狠狠操网,91中文字幕在线观看,精品久久香蕉国产线看观看亚洲,亚洲haose在线观看

最新高中數(shù)學(xué)教案必修一(九篇)

作為一名專為他人授業(yè)解惑的人民教師,就有可能用到教案,編寫教案助于積累教學(xué)經(jīng)驗,不斷提高教學(xué)質(zhì)量。怎樣寫教案才更能起到其作用呢?教案應(yīng)該怎么制定呢?下面我?guī)痛蠹艺覍げ⒄砹艘恍﹥?yōu)秀的教案范文,我們一起來了解一下吧。

高中數(shù)學(xué)教案必修一篇一

教材內(nèi)容:等比數(shù)列的概念和通項公式的推導(dǎo)及簡單應(yīng)用 教材難點:靈活應(yīng)用等比數(shù)列及通項公式解決一般問題 教材重點:等比數(shù)列的概念和通項公式

1、 知識目標(biāo)

1)

2) 掌握等比數(shù)列的定義 理解等比數(shù)列的通項公式及其推導(dǎo)

2.能力目標(biāo)

1)學(xué)會通過實例歸納概念

2)通過學(xué)習(xí)等比數(shù)列的通項公式及其推導(dǎo)學(xué)會歸納假設(shè)

3)提高數(shù)學(xué)建模的能力

3、情感目標(biāo):

1)充分感受數(shù)列是反映現(xiàn)實生活的模型

2)體會數(shù)學(xué)是來源于現(xiàn)實生活并應(yīng)用于現(xiàn)實生活

3)數(shù)學(xué)是豐富多彩的而不是枯燥無味的

1、 教學(xué)對象分析:

1)高中生已經(jīng)有一定的學(xué)習(xí)能力,對各方面的知識有一定的基礎(chǔ),理解能力較強(qiáng)。并掌握了函數(shù)及個別特殊函數(shù)的性質(zhì)及圖像,如指數(shù)函數(shù)。之前也剛學(xué)習(xí)了等差數(shù)列,在學(xué)習(xí)這一章節(jié)時可聯(lián)系以前所學(xué)的進(jìn)行引導(dǎo)教學(xué)。

2)對歸納假設(shè)較弱,應(yīng)加強(qiáng)這方面教學(xué)

2、學(xué)習(xí)需要分析:

1、課前復(fù)習(xí)

1)復(fù)習(xí)等差數(shù)列的概念及通向公式

2)復(fù)習(xí)指數(shù)函數(shù)及其圖像和性質(zhì)

2.情景導(dǎo)入

高中數(shù)學(xué)教案必修一篇二

1、了解反函數(shù)的概念,弄清原函數(shù)與反函數(shù)的定義域和值域的關(guān)系。

2、會求一些簡單函數(shù)的反函數(shù)。

3、在嘗試、探索求反函數(shù)的過程中,深化對概念的認(rèn)識,總結(jié)出求反函數(shù)的一般步驟,加深對函數(shù)與方程、數(shù)形結(jié)合以及由特殊到一般等數(shù)學(xué)思想方法的認(rèn)識。

4、進(jìn)一步完善學(xué)生思維的深刻性,培養(yǎng)學(xué)生的逆向思維能力,用辯證的觀點分析問題,培養(yǎng)抽象、概括的能力。

求反函數(shù)的方法。

反函數(shù)的概念。

教學(xué)活動

設(shè)計意圖一、創(chuàng)設(shè)情境,引入新課

1、復(fù)習(xí)提問

①函數(shù)的概念

②y=f(x)中各變量的意義

2、同學(xué)們在物理課學(xué)過勻速直線運動的位移和時間的函數(shù)關(guān)系,即s=vt和t=(其中速度v是常量),在s=vt 中位移s是時間t的函數(shù);在t=中,時間t是位移s的函數(shù)。在這種情況下,我們說t=是函數(shù)s=vt的反函數(shù)。什么是反函數(shù),如何求反函數(shù),就是本節(jié)課學(xué)習(xí)的內(nèi)容。

3、板書課題

由實際問題引入新課,激發(fā)了學(xué)生學(xué)習(xí)興趣,展示了教學(xué)目標(biāo)。這樣既可以撥去"反函數(shù)"這一概念的神秘面紗,也可使學(xué)生知道學(xué)習(xí)這一概念的必要性。

二、實例分析,組織探究

1、問題組一:

(用投影給出函數(shù)與;與()的圖象)

(1)這兩組函數(shù)的圖像有什么關(guān)系?這兩組函數(shù)有什么關(guān)系?(生答:與的圖像關(guān)于直線y=x對稱;與()的圖象也關(guān)于直線y=x對稱。是求一個數(shù)立方的運算,而是求一個數(shù)立方根的運算,它們互為逆運算。同樣,與()也互為逆運算。)

(2)由,已知y能否求x?

(3)是否是一個函數(shù)?它與有何關(guān)系?

(4)與有何聯(lián)系?

2、問題組二:

(1)函數(shù)y=2x 1(x是自變量)與函數(shù)x=2y 1(y是自變量)是否是同一函數(shù)?

(2)函數(shù)(x是自變量)與函數(shù)x=2y 1(y是自變量)是否是同一函數(shù)?

(3)函數(shù) ()的定義域與函數(shù)()的值域有什么關(guān)系?

