎn)的距離等于定長的點(diǎn)的集合叫圓,定點(diǎn)為圓心,定長為圓的半徑。

  2、圓的方程

 。1)標(biāo)準(zhǔn)方程,圓心,半徑為r;

 。2)一般方程

  當(dāng)時,方程表示圓,此時圓心為,半徑為

  當(dāng)時,表示一個點(diǎn);當(dāng)時,方程不表示任何圖形。

  (3)求圓方程的方法:

  一般都采用待定系數(shù)法:先設(shè)后求。確定一個圓需要三個獨(dú)立條件,若利用圓的標(biāo)準(zhǔn)方程,

  需求出a,b,r;若利用一般方程,需要求出D,E,F(xiàn);

  另外要注意多利用圓的幾何性質(zhì):如弦的中垂線必經(jīng)過原點(diǎn),以此來確定圓心的位置。

  3、直線與圓的位置關(guān)系:

  直線與圓的位置關(guān)系有相離,相切,相交三種情況:

 。1)設(shè)直線,圓,圓心到l的距離為,則有;;

 。2)過圓外一點(diǎn)的切線:①k不存在,驗(yàn)證是否成立②k存在,設(shè)點(diǎn)斜式方程,用圓心到該直線距離=半徑,求解k,得到方程

 。3)過圓上一點(diǎn)的切線方程:圓(x—a)2+(y—b)2=r2,圓上一點(diǎn)為(x0,y0),則過此點(diǎn)的切線方程為(x0—a)(x—a)+(y0—b)(y—b)=r2

  4、圓與圓的位置關(guān)系:通過兩圓半徑的和(差),與圓心距(d)之間的大小比較來確定。

  設(shè)圓,

  兩圓的位置關(guān)系常通過兩圓半徑的和(差),與圓心距(d)之間的大小比較來確定。

  當(dāng)時兩圓外離,此時有公切線四條;

  當(dāng)時兩圓外切,連心線過切點(diǎn),有外公切線兩條,內(nèi)公切線一條;

  當(dāng)時兩圓相交,連心線垂直平分公共弦,有兩條外公切線;

  當(dāng)時,兩圓內(nèi)切,連心線經(jīng)過切點(diǎn),只有一條公切線;

  當(dāng)時,兩圓內(nèi)含;當(dāng)時,為同心圓。

  注意:已知圓上兩點(diǎn),圓心必在中垂線上;已知兩圓相切,兩圓心與切點(diǎn)共線

  圓的輔助線一般為連圓心與切線或者連圓心與弦中點(diǎn)

  成數(shù)概念

  一數(shù)為另一數(shù)的幾成,泛指比率:應(yīng)在生產(chǎn)組內(nèi)找標(biāo)準(zhǔn)勞動力,互相比較,評成數(shù)。

  表示一個數(shù)是另一個數(shù)的十分之幾的數(shù),叫做成數(shù)。

  通常用在工農(nóng)業(yè)生產(chǎn)中表示生產(chǎn)的增長狀況。幾成就是十分之幾。

  例如,糧食產(chǎn)量增產(chǎn)“二成”。

  “二成”即是十分之二,也就是糧食產(chǎn)量增加了20%。

  在計(jì)算成數(shù)時,設(shè)有甲、乙兩數(shù),求乙數(shù)對于甲數(shù)的比,并把比值化成純小數(shù),那么所得的純小數(shù)叫做乙數(shù)對于甲數(shù)的成數(shù)。其中小數(shù)第一位叫做“成”或“分”,第二位叫做“厘”。

  例如,計(jì)劃糧食產(chǎn)量為5萬斤,實(shí)際多產(chǎn)了1萬斤,那么糧食增產(chǎn)的成數(shù)是1÷5=0.2,即糧食增產(chǎn)了二成。

  成數(shù)與其他數(shù)的互化

  方法:分?jǐn)?shù)X10=成數(shù)成數(shù)/10=小數(shù)(成數(shù)除以10等于小數(shù))成數(shù)X10=百分?jǐn)?shù)

  數(shù)學(xué)的知識點(diǎn)總結(jié) 篇18

  1.有理數(shù):

