最新高一數(shù)學教案集合(七篇)
作為一位杰出的老師,編寫教案是必不可少的,教案有助于順利而有效地開展教學活動。教案書寫有哪些要求呢?我們怎樣才能寫好一篇教案呢?下面是我給大家整理的教案范文,歡迎大家閱讀分享借鑒,希望對大家能夠有所幫助。
高一數(shù)學教案集合篇一
1明確空間直角坐標系是如何建立;明確空間中任意一點如何表示;
2 能夠在空間直角坐標系中求出點坐標
1平面直角坐標系建立方法,點坐標確定過程、表示方法?
2一個點在平面怎么表示?在空間呢?
3關于一些對稱點坐標求法
關于坐標平面 對稱點 ;
關于坐標平面 對稱點 ;
關于坐標平面 對稱點 ;
關于 軸對稱點 ;
關于 對軸稱點 ;
關于 軸對稱點 ;
例1在長方體 中, , 寫出 四點坐標
討論:若以 點為原點,以射線 方向分別為 軸,建立空間直角坐標系,則各頂點坐標又是怎樣呢?
變式:已知 ,描出它在空間位置
例2 為正四棱錐, 為底面中心,若 ,試建立空間直角坐標系,并確定各頂點坐標
練1 建立適當直角坐標系,確定棱長為3正四面體各頂點坐標
練2 已知 是棱長為2正方體, 分別為 和 中點,建立適當空間直角坐標系,試寫出圖中各中點坐標
1 關于空間直角坐標系敘述正確是( )
a 中 位置是可以互換
b空間直角坐標系中點與一個三元有序數(shù)組是一種一一對應關系
c空間直角坐標系中三條坐標軸把空間分為八個部分
d某點在不同空間直角坐標系中坐標位置可以相同
2 已知點 ,則點 關于原點對稱點坐標為( )
a b c d
3 已知 三個頂點坐標分別為 ,則 重心坐標為( )
a b c d
4 已知 為平行四邊形,且 , 則頂點 坐標
5 方程 幾何意義是
1 在空間直角坐標系中,給定點 ,求它分別關于坐標平面,坐標軸和原點對稱點坐標
2 設有長方體 ,長、寬、高分別為 是線段 中點分別以 所在直線為 軸, 軸, 軸,建立空間直角坐標系
⑴求 坐標;
⑵求 坐標;
高一數(shù)學教案集合篇二
數(shù)學教案-圓柱和圓錐
圓柱和圓錐
單元教學要求:
1、 使學生認識圓柱和圓錐,掌握它們的特征,知道圓柱是由兩個完全一樣的圓和一個曲面圍成的,圓錐是由一個圓和一個曲面圍成的;認識圓柱的底面、側面和高;認識圓錐的底面和高。進一步培養(yǎng)學生的空間觀念,使學生能舉例說明。圓柱和圓錐,能判斷一個立體圖形或物體是不是圓柱或圓錐。
2、使學生知道圓柱側面展開的圖形,理解求圓柱的側面積、表面積的計算方法,會計算圓柱體的側面積和表面積,能根據(jù)實際情況靈活應用計算方法,并認識取近似數(shù)的進一法。
3、使學生理解求圓柱、圓錐體積的計算公式,能說明體積公式的推導過程,會運用公式計算體積、容積,解決有關的簡單實際問題。
單元教學重點:圓柱體積計算公式的推導和應用。
單元教學難點 :靈活運用知識,解決實際問題。
(一)圓柱的認識
教學內容:教材第3~4頁圓柱和圓柱的側面積、“練一練”,練習一第1—3題。
教學要求:
1、使學生認識圓柱的特征,能正確判斷圓柱體,培養(yǎng)學生觀察、比較和判斷等思維能力。
2、使學生認識圓柱的側面,理解和掌握圓柱側面積的計算方法。進一步培養(yǎng)學生的空間觀念。
教具學具準備:教師準備一個長方體模型,大小不同的圓柱實物(如鉛筆、飲料罐、茶葉筒等)若干,圓柱模型;學生準備圓柱實物(要有一個側面貼有商標紙或紙的圓柱體),剪下教材第127頁圖形、糨糊。
教學重點:認識圓柱的特征,掌握圓柱側面積的計算方法。
教學難點 :認識圓柱的側面。
教學過程 :
一、復習舊知
1、提問:我們學習過哪些立體圖形?(板書:立體圖形)長方體和正方體有什么特征?