3、滲透反函數(shù)的概念。

(教師點明這樣的函數(shù)即互為反函數(shù),然后師生共同探究其特點)

從學(xué)生熟知的函數(shù)出發(fā),抽象出反函數(shù)的概念,符合學(xué)生的認(rèn)知特點,有利于培養(yǎng)學(xué)生抽象、概括的能力。

通過這兩組問題,為反函數(shù)概念的引出做了鋪墊,利用舊知,引出新識,在"最近發(fā)展區(qū)"設(shè)計問題,使學(xué)生對反函數(shù)有一個直觀的粗略印象,為進(jìn)一步抽象反函數(shù)的概念奠定基礎(chǔ)。

三、師生互動,歸納定義

1、(根據(jù)上述實例,教師與學(xué)生共同歸納出反函數(shù)的定義)

函數(shù)y=f(x)(x∈a) 中,設(shè)它的值域為 c。我們根據(jù)這個函數(shù)中x,y的關(guān)系,用 y 把 x 表示出來,得到 x = j (y) 。如果對于y在c中的任何一個值,通過x = j (y),x在a中都有的值和它對應(yīng),那么, x = j (y)就表示y是自變量,x是自變量 y 的函數(shù)。這樣的函數(shù) x = j (y)(y ∈c)叫做函數(shù)y=f(x)(x∈a)的反函數(shù)。記作: 。考慮到"用 x表示自變量, y表示函數(shù)"的習(xí)慣,將中的x與y對調(diào)寫成。

2、引導(dǎo)分析:

1)反函數(shù)也是函數(shù);

2)對應(yīng)法則為互逆運算;

3)定義中的"如果"意味著對于一個任意的函數(shù)y=f(x)來說不一定有反函數(shù);

4)函數(shù)y=f(x)的定義域、值域分別是函數(shù)x=f(y)的值域、定義域;

5)函數(shù)y=f(x)與x=f(y)互為反函數(shù);

6)要理解好符號f;

7)交換變量x、y的原因。

3、兩次轉(zhuǎn)換x、y的對應(yīng)關(guān)系

(原函數(shù)中的自變量x與反函數(shù)中的函數(shù)值y 是等價的,原函數(shù)中的函數(shù)值y與反函數(shù)中的自變量x是等價的)

4、函數(shù)與其反函數(shù)的關(guān)系

函數(shù)y=f(x)

函數(shù)

定義域

a

c

值 域

c

a

四、應(yīng)用解題,總結(jié)步驟

1、(投影例題)

求下列函數(shù)的反函數(shù)

(1)y=3x—1 (2)y=x 1

求函數(shù)的反函數(shù)。

(教師板書例題過程后,由學(xué)生總結(jié)求反函數(shù)步驟。)

2、總結(jié)求函數(shù)反函數(shù)的步驟:

1° 由y=f(x)反解出x=f(y)。

2° 把x=f(y)中 x與y互換得。

3° 寫出反函數(shù)的定義域。

(簡記為:反解、互換、寫出反函數(shù)的定義域)【例3】(1)有沒有反函數(shù)?

(2)的反函數(shù)是________。

(3)(x<0)的反函數(shù)是__________。

在上述探究的基礎(chǔ)上,揭示反函數(shù)的定義,學(xué)生有針對性地體會定義的特點,進(jìn)而對定義有更深刻的認(rèn)識,與自己的預(yù)設(shè)產(chǎn)生矛盾沖突,體會反函數(shù)。在剖析定義的過程中,讓學(xué)生體會函數(shù)與方程、一般到特殊的數(shù)學(xué)思想,并對數(shù)學(xué)的符號語言有更好的把握。

通過動畫演示,表格對照,使學(xué)生對反函數(shù)定義從感性認(rèn)識上升到理性認(rèn)識,從而消化理解。

通過對具體例題的講解分析,在解題的步驟上和方法上為學(xué)生起示范作用,并及時歸納總結(jié),培養(yǎng)學(xué)生分析、思考的習(xí)慣,以及歸納總結(jié)的能力。

題目的設(shè)計遵循了從了解到理解,從掌握到應(yīng)用的不同層次要求,由淺入深,循序漸進(jìn)。并體現(xiàn)了對定義的反思理解。學(xué)生思考練習(xí),師生共同分析糾正。

五、鞏固強(qiáng)化,評價反饋

1、已知函數(shù) y=f(x)存在反函數(shù),求它的反函數(shù) y =f( x)

(1)y=—2x 3(xr) (2)y=—(xr,且x)

( 3 ) y=(xr,且x)

2、已知函數(shù)f(x)=(xr,且x)存在反函數(shù),求f(7)的值。

五、反思小結(jié),再度設(shè)疑

本節(jié)課主要研究了反函數(shù)的定義,以及反函數(shù)的求解步驟;榉春瘮(shù)的兩個函數(shù)的圖象到底有什么特點呢?為什么具有這樣的特點呢?我們將在下節(jié)研究。

(讓學(xué)生談一下本節(jié)課的學(xué)習(xí)體會,教師適時點撥)

進(jìn)一步強(qiáng)化反函數(shù)的概念,并能正確求出反函數(shù)。反饋學(xué)生對知識的掌握情況,評價學(xué)生對學(xué)習(xí)目標(biāo)的落實程度。具體實踐中可采取同學(xué)板演、分組競賽等多種形式調(diào)動學(xué)生的積極性。"問題是數(shù)學(xué)的心臟"學(xué)生帶著問題走進(jìn)課堂又帶著新的問題走出課堂。

六、作業(yè)

習(xí)題24 第1題,第2題

進(jìn)一步鞏固所學(xué)的知識。

"問題是數(shù)學(xué)的心臟"。一個概念的形成是螺旋式上升的,一般要經(jīng)過具體到抽象,感性到理性的過程。本節(jié)教案通過一個物理學(xué)中的具體實例引入反函數(shù),進(jìn)而又通過若干函數(shù)的圖象進(jìn)一步加以誘導(dǎo)剖析,最終形成概念。

