矩陣的幾種標(biāo)準(zhǔn)形及其應(yīng)用
矩陣的幾種標(biāo)準(zhǔn)形及其應(yīng)用
摘 要:矩陣的研究有極其豐富的內(nèi)容.矩陣的標(biāo)準(zhǔn)形無論在理論上還是在應(yīng)用上都有10分重要的地位.本文以矩陣的標(biāo)準(zhǔn)形為研究對(duì)象,以實(shí)例的方式,探討了矩陣在等價(jià)變換,合同變換,相似變換下的標(biāo)準(zhǔn)形及其在矩陣的分解,矩陣的秩和矩陣的特征值等方面的應(yīng)用.
關(guān)鍵詞:等價(jià)變換;合同變換;相似變換;矩陣
Some Canonical Forms of the Matrix and Their Applications
Abstract: The research of matrices contains very abundant contents. The canonical form of the matrix has the very important position regardless on theories or applications. This paper regards the canonical form of the matrix as research object, probes into the canonical form of the matrix under the equivalent transformation, symmetric transformation, similarity transformation and its applications on decomposition of matrices, rank of matrices, eigenvalue of matrices and so on, by living example.
Keywords: equivalent transformation; symmetric transformation; similarity transformation; matrices
版權(quán)聲明:本文內(nèi)容由互聯(lián)網(wǎng)用戶自發(fā)貢獻(xiàn),該文觀點(diǎn)僅代表作者本人。本站僅提供信息存儲(chǔ)空間服務(wù),不擁有所有權(quán),不承擔(dān)相關(guān)法律責(zé)任。如發(fā)現(xiàn)本站有涉嫌抄襲侵權(quán)/違法違規(guī)的內(nèi)容, 請(qǐng)發(fā)送郵件至 yyfangchan@163.com (舉報(bào)時(shí)請(qǐng)帶上具體的網(wǎng)址) 舉報(bào),一經(jīng)查實(shí),本站將立刻刪除