2、引入新課。
出示事先準備的圓柱形的一些物體。提問學生:這些形體是長方體或正方體嗎?說明:這些形體就是我們今天要學習的新的立體圖形圓柱體。通過學習要認識它的特征。(板書課題)
二、教學新課
1、認識圓柱的特征。
請同學們拿出自己準備的圓柱形物體,仔細觀察一下,再和講臺上的圓柱比一比,看看它有哪些特征。提問:誰來說一說圓柱有哪些特征?
2、認識圓柱各部分名稱。
(1)認識底面。
出示圓柱,讓學生觀察上下兩個面。說明圓柱上下兩個面叫做圓柱的底面。(板書:——底面)你認為這兩個底面的大小怎樣?老師取下兩個底面比較,得出是完全相同或者大小相等的兩個圓。(把上面板書補充成:上下兩個面是完全相同的圓)
(2)認識側面。
請大家把圓柱豎放,用手摸一摸周圍的面,(用手示意側面)你對這個面有什么感覺?說明:圍成圓柱除上下兩個底面外,還有一個曲面,叫做圓柱的側面。追問:側面是怎樣的一個面?(接前第二行板書:側面是一個曲面)
(3)認識圓柱圖形。
請同學們自己再摸一摸自己圓柱的兩個底面和側面,并且同桌相互說一說哪是底面,哪是側面,各有什么特點。
說明:圓柱是由兩個底面和側面圍成的。底面是完全相同的兩個圓,側面是一個曲面。
在說明的基礎上畫出下面的立體圖形:
(4)認識高。
長方體有高,圓柱體也有高。請看一下自己的圓柱,想一想,圓柱體的高在哪里?試著量一量你的圓柱高是多少。(板書:高)誰來說說圓柱的。高在哪里?說明:兩個底面之間的距離叫做高。(在圖上表示出高,并板書:兩個底面之間的距離)讓學生說一說自己圓柱的高是多少,怎樣量出來的。提問:想一想,一個圓柱的高有多少條?它們之間有什么關系?(板書:高有無數(shù)條,高都相等)
3、鞏固特征的認識。
(1)提問:你見過哪些物體是圓柱形的?
(2)做練習一第1題。
指名學生口答,不是圓柱的要求說明理由。
(3)老師說一些物體,學生判斷是不是圓柱:汽油桶、鋼管、電線桿、腰鼓……
4、教學側面積計算。
(1)認識側面的形狀。
教師出示圓柱模型說明:請同學們先想一想,如果把圓柱側面沿高剪開再展開,它會是什么形狀,F(xiàn)在請大家拿出貼有商標紙的飲料罐(教師同時出示),沿著它的一條高剪開,(教師示范)然后展開,看看是什么形狀。學生操作后提問:你發(fā)現(xiàn)圓柱體的側面是什么形狀?
(2)側面積計算方法。
①提問:得到的長方形的長和寬跟圓柱體有什么關系呢?請同學們看從第3頁最后兩行到4頁的“想一想”,并在橫線上填空。提問“想一想”所填的結果。
②得出計算方法。
提問:根據(jù)它們之間的這種關系,圓柱的側面積應該怎樣算?為什么?(板書:圓柱的側面積=底面周長×高)
(3)教學例1
出示例1,學生讀題。指名板演,其余學生做在練習本上。集體訂正。
三、鞏固練習
1、提問:這節(jié)課學習了什么內容?