反函數(shù)的概念是教學(xué)中的難點,原因是其本身較為抽象,經(jīng)過兩次代換,又采用了抽象的符號。由于沒有一一映射,逆映射等概念的支撐,使學(xué)生難以從本質(zhì)上去把握反函數(shù)的概念。為此,我們大膽地使用教材,把互為反函數(shù)的兩個函數(shù)的圖象關(guān)系預(yù)先揭示,進(jìn)而探究原因,尋找規(guī)律,程序是從問題出發(fā),研究性質(zhì),進(jìn)而得出概念,這正是數(shù)學(xué)研究的順序,符合學(xué)生認(rèn)知規(guī)律,有助于概念的建立與形成。另外,對概念的剖析以及習(xí)題的配備也很精當(dāng),通過不同層次的問題,滿足學(xué)生多層次需要,起到評價反饋的作用。通過對函數(shù)與方程的分析,互逆探索,動畫演示,表格對照、學(xué)生討論等多種形式的教學(xué)環(huán)節(jié),充分調(diào)動了學(xué)生的探求欲,在探究與剖析的過程中,完善學(xué)生思維的深刻性,培養(yǎng)學(xué)生的逆向思維。使學(xué)生自然成為學(xué)習(xí)的主人。

高中數(shù)學(xué)教案必修一篇三

(1)理解四種命題的概念;

(2)理解四種命題之間的相互關(guān)系,能由原命題寫出其他三種形式;

(3)理解一個命題的真假與其他三個命題真假間的關(guān)系;

(4)初步掌握反證法的概念及反證法證題的基本步驟;

(5)通過對四種命題之間關(guān)系的學(xué)習(xí),培養(yǎng)學(xué)生邏輯推理能力;

(6)通過對四種命題的存在性和相對性的認(rèn)識,進(jìn)行辯證唯物主義觀點教育;

(7)培養(yǎng)學(xué)生用反證法簡單推理的技能,從而發(fā)展學(xué)生的思維能力.

重點:四種命題之間的關(guān)系;難點:反證法的運用.

第一課時:四種命題

一、導(dǎo)入新課

1.把下列命題改寫成“若p則q”的形式:

(l)同位角相等,兩直線平行;

(2)正方形的四條邊相等.

2.什么叫互逆命題?上述命題的逆命題是什么?

將命題寫成“若p則q”的形式,關(guān)鍵是找到命題的條件p與q結(jié)論.

如果第一個命題的條件是第二個命題的結(jié)論,且第一個命題的結(jié)論是第二個命題的條件,那么這兩個命題叫做互道命題.

上述命題的道命題是“若一個四邊形的四條邊相等,則它是正方形”和“若兩條直線平行,則同位角相等”.

值得指出的是原命題和逆命題是相對的.我們也可以把逆命題當(dāng)成原命題,去求它的逆命題.

3.原命題真,逆命題一定真嗎?

“同位角相等,兩直線平行”這個原命題真,逆命題也真.但“正方形的四條邊相等”的原命題真,逆命題就不真,所以原命題真,逆命題不一定真.

學(xué)生活動:

口答:

(1)若同位角相等,則兩直線平行;

(2)若一個四邊形是正方形,則它的四條邊相等.

設(shè)計意圖:

通過復(fù)習(xí)舊知識,打下學(xué)習(xí)否命題、逆否命題的基礎(chǔ).

二、新課

命題“同位角相等,兩條直線平行”除了能構(gòu)成它的逆命題外,是否還可以構(gòu)成其它形式的命題?

可以將原命題的條件和結(jié)論分別否定,構(gòu)成“同位角不相等,則兩直線不平行”,這個命題叫原命題的否命題.

你能由原命題“正方形的四條邊相等”構(gòu)成它的否命題嗎?

學(xué)生活動:

口答:若一個四邊形不是正方形,則它的四條邊不相等.

教師活動:

一個命題的條件和結(jié)論分別是另一個命題的條件的否定和結(jié)論的否定,這樣的兩個命題叫做互否命題.把其中一個命題叫做原命題,另一個命題叫做原命題的否命題.

若用p和q分別表示原命題的條件和結(jié)論,用┐p和┐q分別表示p和q的否定.

原命題:若p則q;

否命題:若┐p則q┐.

原命題真,否命題一定真嗎?舉例說明?

學(xué)生活動:

講論后回答:

原命題“同位角相等,兩直線平行”真,它的否命題“同位角不相等,兩直線不平行”不真.

原命題“正方形的四條邊相等”真,它的否命題“若一個四邊形不是正方形,則它的四條邊不相等”不真.

由此可以得原命題真,它的否命題不一定真.

設(shè)計意圖:

通過設(shè)問和討論,讓學(xué)生在自己舉例中研究如何由原命題構(gòu)成否命題及判斷它們的真假,調(diào)動學(xué)生學(xué)習(xí)的積極性.

教師活動:

命題“同位角相等,兩條直線平行”除了能構(gòu)成它的逆命題和否命題外,還可以不可以構(gòu)成別的命題?

學(xué)生活動:

討論后回答

可以將這個命題的條件和結(jié)論互換后再分別將新的條件和結(jié)論分別否定構(gòu)成命題“兩條直線不平行,則同位角不相等”,這個命題叫原命題的逆否命題.

教師活動:

原命題“正方形的四條邊相等”的逆否命題是什么?

學(xué)生活動:

口答:若一個四邊形的四條邊不相等,則不是正方形.

教師活動:

一個命題的條件和結(jié)論分別是另一個命題的結(jié)論的否定和條件的否定,這樣的兩個命題叫做互為逆否命題.把其中一個命題叫做原命題,另一個命題就叫做原命題的逆否命題.

