初二三角形知識(shí)點(diǎn)總結(jié)
初二三角形知識(shí)點(diǎn)總結(jié)
數(shù)學(xué)起源于人類早期的生產(chǎn)活動(dòng),古巴比倫人從遠(yuǎn)古時(shí)代開始已經(jīng)積累了一定的數(shù)學(xué)知識(shí),并能應(yīng)用實(shí)際問(wèn)題.從數(shù)學(xué)本身看,他們的數(shù)學(xué)知識(shí)也只是觀察和經(jīng)驗(yàn)所得。下面是小編整理的關(guān)于初二三角形知識(shí)點(diǎn)總結(jié),歡迎大家參考!
初二三角形知識(shí)點(diǎn)總結(jié)
1.知識(shí)概念
1.三角形:由不在同一直線上的三條線段首尾順次相接所組成的圖形叫做三角形。
2.三邊關(guān)系:三角形任意兩邊的和大于第三邊,任意兩邊的差小于第三邊。
3.高:從三角形的一個(gè)頂點(diǎn)向它的對(duì)邊所在直線作垂線,頂點(diǎn)和垂足間的線段叫做三角形的高。
4.中線:在三角形中,連接一個(gè)頂點(diǎn)和它的對(duì)邊中點(diǎn)的線段叫做三角形的中線。
5.角平分線:三角形的一個(gè)內(nèi)角的平分線與這個(gè)角的對(duì)邊相交,這個(gè)角的頂點(diǎn)和交點(diǎn)之間的線段叫做三角形的角平分線。
6.三角形的穩(wěn)定性:三角形的形狀是固定的,三角形的這個(gè)性質(zhì)叫三角形的穩(wěn)定性。
6.多邊形:在平面內(nèi),由一些線段首尾順次相接組成的圖形叫做多邊形。
7.多邊形的內(nèi)角:多邊形相鄰兩邊組成的角叫做它的內(nèi)角。
8.多邊形的外角:多邊形的一邊與它的鄰邊的延長(zhǎng)線組成的角叫做多邊形的外角。
9.多邊形的對(duì)角線:連接多邊形不相鄰的兩個(gè)頂點(diǎn)的線段,叫做多邊形的對(duì)角線。
10.正多邊形:在平面內(nèi),各個(gè)角都相等,各條邊都相等的多邊形叫做正多邊形。
11.平面鑲嵌:用一些不重疊擺放的多邊形把平面的一部分完全覆蓋,叫做用多邊形覆蓋平面。
12.公式與性質(zhì)
三角形的內(nèi)角和:三角形的內(nèi)角和為180°
三角形外角的性質(zhì):
性質(zhì)1:三角形的一個(gè)外角等于和它不相鄰的兩個(gè)內(nèi)角的和。
性質(zhì)2:三角形的一個(gè)外角大于任何一個(gè)和它不相鄰的內(nèi)角。
多邊形內(nèi)角和公式:n邊形的內(nèi)角和等于(n-2)·180°
多邊形的外角和:多邊形的內(nèi)角和為360°。
多邊形對(duì)角線的條數(shù):(1)從n邊形的一個(gè)頂點(diǎn)出發(fā)可以引(n-3)條對(duì)角線,把多邊形分詞(n-2)個(gè)三角形。
(2)n邊形共有 條對(duì)角線。
為大家?guī)?lái)的初中數(shù)學(xué)知識(shí)點(diǎn)歸納之三角形,相信熱愛(ài)數(shù)學(xué)的朋友們對(duì)三角形的知識(shí)要領(lǐng)都已經(jīng)熟記于心了吧,接下來(lái)的初中數(shù)學(xué)知識(shí)更加有吸引力。
初二三角形知識(shí)點(diǎn)總結(jié)
一、軸對(duì)稱圖形
1. 把一個(gè)圖形沿著一條直線折疊,如果直線兩旁的部分能夠完全重合,那么這個(gè)圖形就叫做軸對(duì)稱圖形。這條直線就是它的對(duì)稱軸。這時(shí)我們也說(shuō)這個(gè)圖形關(guān)于這條直線(成軸)對(duì)稱。
2. 把一個(gè)圖形沿著某一條直線折疊,如果它能與另一個(gè)圖形完全重合,那么就說(shuō)這兩個(gè)圖關(guān)于這條直線對(duì)稱。這條直線叫做對(duì)稱軸。折疊后重合的點(diǎn)是對(duì)應(yīng)點(diǎn),叫做對(duì)稱點(diǎn)
3、軸對(duì)稱圖形和軸對(duì)稱的區(qū)別與聯(lián)系
4.軸對(duì)稱的性質(zhì)
、訇P(guān)于某直線對(duì)稱的兩個(gè)圖形是全等形。
②如果兩個(gè)圖形關(guān)于某條直線對(duì)稱,那么對(duì)稱軸是任何一對(duì)對(duì)應(yīng)點(diǎn)所連線段的垂直平分線。
、圯S對(duì)稱圖形的對(duì)稱軸,是任何一對(duì)對(duì)應(yīng)點(diǎn)所連線段的垂直平分線。
、苋绻麅蓚(gè)圖形的對(duì)應(yīng)點(diǎn)連線被同條直線垂直平分,那么這兩個(gè)圖形關(guān)于這條直線對(duì)稱。
二、線段的垂直平分線
1. 經(jīng)過(guò)線段中點(diǎn)并且垂直于這條線段的直線,叫做這條線段的垂直平分線,也叫中垂線。
2.線段垂直平分線上的點(diǎn)與這條線段的兩個(gè)端點(diǎn)的距離相等
3.與一條線段兩個(gè)端點(diǎn)距離相等的點(diǎn),在線段的垂直平分線上
三、用坐標(biāo)表示軸對(duì)稱小結(jié):
在平面直角坐標(biāo)系中,關(guān)于x軸對(duì)稱的點(diǎn)橫坐標(biāo)相等,縱坐標(biāo)互為相反數(shù).關(guān)于y軸對(duì)稱的點(diǎn)橫坐標(biāo)互為相反數(shù),縱坐標(biāo)相等.
