狠狠操网,91中文字幕在线观看,精品久久香蕉国产线看观看亚洲,亚洲haose在线观看

高中數(shù)學余弦定理的常用證明方法

高中數(shù)學余弦定理的常用證明方法

  余弦定理是數(shù)學的真理,那該怎么被證明呢?證明的步驟的是怎樣的呢?下面就是百分網小編給大家整理的余弦定理的證明方法內容,希望大家喜歡。

  余弦定理的'證明方法一

  在△ABC中,AB=c、BC=a、CA=b

  則c^2=a^2+b^2-2ab*cosC

  a^2=b^2+c^2-2bc*cosA

  b^2=a^2+c^2-2ac*cosB

  下面在銳角△中證明第一個等式,在鈍角△中證明以此類推。

  過A作AD⊥BC于D,則BD+CD=a

  由勾股定理得:

  c^2=(AD)^2+(BD)^2,(AD)^2=b^2-(CD)^2

  所以c^2=(AD)^2-(CD)^2+b^2

  =(a-CD)^2-(CD)^2+b^2

  =a^2-2a*CD +(CD)^2-(CD)^2+b^2

  =a^2+b^2-2a*CD

  因為cosC=CD/b

  所以CD=b*cosC

  所以c^2=a^2+b^2-2ab*cosC

  余弦定理的證明方法二

  在任意△ABC中, 作AD⊥BC.

  ∠C對邊為c,∠B對邊為b,∠A對邊為a -->

  BD=cosB*c,AD=sinB*c,DC=BC-BD=a-cosB*c

  勾股定理可知:

  AC²=AD²+DC²

  b²=(sinB*c)²+(a-cosB*c)²

  b²=sin²B*c²+a²+cos²B*c²-2ac*cosB

  b²=(sin²B+cos²B)*c²-2ac*cosB+a²

  b²=c²+a²-2ac*cosB

  所以,cosB=(c²+a²-b²)/2ac

  余弦定理的證明方法三

  如右圖,在ABC中,三內角A、B、C所對的邊分別是a、b、c . 以A為原點,AC所在的直線為x軸建立直角坐標系,于是C點坐標是(b,0),由三角函數(shù)的定義得B點坐標是(ccosA,csinA) . ∴CB = (ccosA-b,csinA). 現(xiàn)將CB平移到起點為原點A,則AD = CB . 而 |AD| = |CB| = a ,∠DAC = π-∠BCA = π-C , 根據三角函數(shù)的定義知D點坐標是 (acos(π-C),asin(π-C)) 即 D點坐標是(-acosC,asinC), ∴ AD = (-acosC,asinC) 而 AD = CB ∴ (-acosC,asinC) = (ccosA-b,csinA) ∴ asinC = csinA …………① -acosC = ccosA-b ……② 由①得 asinA = csinC ,同理可證 asinA = bsinB , ∴ asinA = bsinB = csinC . 由②得 acosC = b-ccosA ,平方得: a2cos2C = b2-2bccosA + c2cos2A , 即 a2-a2sin2C = b2-2bccosA + c2-c2sin2A . 而由①可得 a2sin2C = c2sin2A ∴ a2 = b2 + c2-2bccosA . 同理可證 b2 = a2 + c2-2accosB , c2 = a2 + b2-2abcosC . 到此正弦定理和余弦定理證明完畢。3△ABC的三邊分別為a,b,c,邊BC,CA,AB上的中線分別為ma.mb,mc,應用余弦定理證明:

  mb=(1/2)[(√2(a^2+c^2)-b^2)]

  mc=(1/2)[(√2(a^2+b^2)-c^2)]ma=√(c^2+(a/2)^2-ac*cosB)

  =(1/2)√(4c^2+a^2-4ac*cosB)

  由b^2=a^2+c^2-2ac*cosB

  得,4ac*cosB=2a^2+2c^2-2b^2,代入上述ma表達式:

  ma=(1/2)√[4c^2+a^2-(2a^2+2c^2-2b^2)]

  =(1/2)√(2b^2+2c^2-a^2)

  同理可得:

  mb=

  mc=

  ma=√(c^2+(a/2)^2-ac*cosB)

  =(1/2)√(4c^2+a^2-4ac*cosB)

  由b^2=a^2+c^2-2ac*cosB

  得,4ac*cosB=2a^2+2c^2-2b^2,代入上述ma表達式:

  ma=(1/2)√[4c^2+a^2-(2a^2+2c^2-2b^2)]

  =(1/2)√(2b^2+2c^2-a^2)

  證畢。


版權聲明:本文內容由互聯(lián)網用戶自發(fā)貢獻,該文觀點僅代表作者本人。本站僅提供信息存儲空間服務,不擁有所有權,不承擔相關法律責任。如發(fā)現(xiàn)本站有涉嫌抄襲侵權/違法違規(guī)的內容, 請發(fā)送郵件至 yyfangchan@163.com (舉報時請帶上具體的網址) 舉報,一經查實,本站將立刻刪除