原命題是“若p則q”,則逆否命題為“若┐q則┐p.

“兩條直線不平行,則同位角不相等”是否真?“若一個四邊形的四條邊不相等,則不是正方形”是否真?若原命題真,逆否命題是否也真?

學(xué)生活動:

討論后回答

這兩個逆否命題都真.

原命題真,逆否命題也真.

教師活動:

原命題的真假與其他三種命題的真

假有什么關(guān)系?舉例加以說明?

1.原命題為真,它的逆命題不一定為真.

2.原命題為真,它的否命題不一定為真.

3.原命題為真,它的逆否命題一定為真.

設(shè)計意圖:

通過設(shè)問和討論,讓學(xué)生在自己舉例中研究如何由原命題構(gòu)成逆否命題及判斷它們的真假,調(diào)動學(xué)生學(xué)的積極性.

教師活動:

三、課堂練習(xí)

1.若原命題是“若p則q”,其它三種命題的形式怎樣表示?請寫在方框內(nèi)?

學(xué)生活動:筆答

教師活動:

2.根據(jù)上圖所給出的箭頭,寫出箭頭兩頭命題之間的關(guān)系?舉例加以說明?

學(xué)生活動:討論后回答

設(shè)計意圖:

通過學(xué)生自己填圖,使學(xué)生掌握四種命題的形式和它們之間的關(guān)系.

教師活動:

高中數(shù)學(xué)教案必修一篇四

一、高中數(shù)學(xué)教學(xué)計劃指導(dǎo)思想

準(zhǔn)確把握《教學(xué)大綱》和《考試大綱》的各項基本要求,立足于基礎(chǔ)知識和基本技能的教學(xué),注重滲透數(shù)學(xué)思想和方法。針對學(xué)生實際,不斷研究數(shù)學(xué)教學(xué),改進(jìn)教法,指導(dǎo)學(xué)法,奠定立足社會所需要的必備的基礎(chǔ)知識、基本技能和基本能力,著力于培養(yǎng)學(xué)生的創(chuàng)新精神,運用數(shù)學(xué)的意識和能力,奠定他們終身學(xué)習(xí)的基矗

二、教學(xué)建議

1、深入鉆研教材。以教材為核心,深入研究教材中章節(jié)知識的內(nèi)外結(jié)構(gòu),熟練把握知識的邏輯體系,細(xì)致領(lǐng)悟教材改革的精髓,逐步明確教材對教學(xué)形式、內(nèi)容和教學(xué)目標(biāo)的影響。

2、準(zhǔn)確把握新大綱。新大綱修改了部分內(nèi)容的教學(xué)要求層次,準(zhǔn)確把握新大綱對知識點的基本要求,防止自覺不自覺地對教材加深加寬。同時,在整體上,要重視數(shù)學(xué)應(yīng)用;重視數(shù)學(xué)思想方法的滲透。如增加閱讀材料(開闊學(xué)生的視野),以拓寬知識的廣度來求得知識的深度。

3、樹立以學(xué)生為主體的教育觀念。學(xué)生的發(fā)展是課程實施的出發(fā)點和歸宿,教師必須面向全體學(xué)生因材施教,以學(xué)生為主體,構(gòu)建新的認(rèn)識體系,營造有利于學(xué)生學(xué)習(xí)的氛圍。

4、發(fā)揮教材的多種教學(xué)功能。用好章頭圖,激發(fā)學(xué)生的學(xué)習(xí)興趣;發(fā)揮閱讀材料的功能,培養(yǎng)學(xué)生用數(shù)學(xué)的意識;組織好研究性課題的教學(xué),讓學(xué)生感受社會生活之所需;小結(jié)和復(fù)習(xí)是培養(yǎng)學(xué)生自學(xué)的好材料。

5、加強(qiáng)課堂教學(xué)研究,科學(xué)設(shè)計教學(xué)方法。根據(jù)教材的內(nèi)容和特征,實行啟發(fā)式和討論式教學(xué)。發(fā)揚教學(xué)民主,師生雙方密切合作,交流互動,讓學(xué)生感受、理解知識的產(chǎn)生和發(fā)展的過程。教研組要根據(jù)教材各章節(jié)的重難點制定教學(xué)專題,每人每學(xué)期指定一個專題,安排一至二次教研課。年級備課組每周舉行一至二次教研活動,積累教學(xué)經(jīng)驗。

6、落實課外活動的內(nèi)容。組織和加強(qiáng)數(shù)學(xué)興趣小組的活動內(nèi)容,加強(qiáng)對高層次學(xué)生的競賽輔導(dǎo),培養(yǎng)拔尖人才。

三、教學(xué)進(jìn)度

高中一年級教學(xué)進(jìn)度

上 學(xué) 期 學(xué) 期

周 次 內(nèi) 容 周 次 內(nèi) 容

1-3 集 合 1-3 任意角的三角函數(shù)

4-5 簡易邏輯 4-6 兩角和與差的三角函數(shù)

6-8 映射與函數(shù) 7-9 三角函數(shù)的圖象與性質(zhì)

9-10 指數(shù)函數(shù) 10 期中考試

11 期中考試 11-13 向量及運算

12-13 對數(shù)函數(shù) 14-16 解斜三角形

高中數(shù)學(xué)教案必修一篇五

一、教材分析

1、本節(jié)教材的地位和作用

“基本不等式” 是必修5的重點內(nèi)容,在課本封面上就體現(xiàn)出來了(展示課本和參考書封面)。它是在學(xué)完“不等式的性質(zhì)”、“不等式的解法”及“線性規(guī)劃”的基礎(chǔ)上對不等式的進(jìn)一步研究。在不等式的證明和求最值過程中有著廣泛的應(yīng)用。求最值又是高考的熱點。同時本節(jié)知識又滲透了數(shù)形結(jié)合、化歸等重要數(shù)學(xué)思想,有利于培養(yǎng)學(xué)生良好的思維品質(zhì)。

2、 教學(xué)目標(biāo)

(1)知識目標(biāo):探索基本不等式的證明過程;會用基本不等式解決最值問題。

(2)能力目標(biāo):培養(yǎng)學(xué)生觀察、試驗、歸納、判斷、猜想等思維能力。?