  凡能寫成形式的數(shù),都是有理數(shù)。正整數(shù)、0、負(fù)整數(shù)統(tǒng)稱整數(shù);正分?jǐn)?shù)、負(fù)分?jǐn)?shù)統(tǒng)稱分?jǐn)?shù);整數(shù)和分?jǐn)?shù)統(tǒng)稱有理數(shù)。注意:0即不是正數(shù),也不是負(fù)數(shù);—a不一定是負(fù)數(shù),+a也不一定是正數(shù);p不是有理數(shù);

  2.數(shù)軸:數(shù)軸是規(guī)定了原點(diǎn)、正方向、單位長度的一條直線。

  3.相反數(shù):

 。1)只有符號不同的兩個數(shù),我們說其中一個是另一個的相反數(shù);0的相反數(shù)還是0;

  (2)相反數(shù)的和為0?a+b=0?a、b互為相反數(shù)。

  4.絕對值:

 。1)正數(shù)的絕對值是其本身,0的絕對值是0,負(fù)數(shù)的絕對值是它的相反數(shù);注意:絕對值的意義是數(shù)軸上表示某數(shù)的點(diǎn)離開原點(diǎn)的距離;

 。2)絕對值可表示為:或;絕對值的問題經(jīng)常分類討論;

  5.有理數(shù)比大。

 。1)正數(shù)的絕對值越大,這個數(shù)越大;

 。2)正數(shù)永遠(yuǎn)比0大,負(fù)數(shù)永遠(yuǎn)比0。

 。3)正數(shù)大于一切負(fù)數(shù);

 。4)兩個負(fù)數(shù)比大小,絕對值大的反而;

 。5)數(shù)軸上的兩個數(shù),右邊的數(shù)總比左邊的數(shù)大;

 。6)大數(shù)—小數(shù)> 0,小數(shù)—大數(shù)< 0。

  6.互為倒數(shù):乘積為1的兩個數(shù)互為倒數(shù);注意:0沒有倒數(shù);若a≠0,那么的倒數(shù)是;若ab=1?a、b互為倒數(shù);若ab=—1?a、b互為負(fù)倒數(shù)。

  7.有理數(shù)加法法則:

 。1)同號兩數(shù)相加,取相同的符號,并把絕對值相加;

  (2)異號兩數(shù)相加,取絕對值較大的符號,并用較大的絕對值減去較小的絕對值;

 。3)一個數(shù)與0相加,仍得這個數(shù)。

  8.有理數(shù)加法的運(yùn)算律:

 。1)加法的交換律:a+b=b+a;

  (2)加法的結(jié)合律:(a+b)+c=a+(b+c)。

  9.有理數(shù)減法法則:減去一個數(shù),等于加上這個數(shù)的相反數(shù);即a—b=a+(—b)。

  10.有理數(shù)乘法法則:

 。1)兩數(shù)相乘,同號為正,異號為負(fù),并把絕對值相乘;

  (2)任何數(shù)同零相乘都得零;

 。3)幾個數(shù)相乘,有一個因式為零,積為零;各個因式都不為零,積的符號由負(fù)因式的個數(shù)決定。

  11.有理數(shù)乘法的運(yùn)算律:

 。1)乘法的交換律:ab=ba;

 。2)乘法的結(jié)合律:(ab)c=a(bc);

  (3)乘法的分配律:a(b+c)=ab+ac 。

  12.有理數(shù)除法法則:除以一個數(shù)等于乘以這個數(shù)的倒數(shù);注意:零不能做除數(shù),。

  13.有理數(shù)乘方的法則:

 。1)正數(shù)的任何次冪都是正數(shù);

 。2)負(fù)數(shù)的奇次冪是負(fù)數(shù);負(fù)數(shù)的偶次冪是正數(shù);注意:當(dāng)n為正奇數(shù)時:(—a)n=—an或(a —b)n=—(b—a)n,當(dāng)n為正偶數(shù)時:(—a)n =an或(a—b)n=(b—a)n 。

  14.乘方的定義:

 。1)求相同因式積的運(yùn)算,叫做乘方;

  (2)乘方中,相同的因式叫做底數(shù),相同因式的個數(shù)叫做指數(shù),乘方的結(jié)果叫做冪;

  15.科學(xué)記數(shù)法:把一個大于10的數(shù)記成a×10n的形式,其中a是整數(shù)數(shù)位只有一位的數(shù),這種記數(shù)法叫科學(xué)記數(shù)法。