2、做圓柱體。
讓學生按剪下的第127頁的圖紙做一個圓柱體。指名學生看著做的圓柱體說一說圓柱的特征,邊說邊指出圓柱的各個部分。讓學生說一說圓柱的側面積怎樣計算。
3、做“練一練”第3題。
指名兩人板演,讓學生在練習本上列出算式。集體訂正,要求說一說每一步求的是什么。
4、思考:
如果圓柱的底面周長和高相等,側面展開是什么形狀,
四、布置作業(yè)
課堂作業(yè) :練習一第2題。
高一數(shù)學教案集合篇三
:要求學生初步理解集合的概念,理解元素與集合間的關系,掌握集合的表示法,知道常用數(shù)集及其記法。
1、元素與集合間的關系
2、集合的表示法
實例引入:
⑴ 1~20以內的所有質數(shù);
⑵ 我國從1991~20xx的13年內所發(fā)射的所有人造衛(wèi)星;
⑶ 金星汽車廠20xx年生產(chǎn)的所有汽車;
⑷ 20xx年1月1日之前與我國建立外交關系的所有國家;
⑸ 所有的正方形;
⑹ 黃圖盛中學20xx年9月入學的高一學生全體。
結論:一般地,我們把研究對象統(tǒng)稱為元素;把一些元素組成的總體叫做集合,也簡稱集。
(1)確定性:設a是一個給定的集合,x是某一個具體對象,則或者是a的元素,或者不是a的元素,兩種情況必有一種且只有一種成立。
(2)互異性:一個給定集合中的元素,指屬于這個集合的互不相同的個體(對象),因此,同一集合中不應重復出現(xiàn)同一元素。
(3)無序性:一般不考慮元素之間的順序,但在表示數(shù)列之類的特殊集合時,通常按照習慣的由小到大的數(shù)軸順序書寫
練習:判斷下列各組對象能否構成一個集合
⑴ 2,3,4 ⑵ (2,3),(3,4) ⑶ 三角形
⑷ 2,4,6,8,… ⑸ 1,2,(1,2),{1,2}
⑹我國的小河流 ⑺方程x2+4=0的所有實數(shù)解
⑻好心的人 ⑼著名的數(shù)學家 ⑽方程x2+2x+1=0的解
構成兩個集合的元素一樣,就稱這兩個集合相等
集合元素與集合的關系用“屬于”和“不屬于”表示:
(1)如果a是集合a的元素,就說a屬于a,記作a∈a
(2)如果a不是集合a的元素,就說a不屬于a,記作a∈a
非負整數(shù)集(或自然數(shù)集),記作n;
除0的非負整數(shù)集,也稱正整數(shù)集,記作n*或n+;
整數(shù)集,記作z;
有理數(shù)集,記作q;
實數(shù)集,記作r.
練習:(1)已知集合m={a,b,c}中的三個元素可構成某一三角形的三條邊,那么此三角形一定不是( )
a直角三角形 b 銳角三角形 c鈍角三角形 d等腰三角形
(2)說出集合{1,2}與集合{x=1,y=2}的異同點?
(1)列舉法:把集合中的元素一一列舉出來,寫在大括號內;
(2)描述法:用集合所含元素的共同特征表示的方法。(具體方法)
例 1、 用列舉法表示下列集合:
(1)小于10的所有自然數(shù)組成的集合;
(2)方程x2=x的所有實數(shù)根組成的集合;
(3)由1~20以內的所有質數(shù)組成。
例 2、 試分別用列舉法和描述法表示下列集合:
(1)由大于10小于20的的所有整數(shù)組成的集合;
(2)方程x2-2=2的所有實數(shù)根組成的集合。
注意:(1)描述法表示集合應注意集合的代表元素
(2)只要不引起誤解集合的代表元素也可省略
集合的概念、表示;集合元素與集合間的關系;常用數(shù)集的記法。
高一數(shù)學教案集合篇四
(1)理解兩個集合的并集與交集的的含義,會求兩個簡單集合的并集與交集;
(2)理解在給定集合中一個子集的補集的含義,會求給定子集的補集;(3)能用venn圖表達集合的關系及運算,體會直觀圖示對理解抽象概念的作用。
課 型:新授課
集合的交集與并集、補集的概念;
集合的交集與并集、補集“是什么”,“為什么”,“怎樣做”;
1、引入課題
我們兩個實數(shù)除了可以比較大小外,還可以進行加法運算,類比實數(shù)的加法運算,兩個集合是否也可以“相加”呢?