(3)情感目標(biāo):培養(yǎng)學(xué)生嚴(yán)謹(jǐn)求實的科學(xué)態(tài)度,體會數(shù)與形的和諧統(tǒng)一,領(lǐng)略數(shù)學(xué)的應(yīng)用價值,激發(fā)學(xué)生的學(xué)習(xí)興趣和勇于探索的精神。

3、教學(xué)重點、難點

根據(jù)課程標(biāo)準(zhǔn)制定如下的教學(xué)重點、難點

重點: 應(yīng)用數(shù)形結(jié)合的思想理解不等式,并從不同角度探索基本不等式。

難點:基本不等式的內(nèi)涵及幾何意義的挖掘,用基本不等式求最值。

二、教法說明

本節(jié)課借助幾何畫板,使用多媒體輔助進(jìn)行直觀演示。采用啟發(fā)式教學(xué)法創(chuàng)設(shè)問題情景,激發(fā)學(xué)生開始嘗試活動。運用生活中的實際例子,讓學(xué)生享受解決實際問題的樂趣。 課堂上主要采取對比分析;讓學(xué)生邊議、邊評;組織學(xué)生學(xué)、思、練。通過師生和諧對話,使情感共鳴,讓學(xué)生的潛能、創(chuàng)造性最大限度發(fā)揮,使認(rèn)知效益最大。讓學(xué)生愛學(xué)、樂學(xué)、會學(xué)、學(xué)會。

三、學(xué)法指導(dǎo)

為更好的貫徹課改精神,合理的對學(xué)生進(jìn)行素質(zhì)教育,在教學(xué)中,始終以學(xué)生主體,教師為主導(dǎo)。因此我在教學(xué)中讓學(xué)生從不同角度去觀察、分析,指導(dǎo)學(xué)生解決問題,感受知識的形成過程,培養(yǎng)學(xué)生數(shù)形結(jié)合的意識和能力,讓學(xué)生學(xué)會學(xué)習(xí)。

四、教學(xué)設(shè)計

◆運用2002年國際數(shù)學(xué)家大會會標(biāo)引入

◆運用分析法證明基本不等式

◆不等式的幾何解釋

◆基本不等式的應(yīng)用

1、運用2002年國際數(shù)學(xué)家大會會標(biāo)引入

如圖,這是在北京召開的第24屆國際數(shù)學(xué)家大會會標(biāo)。會標(biāo)根據(jù)中國古代數(shù)學(xué)家趙爽的弦圖設(shè)計的,顏色的明暗使它看上去象一個風(fēng)車,代表中國人民熱情好客。(展示風(fēng)車)

正方形abcd中,ae⊥be,bf⊥cf,cg⊥dg,dh⊥ah,設(shè)ae=a,be=b,則正方形的面積為s=__,rt△abe,rt△bcf,rt△cdg,rt△adh是全等三角形,它們的面積之和是s’=_

從圖形中易得,s≥s’,即

問題1:它們有相等的情況嗎?何時相等?

問題2:當(dāng) a,b為任意實數(shù)時,上式還成立嗎?(學(xué)生積極思考,通過幾何畫板幫助學(xué)生理解)

一般地,對于任意實數(shù)a、b,我們有

當(dāng)且僅當(dāng)(重點強(qiáng)調(diào))a=b時,等號成立(合情推理)

問題3:你能給出它的證明嗎?(讓學(xué)生獨立證明)

設(shè)計意圖

(1)運用2002年國際數(shù)學(xué)家大會會標(biāo)引入,能讓學(xué)生進(jìn)一步體會中國數(shù)學(xué)的歷史悠久,感受數(shù)學(xué)與生活的聯(lián)系。

(2)運用此圖標(biāo)能較容易的觀察出面積之間的關(guān)系,引入基本不等式很直觀。

(3)三個思考題為學(xué)生創(chuàng)造情景,逐層深入,強(qiáng)化理解。

2、運用分析法證明基本不等式

如果 a>0,b>0 ,

用 和 分別代替a,b?梢缘玫

也可寫成

(強(qiáng)調(diào)基本不等式成立的前提條件“正”)(演繹推理)

問題4:你能用不等式的性質(zhì)直接推導(dǎo)嗎?

要證 = 1 gb3 ①

只要證 = 2 gb3 ②

要證② ,只要證 = 3 gb3 ③

要證 = 3 gb3 ③ ,只要證 = 4 gb3 ④

顯然, ④是成立的。當(dāng)且僅當(dāng)a=b時, 不等式中的等號成立。

(強(qiáng)調(diào)基本不等式取等的條件“等”)

設(shè)計意圖

(1)證明過程課本上是以填空形式出現(xiàn)的,學(xué)生能夠獨立完成,這也能進(jìn)一步培養(yǎng)學(xué)生的自學(xué)能力,符合課改精神;

(2)證明過程印證了不等式的正確性,并能加深學(xué)生對基本不等式的理解;