  16.近似數(shù)的精確位:一個近似數(shù),四舍五入到那一位,就說這個近似數(shù)的精確到那一位。

  17.有效數(shù)字:從左邊第一個不為零的數(shù)字起,到精確的位數(shù)止,所有數(shù)字,都叫這個近似數(shù)的有效數(shù)字。

  18.混合運(yùn)算法則:先乘方,后乘除,最后加減。

  數(shù)學(xué)的知識點(diǎn)總結(jié) 篇19

  一、角的定義

  “靜態(tài)”概念:有公共端點(diǎn)的兩條射線組成的圖形叫做角。

  “動態(tài)”概念:角可以看作是一條射線繞其端點(diǎn)從一個位置旋轉(zhuǎn)到另一個位置所形成的圖形。

  如果一個角的兩邊成一條直線,那么這個角叫做平角;平角的一半叫直角;大于直角小于平角的角叫做鈍角;大于0小于直角的角叫做銳角。

  二、角的換算:

  1周角=2平角=4直角=360°;

  1平角=2直角=180°;

  1直角=90°;

  1度=60分=3600秒(即:1°=60′=3600″);

  1分=60秒(即:1′=60″).

  三、余角、補(bǔ)角的概念和性質(zhì):

  概念:如果兩個角的和是一個平角,那么這兩個角叫做互為補(bǔ)角。

  如果兩個角的和是一個直角,那么這兩個角叫做互為余角。

  說明:互補(bǔ)、互余是指兩個角的數(shù)量關(guān)系,沒有位置關(guān)系。

  性質(zhì):同角(或等角)的余角相等;

  同角(或等角)的補(bǔ)角相等。

  四、角的比較方法:

  角的大小比較,有兩種方法:

  (1)度量法(利用量角器);

  (2)疊合法(利用圓規(guī)和直尺)。

  五、角平分線:

  從一個角的頂點(diǎn)引出的一條射線。把這個角分成相等的兩部分,這條射線叫做這個角的平分線。

  數(shù)學(xué)的知識點(diǎn)總結(jié) 篇20

  1、正數(shù)和負(fù)數(shù)的有關(guān)概念

  (1)正數(shù):比0大的數(shù)叫做正數(shù);

  負(fù)數(shù):比0小的數(shù)叫做負(fù)數(shù);

  0既不是正數(shù),也不是負(fù)數(shù)。

  (2)正數(shù)和負(fù)數(shù)表示相反意義的量。

  2、有理數(shù)的概念及分類

  3、有關(guān)數(shù)軸

  (1)數(shù)軸的三要素:原點(diǎn)、正方向、單位長度。數(shù)軸是一條直線。

  (2)所有有理數(shù)都可以用數(shù)軸上的點(diǎn)來表示,但數(shù)軸上的點(diǎn)不一定都是有理數(shù)。

  (3)數(shù)軸上,右邊的數(shù)總比左邊的數(shù)大;表示正數(shù)的點(diǎn)在原點(diǎn)的右側(cè),表示負(fù)數(shù)的點(diǎn)在原點(diǎn)的左側(cè)。

  (2)相反數(shù):符號不同、絕對值相等的兩個數(shù)互為相反數(shù)。

  若a、b互為相反數(shù),則a+b=0;

  相反數(shù)是本身的是0,正數(shù)的相反數(shù)是負(fù)數(shù),負(fù)數(shù)的相反數(shù)是正數(shù)。

  (3)絕對值最小的數(shù)是0;絕對值是本身的數(shù)是非負(fù)數(shù)。

  4、任何數(shù)的絕對值是非負(fù)數(shù)。

  最小的正整數(shù)是1,最大的負(fù)整數(shù)是-1。

  5、利用絕對值比較大小

  兩個正數(shù)比較:絕對值大的那個數(shù)大;

  兩個負(fù)數(shù)比較:先算出它們的絕對值,絕對值大的反而小。

  6、有理數(shù)加法

  (1)符號相同的兩數(shù)相加:和的符號與兩個加數(shù)的符號一致,和的絕對值等于兩個加數(shù)絕對值之和.

  (2)符號相反的兩數(shù)相加:當(dāng)兩個加數(shù)絕對值不等時,和的符號與絕對值較大的加數(shù)的符號相同,和的絕對值等于加數(shù)中較大的絕對值減去較小的絕對值;當(dāng)兩個加數(shù)絕對值相等時,兩個加數(shù)互為相反數(shù),和為零.