思考(p9思考題),引入并集概念。
2、新課教學
1、并集
一般地,由所有屬于集合a或屬于集合b的元素所組成的集合,稱為集合a與b的并集(union)
記作:a∪b讀作:“a并b”
即: a∪b={x|x∈a,或x∈b}
venn圖表示:
說明:兩個集合求并集,結果還是一個集合,是由集合a與b的所有元素組成的集合(重復元素只看成一個元素)。
例題(p9-10例4、例5)
說明:連續(xù)的(用不等式表示的)實數(shù)集合可以用數(shù)軸上的一段封閉曲線來表示。
問題:在上圖中我們除了研究集合a與b的并集外,它們的公共部分(即問號部分)還應是我們所關心的,我們稱其為集合a與b的交集。
2、交集
一般地,由屬于集合a且屬于集合b的元素所組成的集合,叫做集合a與b的交集(intersection)。
記作:a∩b讀作:“a交b”
即: a∩b={x|∈a,且x∈b}
交集的venn圖表示
說明:兩個集合求交集,結果還是一個集合,是由集合a與b的公共元素組成的集合。
例題(p9-10例6、例7)
拓展:求下列各圖中集合a與b的并集與交集
說明:當兩個集合沒有公共元素時,兩個集合的交集是空集,而不能說兩個集合沒有交集
3、補集
全集:一般地,如果一個集合含有我們所研究問題中所涉及的所有元素,那么就稱這個集合為全集(universe),通常記作u。
補集:對于全集u的一個子集a,由全集u中所有不屬于集合a的所有元素組成的集合稱為集合a相對于全集u的補集(complementary set),簡稱為集合a的補集,
記作:cua
即:cua={x|x∈u且x∈a}
補集的venn圖表示
說明:補集的概念必須要有全集的限制
例題(p12例8、例9)
4、求集合的并、交、補是集合間的基本運算,運算結果仍然還是集合,區(qū)分交集與并集的關鍵是“且”與“或”,在處理有關交集與并集的問題時,常常從這兩個字眼出發(fā)去揭示、挖掘題設條件,結合venn圖或數(shù)軸進而用集合語言表達,增強數(shù)形結合的思想方法。
5、集合基本運算的一些結論:
a∩ba,a∩bb,a∩a=a,a∩=,a∩b=b∩a
aa∪b,ba∪b,a∪a=a,a∪=a,a∪b=b∪a
(cua)∪a=u,(cua)∩a=
若a∩b=a,則ab,反之也成立
若a∪b=b,則ab,反之也成立
若x∈(a∩b),則x∈a且x∈b
若x∈(a∪b),則x∈a,或x∈b
6、課堂練習
(1)設a={奇數(shù)}、b={偶數(shù)},則a∩z=a,b∩z=b,a∩b=
(2)設a={奇數(shù)}、b={偶數(shù)},則a∪z=z,b∪z=z,a∪b=z
3、歸納小結(略)
4、作業(yè)布置
1、書面作業(yè):p13習題1.1,第6-12題
2、提高內容:
(1)已知x={x|x2+px+q=0,p2-4q>0},a={1,3,5,7,9},b={1,4,7,10},且,試求p、q;
(2)集合a={x|x2+px-2=0},b={x|x2-x+q=0},若ab={-2,0,1},求p、q;
(3)a={2,3,a2+4a+2},b={0,7,a2+4a-2,2-a},且ab ={3,7},求b。
高一數(shù)學教案集合篇五
一。 教學內容:平面向量與解析幾何的綜合
二。 教學重、難點:
1、 重點:
平面向量的基本,圓錐曲線的基本。
2、 難點:
平面向量與解析幾何的內在聯(lián)系和知識綜合,向量作為解決問題的一種工具的應用意識。
【典型例題
[例1] 如圖,已知梯形abcd中, ,點e分有向線段 所成的比為 ,雙曲線過c、d、e三點,且以a、b為焦點,求雙曲線的離心率。
解:如圖,以ab的垂直平分線為 軸,直線ab為 軸,建立直角坐標系 軸,因為雙曲線經(jīng)過點c、d且以ab為焦點,由對稱性知c、d關于 軸對稱