(3)此種證明方法是“分析法”,在選修教材的《推理與證明》一章中會重點講解,此處有必要讓學(xué)生初步了解。

3、不等式的幾何解釋

如圖,ab是圓的直徑,c是ab上任一點,ac=a,cb=b,過點c作垂直于ab的弦de,連ad,bd,則cd= ,半徑為

問題5: 你能用這個圖得出基本不等式的幾何解釋嗎? (學(xué)生積極思考,通過幾何畫板幫助學(xué)生理解)

設(shè)計意圖

幾何直觀能啟迪思路,幫助理解,因此,借助幾何直觀學(xué)習(xí)和理解數(shù)學(xué),是數(shù)學(xué)學(xué)習(xí)中的重要方面。只有做到了直觀上的理解,才是真正的理解。

4、基本不等式的應(yīng)用

例1.證明

(學(xué)生自己證明)

設(shè)計意圖

(1)這道例題很簡單,多數(shù)學(xué)生都會仿照課本上的分析思路重新證明,能夠練習(xí)“分析法”證明不等式的過程;

(2)學(xué)生能夠加深對基本不等式的理解,a和b不僅僅是一個字母,而是一個符號,它們可以是a、b,也可以是x、y,也可以是一個多項式;

(3)此例不是課本例題,比課本例題簡單,這樣,循序漸進(jìn), 有利于學(xué)生理解不等式的內(nèi)涵。

例2:(1)把36寫成兩個正數(shù)的積,當(dāng)兩個正數(shù)取什么值時,它們的和最?

(2)把18寫成兩個正數(shù)的和,當(dāng)兩個正數(shù)取什么值時,它們的積最大?

(讓學(xué)生分組合作、探究完成)

高中數(shù)學(xué)教案必修一篇六

1、了解本章的學(xué)習(xí)的內(nèi)容以及學(xué)習(xí)思想方法

2、能敘述隨機(jī)變量的定義

3、能說出隨機(jī)變量與函數(shù)的關(guān)系,

4、能夠把一個隨機(jī)試驗結(jié)果用隨機(jī)變量表示

重點:能夠把一個隨機(jī)試驗結(jié)果用隨機(jī)變量表示

難點:隨機(jī)事件概念的透徹理解及對隨機(jī)變量引入目的的認(rèn)識:

1.通過生活中的一些隨機(jī)現(xiàn)象,能夠概括出隨機(jī)變量的定義

2能敘述隨機(jī)變量的定義

3能說出隨機(jī)變量與函數(shù)的區(qū)別與聯(lián)系

一、閱讀課本33頁問題提出和分析理解,回答下列問題?

1、了解一個隨機(jī)現(xiàn)象的規(guī)律具體指的是什么?

2、分析理解中的兩個隨機(jī)現(xiàn)象的隨機(jī)試驗結(jié)果有什么不同?建立了什么樣的對應(yīng)關(guān)系?

總結(jié):

3、隨機(jī)變量

(1)定義:

這種對應(yīng)稱為一個隨機(jī)變量。即隨機(jī)變量是從隨機(jī)試驗每一個可能的結(jié)果所組成的

到的映射。

(2)表示:隨機(jī)變量常用大寫字母。等表示。

(3)隨機(jī)變量與函數(shù)的區(qū)別與聯(lián)系

函數(shù)隨機(jī)變量

自變量

因變量

因變量的范圍

相同點都是映射都是映射

1、能正確寫出隨機(jī)現(xiàn)象所有可能出現(xiàn)的結(jié)果2、能用隨機(jī)變量的描述隨機(jī)事件

例1:已知在10件產(chǎn)品中有2件不合格品,F(xiàn)從這10件產(chǎn)品中任取3件,其中含有的次品數(shù)為隨機(jī)變量的學(xué)案。這是一個隨機(jī)現(xiàn)象。(1)寫成該隨機(jī)現(xiàn)象所有可能出現(xiàn)的結(jié)果;(2)試用隨機(jī)變量來描述上述結(jié)果。

變式:已知在10件產(chǎn)品中有2件不合格品。從這10件產(chǎn)品中任取3件,這是一個隨機(jī)現(xiàn)象。若y表示取出的3件產(chǎn)品中的合格品數(shù),試用隨機(jī)變量描述上述結(jié)果

例2連續(xù)投擲一枚均勻的硬幣兩次,用x表示這兩次正面朝上的次數(shù),則x是一個隨機(jī)變

量,分別說明下列集合所代表的隨機(jī)事件:

(1){x=0}(2){x=1}

(3){x<2}(4){x>0}

變式:連續(xù)投擲一枚均勻的硬幣三次,用x表示這三次正面朝上的次數(shù),則x是一個隨機(jī)變量,x的可能取值是?并說明這些值所表示的隨機(jī)試驗的結(jié)果。

練習(xí):寫出下列隨機(jī)變量可能取的值,并說明隨機(jī)變量所取的值表示的隨機(jī)變量的結(jié)果。

(1)從學(xué);丶乙(jīng)過5個紅綠燈路口,可能遇到紅燈的次數(shù);

(2)一個袋中裝有5只同樣 白話文…大小的球,編號為1,2,3,4,5,現(xiàn)從中隨機(jī)取出3只球,被取出的球的號碼數(shù);

小結(jié)(對標(biāo))

高中數(shù)學(xué)教案必修一篇七

1、知識與技能

(1)理解流程圖的順序結(jié)構(gòu)和選擇結(jié)構(gòu)。

(2)能用字語言表示算法,并能將算法用順序結(jié)構(gòu)和選擇結(jié)構(gòu)表示簡單的流程圖

2、過程與方法

學(xué)生通過模仿、操作、探索、經(jīng)歷設(shè)計流程圖表達(dá)解決問題的過程,理解流程圖的結(jié)構(gòu)。

3情感、態(tài)度與價值觀

學(xué)生通過動手作圖,。用自然語言表示算法,用圖表示算法。進(jìn)一步體會算法的基本思想——程序化思想,在歸納概括中培養(yǎng)學(xué)生的邏輯思維能力。