  (3)一個數(shù)同零相加,仍得這個數(shù).

  加法的交換律:a+b=b+a

  加法的結(jié)合律:(a+b)+c=a+(b+c)

  7、有理數(shù)減法:減去一個數(shù),等于加上這個數(shù)的相反數(shù)。

  8、在把有理數(shù)加減混合運(yùn)算統(tǒng)一為最簡的形式,負(fù)數(shù)前面的加號可以省略不寫.

  例如:14+12+(-25)+(-17)可以寫成省略括號的形式:14+12 -25-17,可以讀作“正14加12減25減17”,也可以讀作“正14、正12、負(fù)25、負(fù)17的和.”

  9、有理數(shù)的乘法

  兩個數(shù)相乘,同號得正,異號得負(fù),再把絕對值相乘;任何數(shù)與0相乘都得0。

  第一步:確定積的符號 第二步:絕對值相乘

  10、乘積的符號的確定

  幾個有理數(shù)相乘,因數(shù)都不為 0 時,積的符號由負(fù)因數(shù)的個數(shù)確定:當(dāng)負(fù)因數(shù)有奇數(shù)個時,積為負(fù);

  當(dāng)負(fù)因數(shù)有偶數(shù)個時,積為正。幾個有理數(shù)相乘,有一個因數(shù)為零,積就為零。

  11、倒數(shù):乘積為1的兩個數(shù)互為倒數(shù),0沒有倒數(shù)。

  正數(shù)的倒數(shù)是正數(shù),負(fù)數(shù)的倒數(shù)是負(fù)數(shù)。(互為倒數(shù)的兩個數(shù)符號一定相同)

  倒數(shù)是本身的只有1和-1。

  數(shù)學(xué)的知識點(diǎn)總結(jié) 篇21

  時分秒

  1、鐘面上有3根針,它們是(時針)、(分針)、(秒針),其中走得快的是(秒針),走得慢的是(時針)。

  2、鐘面上有(12)個數(shù)字,(12)個大格,(60)個小格;每兩個數(shù)間是(1)個大格,也就是(5)個小格。

  3、時針走1大格是(1)小時;分針走1大格是(5)分鐘,走1小格是(1)分鐘;秒針走1大格是(5)秒鐘,走1小格是(1)秒鐘。

  4、時針走1大格,分針正好走(1)圈,分針走1圈是(60)分,也就是(1)小時。時針走1圈,分針要走(12)圈。

  5、分針走1小格,秒針正好走(1)圈,秒針走1圈是(60)秒,也就是(1)分鐘。

  6、時針從一個數(shù)走到下一個數(shù)是(1小時)。分針從一個數(shù)走到下一個數(shù)是(5分鐘)。秒針從一個數(shù)走到下一個數(shù)是(5秒鐘)。

  7、鐘面上時針和分針正好成直角的時間有:(3點(diǎn)整)、(9點(diǎn)整)。

  8、公式。(每兩個相鄰的時間單位之間的進(jìn)率是60)

  1時=60分1分=60秒

  半時=30分60分=1時

  60秒=1分30分=半時

  測量

  1、在生活中,量比較短的物品,可以用(毫米、厘米、分米)做單位;量比較長的物體,常用(米)做單位;測量比較長的路程一般用(千米)做單位,千米也叫(公里)。

  2、1厘米的長度里有(10)小格,每小格的長度(相等),都是(1)毫米。

  3、1枚1分的硬幣、尺子、磁卡、小紐扣、鑰匙的厚度大約是1毫米。

  4、在計(jì)算長度時,只有相同的長度單位才能相加減。

  小技巧:換算長度單位時,把大單位換成小單位就在數(shù)字的末尾添加0(關(guān)系式中有幾個0,就添幾個0);把小單位換成大單位就在數(shù)字的末尾去掉0(關(guān)系式中有幾個0,就去掉幾個0)。

  5、長度單位的關(guān)系式有:(每兩個相鄰的長度單位之間的進(jìn)率是10)

 、龠M(jìn)率是10:

  1米=10分米,1分米=10厘米,

  1厘米=10毫米,10分米=1米,

  10厘米=1分米,10毫米=1厘米,

 、谶M(jìn)率是100:

  1米=100厘米,1分米=100毫米,

  100厘米=1米,100毫米=1分米

  ③進(jìn)率是1000:

  1千米=1000米,1公里==1000米,

  1000米=1千米,1000米=1公里

  6、當(dāng)我們表示物體有多重時,通常要用到(質(zhì)量單位)。在生活中,稱比較輕的物品的質(zhì)量,可以用(克)做單位;稱一般物品的質(zhì)量,常用(千克)做單位;計(jì)量較重的或大宗物品的質(zhì)量,通常用(噸)做單位。

  小技巧:在“噸”與“千克”的換算中,把噸換算成千克,是在數(shù)字的末尾加上3個0;

  把千克換算成噸,是在數(shù)字的末尾去掉3個0。

  7、相鄰兩個質(zhì)量單位進(jìn)率是1000。

  1噸=1000千克1千克=1000克

  1000千克=1噸1000克=1千克

  倍的認(rèn)識

  1、求一個數(shù)是另一個數(shù)的幾倍用除法:一個數(shù)÷另一個數(shù)=倍數(shù)

  2、求一個數(shù)的幾倍是多少用乘法:這個數(shù)×倍數(shù)=這個數(shù)的幾倍

  多位數(shù)乘一位數(shù)

  1、估算。(先求出多位數(shù)的近似數(shù),再進(jìn)行計(jì)算。如497×7≈3500)

  2、①0和任何數(shù)相乘都得0;

 、1和任何不是0的數(shù)相乘還得原來的數(shù)。

  3、因數(shù)末尾有幾個0,就在積的末尾添上幾個0。

  4、三位數(shù)乘一位數(shù):積有可能是三位數(shù),也有可能是四位數(shù)。

  公式:速度×?xí)r間=路程

  每節(jié)車廂的人數(shù)×車廂的數(shù)量=全車的人數(shù)

  5、(關(guān)于“大約)應(yīng)用題:

 、贄l件中出現(xiàn)“大約”,而問題中沒有“大約”,求準(zhǔn)確數(shù)!(=)

 、跅l件中沒有,而問題中出現(xiàn)“大約”。求近似數(shù),用估算!(≈)

 、蹢l件和問題中都有“大約”,求近似數(shù),用估算!(≈)

  四邊形

  1、有4條直的邊和4個角封閉圖形我們叫它四邊形。

  2、四邊形的特點(diǎn):有四條直的邊,有四個角。

  3、長方形的特點(diǎn):長方形有兩條長,兩條寬,四個直角,對邊相等。

  4、正方形的特點(diǎn):有4個直角,4條邊相等。

  5、長方形和正方形是特殊的平行四邊形。

  6、平行四邊形的特點(diǎn):

 、賹呄嗟、對角相等。

 、谄叫兴倪呅稳菀鬃冃。(三角形不容易變形)

  7、封閉圖形一周的長度,就是它的周長。

  8、公式。

  正方形的周長=邊長×4

  正方形的邊長=周長÷4

  長方形的周長=(長+寬)×2

  長方形的長=周長÷2-寬,

  長方形的寬=周長÷2-長

  分?jǐn)?shù)的初步認(rèn)識

  1、把一個物體或一個圖形平均分成幾份,取其中的幾份,就是這個物體或圖形的幾分之幾。

  2、把一個整體平均分得的份數(shù)越多,它的每一份所表示的數(shù)就越小。

  3、①分子相同,分母小的分?jǐn)?shù)反而大,分母大的分?jǐn)?shù)反而小。

 、诜帜赶嗤肿哟蟮姆?jǐn)?shù)就大,分子小的分?jǐn)?shù)就小。

  4、①相同分母的分?jǐn)?shù)相加、減:分母不變,只和分子相加、減。

 、1與分?jǐn)?shù)相減:1可以看作是與減數(shù)分母相同的,同分子分母的分?jǐn)?shù)

版權(quán)聲明:本文內(nèi)容由互聯(lián)網(wǎng)用戶自發(fā)貢獻(xiàn),該文觀點(diǎn)僅代表作者本人。本站僅提供信息存儲空間服務(wù),不擁有所有權(quán),不承擔(dān)相關(guān)法律責(zé)任。如發(fā)現(xiàn)本站有涉嫌抄襲侵權(quán)/違法違規(guī)的內(nèi)容, 請發(fā)送郵件至 yyfangchan@163.com (舉報時請帶上具體的網(wǎng)址) 舉報,一經(jīng)查實(shí),本站將立刻刪除