設a( )b( 為梯形的高
∴
設雙曲線為 則
由(1): (3)
將(3)代入(2):∴ ∴
[例2] 如圖,已知梯形abcd中, ,點e滿足 時,求離心率 的取值范圍。
解:以ab的垂直平分線為 軸,直線ab為 軸,建立直角坐標系 軸。
因為雙曲線經(jīng)過點c、d,且以a、b為焦點,由雙曲線的對稱性,知c、d關于 軸對稱 高中生物。
依題意,記a( )、e( 是梯形的高。
由
得
設雙曲線的方程為 ,則離心率由點c、e在雙曲線上,將點c、e的坐標和由(1)式,得 (3)
將(3)式代入(2)式,整理,得故 ,得解得所以,雙曲線的離心率的取值范圍為
[例3] 在以o為原點的直角坐標系中,點a( )為 的直角頂點,已知 ,且點b的縱坐標大于零,(1)求 關于直線ob對稱的圓的方程。(3)是否存在實數(shù) ,使拋物線 的取值范圍。
解:
(1)設 ,則由 ,即 ,得 或
因為
所以 ,故
(2)由 ,得b(10,5),于是直線ob方程:由條件可知圓的標準方程為:得圓心(
設圓心( )則 得 ,
故所求圓的方程為(3)設p( )為拋物線上關于直線ob對稱的兩點,則
得
即 、于是由故當 時,拋物線(3)二:設p( ),pq的中點m(∴ (1)-(2): 代入∴ 直線pq的方程為
∴ ∴
[例4] 已知常數(shù) , 經(jīng)過原點o以 為方向向量的直線與經(jīng)過定點a( 方向向量的直線相交于點p,其中 ,試問:是否存在兩個定點e、f使 為定值,若存在,求出e、f的坐標,不存在,說明理由。(20xx天津)
解:根據(jù)題設條件,首先求出點p坐標滿足的方程,據(jù)此再判斷是否存在兩定點,使得點p到兩定點距離的和為定值。
∵ ∴
因此,直線op和ab的方程分別為 和消去參數(shù) ,得點p( ,整理,得
① 因為(1)當(2)當 時,方程①表示橢圓,焦點e 和f 為合乎題意的兩個定點;
(3)當 時,方程①也表示橢圓,焦點e 和f( )為合乎題意的兩個定點。
[例5] 給定拋物線c: 夾角的大小,(2)設 求 在 軸上截距的變化范圍
解:
(1)c的焦點f(1,0),直線 的斜率為1,所以 的方程為 代入方程 )、b(則有
所以 與
(2)設a( )由題設
即 ,由(2)得 ,
∴
依題意有 )或b(又f(1,0),得直線 方程為
當 或由 ,可知∴
直線 在 軸上截距的變化范圍為
[例6] 拋物線c的方程為 )( 的兩條直線分別交拋物線c于a( )兩點(p、a、b三點互不相同)且滿足 ((1)求拋物線c的焦點坐標和準線方程
(2)設直線ab上一點m,滿足 ,證明線段pm的中點在 軸上
(3)當 ),求解:(1)由拋物線c的方程 ),準線方程為
(2)證明:設直線pa的方程為
點p( )的坐標是方程組 的解
將(2)式代入(1)式得
于是 ,故 (3)
又點p( )的坐標是方程組 的解
將(5)式代入(4)式得 ,故
由已知得, ,則設點m的坐標為( ),由 。則
將(3)式和(6)式代入上式得
即(3)解:因為點p( ,拋物線方程為由(3)式知 ,代入
將 得因此,直線pa、pb分別與拋物線c的交點a、b的坐標為
于是, ,
因即 或
又點a的縱坐標 滿足當 ;當 時,所以,
[例7] 已知橢圓 和點m( 的取值范圍;如要你認為不能,請加以證明。
解: 不可能為鈍角,證明如下:如圖所示,設a( ),直線 的方程為
由 得 ,又 , ,若 為鈍角,則
即 ,即
即
即∴
∴
【模擬】(答題時間:60分鐘)
1、 已知橢圓 ,定點a(0,3),過點a的直線自上而下依次交橢圓于m、n兩個不同點,且 ,求實數(shù) 的取值范圍。
2、 設拋物線 軸,證明:直線ac經(jīng)過原點。