重點:算法的順序結(jié)構(gòu)與選擇結(jié)構(gòu)。

難點:用含有選擇結(jié)構(gòu)的流程圖表示算法。

學(xué)法:學(xué)生通過動手作圖,。用自然語言表示算法,用圖表示算法,體會到用流程圖表示算法,簡潔、清晰、直觀、便于檢查,經(jīng)歷設(shè)計流程圖表達(dá)解決問題的過程。進(jìn)而學(xué)習(xí)順序結(jié)構(gòu)和選擇結(jié)構(gòu)表示簡單的流程圖。

教學(xué)用具:尺規(guī)作圖工具,多媒體。

(一)、問題引入 揭示題

例1 尺規(guī)作圖,確定線段的一個5等分點。

要求:同桌一人作圖,一人寫算法,并請學(xué)生說出答案。

提問:用字語言寫出算法有何感受?

引導(dǎo)學(xué)生體驗到:顯得冗長,不方便、不簡潔。

教師說明:為了使算法的表述簡潔、清晰、直觀、便于檢查,我們今天學(xué)習(xí)用一些通用圖型符號構(gòu)成一張圖即流程圖表示算法。

本節(jié)要學(xué)習(xí)的是順序結(jié)構(gòu)與選擇結(jié)構(gòu)。

右圖即是同流程圖表示的算法。

(二)、觀察類比 理解題

1、 投影介紹流程圖的符號、名稱及功能說明。

符號 符號名稱 功能說明

終端框 算法開始與結(jié)束

處理框 算法的各種處理操作

判斷框 算法的各種轉(zhuǎn)移

輸入輸出框 輸入輸出操作

指向線 指向另一操作

2、講授順序結(jié)構(gòu)及選擇結(jié)構(gòu)的概念及流程圖

(1)順序結(jié)構(gòu)

依照步驟依次執(zhí)行的一個算法

流程圖:

(2)選擇結(jié)構(gòu)

對條進(jìn)行判斷決定后面的步驟的結(jié)構(gòu)

流程圖:

3、用自然語言表示算法與用流程圖表示算法的比較

(1)半徑為r的圓的面積公式 當(dāng)r=10時寫出計算圓的面積的算法,并畫出流程圖。

解:

算法(自然語言)

①把10賦與r

②用公式 求s

③輸出s

流程圖

(2) 已知函數(shù) 對于每輸入一個x值都得到相應(yīng)的函數(shù)值,寫出算法并畫流程圖。

算法:(語言表示)

① 輸入x值

②判斷x的范圍,若 ,用函數(shù)y=x+1求函數(shù)值;否則用y=2-x求函數(shù)值

③輸出y的值

流程圖

小結(jié):含有數(shù)學(xué)中需要分類討論的或與分段函數(shù)有關(guān)的問題,均要用到選擇結(jié)構(gòu)。

學(xué)生觀察、類比、說出流程圖與自然語言對比有何特點?(直觀、清楚、便于檢查和交流)

(三)模仿操作 經(jīng)歷題

1、用流程圖表示確定線段a.b的一個16等分點

2、分析講解例2;

分析:

思考:有多少個選擇結(jié)構(gòu)?相應(yīng)的流程圖應(yīng)如何表示?

高中數(shù)學(xué)教案必修一篇八

1、理解并掌握瞬時速度的定義;

2、會運用瞬時速度的定義求物體在某一時刻的瞬時速度和瞬時加速度;

3、理解瞬時速度的實際背景,培養(yǎng)學(xué)生解決實際問題的能力。

會運用瞬時速度的定義求物體在某一時刻的瞬時速度和瞬時加速度。

理解瞬時速度和瞬時加速度的定義。

一、問題情境

1、問題情境。

平均速度:物體的運動位移與所用時間的比稱為平均速度。

問題一平均速度反映物體在某一段時間段內(nèi)運動的快慢程度。那么如何刻畫物體在某一時刻運動的快慢程度?

問題二跳水運動員從10m高跳臺騰空到入水的過程中,不同時刻的速度是不同的。假設(shè)t秒后運動員相對于水面的高度為h(t)=-4.9t2+6.5t+10,試確定t=2s時運動員的速度。

2、探究活動:

(1)計算運動員在2s到2.1s(t∈)內(nèi)的平均速度。

(2)計算運動員在2s到(2+?t)s(t∈)內(nèi)的平均速度。

(3)如何計算運動員在更短時間內(nèi)的平均速度。

探究結(jié)論:

時間區(qū)間

t

平均速度

0.1

-13.59

0.01

-13.149

0.001

-13.1049

0.0001

-13.10049

0.00001

-13.100049

0.000001

-13.1000049

當(dāng)?t?0時,?-13.1,

該常數(shù)可作為運動員在2s時的瞬時速度。

即t=2s時,高度對于時間的瞬時變化率。

二、建構(gòu)數(shù)學(xué)

1、平均速度。

設(shè)物體作直線運動所經(jīng)過的路程為,以為起始時刻,物體在?t時間內(nèi)的平均速度為。

可作為物體在時刻的速度的近似值,?t越小,近似的程度就越好。所以當(dāng)?t?0時,極限就是物體在時刻的瞬時速度。

三、數(shù)學(xué)運用

例1物體作自由落體運動,運動方程為,其中位移單位是m,時

間單位是s,,求:

(1)物體在時間區(qū)間s上的平均速度;

(2)物體在時間區(qū)間上的平均速度;

(3)物體在t=2s時的瞬時速度。

分析

(1)將?t=0.1代入上式,得:=2.05g=20.5m/s。

(2)將?t=0.01代入上式,得:=2.005g=20.05m/s。

(3)當(dāng)?t?0,2+?t?2,從而平均速度的極限為:

例2設(shè)一輛轎車在公路上作直線運動,假設(shè)時的速度為,

求當(dāng)時轎車的瞬時加速度。

∴當(dāng)?t無限趨于0時,無限趨于,即=。

練習(xí)

課本p12—1,2。

四、回顧小結(jié)

問題1本節(jié)課你學(xué)到了什么?

1理解瞬時速度和瞬時加速度的定義;

2實際應(yīng)用問題中瞬時速度和瞬時加速度的求解;

問題2解決瞬時速度和瞬時加速度問題需要注意什么?

注意當(dāng)?t?0時,瞬時速度和瞬時加速度的極限值。

問題3本節(jié)課體現(xiàn)了哪些數(shù)學(xué)思想方法?

2極限的思想方法。

3特殊到一般、從具體到抽象的推理方法。

五、課外作業(yè)

高中數(shù)學(xué)教案必修一篇九

本節(jié)課內(nèi)容是面向高二下學(xué)期的學(xué)生,主要是進(jìn)行思維的訓(xùn)練。學(xué)生在高一的時候已經(jīng)學(xué)過這些數(shù)學(xué)思維方法,但是對這些知識還沒有進(jìn)行概念化的歸納和專門的訓(xùn)練。學(xué)生不知道分析法和綜合法的時候還是會用一點,以以往的經(jīng)驗,學(xué)生一旦學(xué)習(xí)概念后,反而覺得難度大,概念混淆,因此,這一教學(xué)內(nèi)容的設(shè)計是針對學(xué)生的這一情況,設(shè)計專題學(xué)習(xí)網(wǎng)站,通過學(xué)生之間經(jīng)過學(xué)習(xí),交流,課后反復(fù)思考的,進(jìn)一步深化概念的過程,培養(yǎng)學(xué)生的數(shù)學(xué)思維能力。

知識與技能

1. 體會數(shù)學(xué)思維中的分析法和綜合法;

2. 會用分析法和綜合法去解決問題。

過程與方法

1. 通過對分析法綜合法的學(xué)習(xí),培養(yǎng)學(xué)生的數(shù)學(xué)思維能力;

2. 培養(yǎng)學(xué)生的數(shù)學(xué)閱讀和理解能力;

3. 培養(yǎng)學(xué)生的評價和反思能力。

情感態(tài)度與價值觀

1. 交流、分享運用數(shù)學(xué)思維解決問題的喜悅;

2. 提高學(xué)生學(xué)習(xí)數(shù)學(xué)的興趣;

3. 增強(qiáng)學(xué)習(xí)數(shù)學(xué)的信心。

本節(jié)課是數(shù)學(xué)思維訓(xùn)練專題課,專門訓(xùn)練學(xué)生利用分析法和綜合法解題。分析法在數(shù)學(xué)中特指從結(jié)果(結(jié)論)出發(fā)追溯其產(chǎn)生原因的思維方法,即執(zhí)果索因法。綜合思維方法:綜合是以已知性質(zhì)和分析為基礎(chǔ)的,從已知出發(fā)逐步推求位未知的思考方法,即執(zhí)果導(dǎo)因法。這兩種數(shù)學(xué)思維方法是數(shù)學(xué)思維方法中最基礎(chǔ)也是最重要的方法,是學(xué)生的思維訓(xùn)練的重要內(nèi)容。

1. 情境的設(shè)計

情境描述

情境簡要描述

呈現(xiàn)方式

趣味問題

從前有個國王在處死那些犯了罪的臣子的時候,總是出一些這樣那樣的智力題給犯人做,用這種方法給那些更聰明的人一條生路,有一位正直的青年叫亞瑟,不幸得罪了國王,國王判他死罪,他所面臨的問題是:“這里有三個盒子,金盒,銀盒和鉛盒,免死金牌放在其中一個盒子內(nèi),每只盒子各寫一句話,但其中只有一句是真的,你要是猜中了免死金牌在哪個盒子里,就免你一死罪!甭斆鞯膩喩(jīng)過推理而獲知免死金牌所放的盒子,從而救了自己的命,請問亞瑟是如何推理的?

網(wǎng)頁

2. 教學(xué)資源的設(shè)計

資源類型

資源內(nèi)容簡要描述

資源來源

相關(guān)故事

通過有趣的推理故事,如“推理救命的故事”,“寶藏的故事,用于激發(fā)學(xué)生的學(xué)習(xí)興趣。

網(wǎng)上下載

學(xué)習(xí)網(wǎng)站

專題學(xué)習(xí)網(wǎng)站,嵌入了經(jīng)過修改適用于本課的論壇,在線測試等。

自行制作

3. 教學(xué)工具:計算機(jī)

4. 教學(xué)策略:自主探究學(xué)習(xí)策略,任務(wù)驅(qū)動策略、反思策略

5. 教學(xué)環(huán)境:網(wǎng)絡(luò)教室

版權(quán)聲明:本文內(nèi)容由互聯(lián)網(wǎng)用戶自發(fā)貢獻(xiàn),該文觀點僅代表作者本人。本站僅提供信息存儲空間服務(wù),不擁有所有權(quán),不承擔(dān)相關(guān)法律責(zé)任。如發(fā)現(xiàn)本站有涉嫌抄襲侵權(quán)/違法違規(guī)的內(nèi)容, 請發(fā)送郵件至 yyfangchan@163.com (舉報時請帶上具體的網(wǎng)址) 舉報,一經(jīng)查實,本站將立刻刪除