3、 如圖,設點a、b為拋物線 ,求點m的軌跡方程,并說明它表示什么曲線。
4、 平面直角坐標系中,o為坐標原點,已知兩點a(3,1),b( )若c滿足 ,其中 ,求點c的軌跡方程。
5、 橢圓的中心是原點o,它的短軸長為 ,相應于焦點f( )的準線 與 軸相交于點a, ,過點a的直線與橢圓相交于p、q兩點。
(1)求橢圓的方程;
(2)設 ,過點p且平行于準線 的直線與橢圓相交于另一點m,證明 ;
(3)若 ,求直線pq的方程。
【試題答案】
1、 解:因為 ,且a、m、n三點共線,所以 ,且 ,得n點坐標為
因為n點在橢圓上,所以即所以
由
解得2. 證明:設a( )、b( )( ),則c點坐標為( 、
因為a、f、b三點共線,所以 ,即
化簡得
由 ,得
所以
即a、o、c三點共線,直線ac經(jīng)過原點
3、 解:設 、 、則 、
∵ ∴
即又
即 (2) ∵ a、m、b三點共線
∴
即
化簡得 ③
將①②兩式代入③式,化簡整理,得
∵ a、b是異于原點的點 ∴ 故點m的軌跡方程是 ( )為圓心,以4. 方法一:設c(
由 ,且 ,
∴ 又 ∵ ∴
∴ 方法二:∵ ,∴ 點c在直線ab上 ∴ c點軌跡為直線ab
∵ a(3,1)b( ) ∴ 5. 解:(1) ;(2)a(3,0),
由已知得 注意解得 ,因f(2,0),m( )故
而
(3)設pq方程為 ,由
得依題意 ∵
∴ ①及 ③
由①②③④得 ,從而所以直線pq方程為
高一數(shù)學教案集合篇六
【摘要】鑒于大家對數(shù)學網(wǎng)十分關注,小編在此為大家整理了此文空間幾何體的三視圖和直觀圖高一數(shù)學教案,供大家參考!
:空間幾何體的三視圖和直觀圖高一數(shù)學教案
1.2.1中心投影與平行投影 1.2.2空間幾何體的三視圖
:能畫出簡單幾何體的三視圖;能識別三視圖所表示的空間幾何體。
:畫出三視圖、識別三視圖。
:識別三視圖所表示的空間幾何體。
1、 討論:能否熟練畫出上節(jié)所學習的幾何體?工程師如何制作工程設計圖紙?
2、 引入:從不同角度看廬山,有古詩:橫看成嶺側成峰,遠近高低各不同。不識廬山真面目,只緣身在此山中。 對于我們所學幾何體,常用三視圖和直觀圖來畫在紙上。
三視圖:觀察者從不同位置觀察同一個幾何體,畫出的空間幾何體的圖形;
直觀圖:觀察者站在某一點觀察幾何體,畫出的空間幾何體的圖形。
用途:工程建設、機械制造、日常生活。
1、 教學中心投影與平行投影:
① 投影法的提出:物體在光線的照射下,就會在地面或墻壁上產(chǎn)生影子。人們將這種自然現(xiàn)象加以科學的抽象,總結其中的規(guī)律,提出了投影的方法。
② 中心投影:光由一點向外散射形成的投影。其投影的大小隨物體與投影中心間距離的變化而變化,所以其投影不能反映物體的實形。
③ 平行投影:在一束平行光線照射下形成的投影。 分正投影、斜投影。
討論:點、線、三角形在平行投影后的結果。
2、 教學柱、錐、臺、球的三視圖:
定義三視圖:正視圖(光線從幾何體的前面向后面正投影);側視圖(從左向右)、俯視圖
討論:三視圖與平面圖形的關系? 畫出長方體的三視圖,并討論所反應的長、寬、高
結合球、圓柱、圓錐的模型,從正面(自前而后)、側面(自左而右)、上面(自上而下)三個角度,分別觀察,畫出觀察得出的各種結果。 正視圖、側視圖、俯視圖。
③ 試畫出:棱柱、棱錐、棱臺、圓臺的三視圖。 (
④ 討論:三視圖,分別反應物體的哪些關系(上下、左右、前后)?哪些數(shù)量(長、寬、高)
正視圖反映了物體上下、左右的位置關系,即反映了物體的高度和長度;
俯視圖反映了物體左右、前后的位置關系,即反映了物體的長度和寬度;
側視圖反映了物體上下、前后的位置關系,即反映了物體的高度和寬度。
⑤ 討論:根據(jù)以上的三視圖,如何逆向得到幾何體的形狀。
(試變化以上的三視圖,說出相應幾何體的擺放)
3、 教學簡單組合體的三視圖:
① 畫出教材p16 圖(2)、(3)、(4)的三視圖。
② 從教材p16思考中三視圖,說出幾何體。
4、 練習:
① 畫出正四棱錐的三視圖。
畫出右圖所示幾何體的三視圖。
③ 右圖是一個物體的正視圖、左視圖和俯視圖,試描述該物體的形狀。
5、 小結:投影法;三視圖;順與逆
練習:教材p17 1、2、3、4
第二課時 1.2.3 空間幾何體的直觀圖
教學要求:掌握斜二測畫法;能用斜二測畫法畫空間幾何體的直觀圖。
教學重點:畫出直觀圖。
高一數(shù)學教案集合篇七
教學目標:①掌握對數(shù)函數(shù)的性質。
②應用對數(shù)函數(shù)的性質可以解決:對數(shù)的大小比較,求復合函數(shù)的定義域、值 域及單調性。
③ 注重函數(shù)思想、等價轉化、分類討論等思想的滲透,提高解題能力。
教學重點與難點:對數(shù)函數(shù)的性質的應用。
教學過程設計:
⒈復習提問:對數(shù)函數(shù)的概念及性質。
⒉開始正課
1 比較數(shù)的大小
例 1 比較下列各組數(shù)的大小。
⑴loga5.1 ,loga5.9 (a>0,a≠1)
⑵log0.50.6 ,logл0.5 ,lnл
師:請同學們觀察一下⑴中這兩個對數(shù)有何特征?
生:這兩個對數(shù)底相等。
師:那么對于兩個底相等的對數(shù)如何比大小?
生:可構造一個以a為底的對數(shù)函數(shù),用對數(shù)函數(shù)的單調性比大小。
師:對,請敘述一下這道題的解題過程。
生:對數(shù)函數(shù)的單調性取決于底的大。寒0
調遞減,所以loga5.1>loga5.9 ;當a>1時,函數(shù)y=logax單調遞
增,所以loga5.1
板書:
解:ⅰ)當0
∵5.1<5.9 ∴l(xiāng)oga5.1>loga5.9
ⅱ)當a>1時,函數(shù)y=logax在(0,+∞)上是增函數(shù),
∵5.1<5.9 ∴l(xiāng)oga5.1
師:請同學們觀察一下⑵中這三個對數(shù)有何特征?
生:這三個對數(shù)底、真數(shù)都不相等。
師:那么對于這三個對數(shù)如何比大小?
生:找“中間量”, log0.50.6>0,lnл>0,logл0.5<0;lnл>1,
log0.50.6<1,所以logл0.5< log0.50.6< lnл。
板書:略。
師:比較對數(shù)值的大小常用方法:①構造對數(shù)函數(shù),直接利用對數(shù)函
數(shù) 的單調性比大小,②借用“中間量”間接比大小,③利用對數(shù)
函數(shù)圖象的位置關系來比大小。
2 函數(shù)的定義域, 值 域及單調性。
例 2 ⑴求函數(shù)y=的定義域。
⑵解不等式log0.2(x2+2x-3)>log0.2(3x+3)
師:如何來求⑴中函數(shù)的定義域?(提示:求函數(shù)的定義域,就是要使函數(shù)有意義。若函數(shù)中含有分母,分母不為零;有偶次根式,被開方式大于或等于零;若函數(shù)中有對數(shù)的形式,則真數(shù)大于零,如果函數(shù)中同時出現(xiàn)以上幾種情況,就要全部考慮進去,求它們共同作用的結果。)生:分母2x-1≠0且偶次根式的被開方式log0.8x-1≥0,且真數(shù)x>0。
板書:
解:∵ 2x-1≠0 x≠0.5
log0.8x-1≥0 , x≤0.8
x>0 x>0
∴x(0,0.5)∪(0.5,0.8〕
師:接下來我們一起來解這個不等式。
分析:要解這個不等式,首先要使這個不等式有意義,即真數(shù)大于零,
再根據(jù)對數(shù)函數(shù)的單調性求解。
師:請你寫一下這道題的解題過程。
生:<板書>
解: x2+2x-3>0 x<-3 或 x>1
(3x+3)>0 , x>-1
x2+2x-3<(3x+3) -2
不等式的解為:1
例 3 求下列函數(shù)的值域和單調區(qū)間。
⑴y=log0.5(x- x2)
⑵y=loga(x2+2x-3)(a>0,a≠1)
師:求例3中函數(shù)的的值域和單調區(qū)間要用及復合函數(shù)的思想方法。
下面請同學們來解⑴。
生:此函數(shù)可看作是由y= log0.5u, u= x- x2復合而成。
板書:
解:⑴∵u= x- x2>0, ∴0
u= x- x2=-(x-0.5)2+0.25, ∴0
∴y= log0.5u≥log0.50.25=2
∴y≥2
x x(0,0.5] x[0.5,1)
u= x- x2
y= log0.5u
y=log0.5(x- x2)
函數(shù)y=log0.5(x- x2)的單調遞減區(qū)間(0,0.5],單調遞 增區(qū)間[0.5,1)
注:研究任何函數(shù)的性質時,都應該首先保證這個函數(shù)有意義,否則
函數(shù)都不存在,性質就無從談起。
師:在⑴的基礎上,我們一起來解⑵。請同學們觀察一下⑴與⑵有什
么區(qū)別?
生:⑴的底數(shù)是常值,⑵的底數(shù)是字母。
師:那么⑵如何來解?
生:只要對a進行分類討論,做法與⑴類似。
板書:略。
⒊小結
這堂課主要講解如何應用對數(shù)函數(shù)的性質解決一些問題,希望能
通過這堂課使同學們對等價轉化、分類討論等思想加以應用,提高解題能力。
⒋作業(yè)
⑴解不等式
①lg(x2-3x-4)≥lg(2x+10);②loga(x2-x)≥loga(x+1),(a為常數(shù))
⑵已知函數(shù)y=loga(x2-2x),(a>0,a≠1)
①求它的單調區(qū)間;②當0
⑶已知函數(shù)y=loga (a>0, b>0, 且 a≠1)
①求它的定義域;②討論它的奇偶性; ③討論它的單調性。
⑷已知函數(shù)y=loga(ax-1) (a>0,a≠1),
①求它的定義域;②當x為何值時,函數(shù)值大于1;③討論它的
單調性。
5、課堂教學設計說明
這節(jié)課是安排為習題課,主要利用對數(shù)函數(shù)的性質解決一些問題,整個一堂課分兩個部分:一 。比較數(shù)的大小,想通過這一部分的練習,
培養(yǎng)同學們構造函數(shù)的思想和分類討論、數(shù)形結合的思想。二。函數(shù)的定義域, 值 域及單調性,想通過這一部分的練習,能使同學們重視求函數(shù)的定義域。因為學生在求函數(shù)的值域和單調區(qū)間時,往往不考慮函數(shù)的定義域,并且這種錯誤很頑固,不易糾正。因此,力求學生做到想法正確,步驟清晰。為了調動學生的積極性,突出學生是課堂的主體,便把例題分了層次,由易到難,力求做到每題都能由學生獨立完成。但是,每一道題的解題過程,老師都應該給以板書,這樣既讓學生有了獲取新知識的快樂,又不必為了解題格式的不熟悉而煩惱。每一題講完后,由教師簡明扼要地小結,以使好學生掌握地更完善,較差的學生也能夠跟上。
版權聲明:本文內容由互聯(lián)網(wǎng)用戶自發(fā)貢獻,該文觀點僅代表作者本人。本站僅提供信息存儲空間服務,不擁有所有權,不承擔相關法律責任。如發(fā)現(xiàn)本站有涉嫌抄襲侵權/違法違規(guī)的內容, 請發(fā)送郵件至 yyfangchan@163.com (舉報時請帶上具體的網(wǎng)址) 舉報,一經(jīng)查實,本站將立刻刪除