2.三角形三條邊的垂直平分線相交于一點(diǎn),這個(gè)點(diǎn)到三角形三個(gè)頂點(diǎn)的距離相等
四、(等腰三角形)知識(shí)點(diǎn)回顧
1.等腰三角形的性質(zhì)
、.等腰三角形的兩個(gè)底角相等。(等邊對(duì)等角)
、.等腰三角形的頂角平分線、底邊上的中線、底邊上的高互相重合。(三線合一)
2、等腰三角形的判定:
如果一個(gè)三角形有兩個(gè)角相等,那么這兩個(gè)角所對(duì)的邊也相等。(等角對(duì)等邊)
五、(等邊三角形)知識(shí)點(diǎn)回顧
1.等邊三角形的性質(zhì):
等邊三角形的三個(gè)角都相等,并且每一個(gè)角都等于600 。
2、等邊三角形的判定:
、偃齻(gè)角都相等的三角形是等邊三角形。
②有一個(gè)角是600的等腰三角形是等邊三角形。
3.在直角三角形中,如果一個(gè)銳角等于300,那么它所對(duì)的直角邊等于斜邊的一半。
1、等腰三角形的性質(zhì)
(1)等腰三角形的性質(zhì)定理及推論:
定理:等腰三角形的兩個(gè)底角相等(簡(jiǎn)稱:等邊對(duì)等角)
推論1:等腰三角形頂角平分線平分底邊并且垂直于底邊。即等腰三角形的頂角平分線、底邊上的中線、底邊上的高重合。
推論2:等邊三角形的各個(gè)角都相等,并且每個(gè)角都等于60°。
(2)等腰三角形的其他性質(zhì):
①等腰直角三角形的兩個(gè)底角相等且等于45°
、诘妊切蔚牡捉侵荒転殇J角,不能為鈍角(或直角),但頂角可為鈍角(或直角)。
、鄣妊切蔚娜呹P(guān)系:設(shè)腰長(zhǎng)為a,底邊長(zhǎng)為b,則
、艿妊切蔚娜顷P(guān)系:設(shè)頂角為頂角為∠A,底角為∠B、∠C,則∠A=180°—2∠B,∠B=∠C=
2、等腰三角形的判定
等腰三角形的判定定理及推論:
定理:如果一個(gè)三角形有兩個(gè)角相等,那么這兩個(gè)角所對(duì)的邊也相等(簡(jiǎn)稱:等角對(duì)等邊)。這個(gè)判定定理常用于證明同一個(gè)三角形中的邊相等。
推論1:三個(gè)角都相等的三角形是等邊三角形
推論2:有一個(gè)角是60°的等腰三角形是等邊三角形。
推論3:在直角三角形中,如果一個(gè)銳角等于30°,那么它所對(duì)的直角邊等于斜邊的一半。
等腰三角形的性質(zhì)與判定
等腰三角形性質(zhì)
等腰三角形判定
中線
1、等腰三角形底邊上的中線垂直底邊,平分頂角;
2、等腰三角形兩腰上的中線相等,并且它們的交點(diǎn)與底邊兩端點(diǎn)距離相等。
1、兩邊上中線相等的三角形是等腰三角形;
2、如果一個(gè)三角形的一邊中線垂直這條邊(平分這個(gè)邊的對(duì)角),那么這個(gè)三角形是等腰三角形
角平分線
1、等腰三角形頂角平分線垂直平分底邊;
2、等腰三角形兩底角平分線相等,并且它們的交點(diǎn)到底邊兩端點(diǎn)的距離相等。
1、如果三角形的頂角平分線垂直于這個(gè)角的對(duì)邊(平分對(duì)邊),那么這個(gè)三角形是等腰三角形;
2、三角形中兩個(gè)角的平分線相等,那么這個(gè)三角形是等腰三角形。
高線
1、等腰三角形底邊上的高平分頂角、平分底邊;
2、等腰三角形兩腰上的高相等,并且它們的交點(diǎn)和底邊兩端點(diǎn)距離相等。
1、如果一個(gè)三角形一邊上的高平分這條邊(平分這條邊的對(duì)角),那么這個(gè)三角形是等腰三角形;
2、有兩條高相等的三角形是等腰三角形。
角
等邊對(duì)等角
等角對(duì)等邊
邊
底的一半<腰長(zhǎng)<周長(zhǎng)的一半
兩邊相等的三角形是等腰三角形
4、三角形中的中位線
連接三角形兩邊中點(diǎn)的線段叫做三角形的中位線。
(1)三角形共有三條中位線,并且它們又重新構(gòu)成一個(gè)新的三角形。
(2)要會(huì)區(qū)別三角形中線與中位線。
三角形中位線定理:三角形的中位線平行于第三邊,并且等于它的一半。
三角形中位線定理的作用:
位置關(guān)系:可以證明兩條直線平行。
數(shù)量關(guān)系:可以證明線段的倍分關(guān)系。
常用結(jié)論:任一個(gè)三角形都有三條中位線,由此有:
結(jié)論1:三條中位線組成一個(gè)三角形,其周長(zhǎng)為原三角形周長(zhǎng)的一半。
結(jié)論2:三條中位線將原三角形分割成四個(gè)全等的三角形。
結(jié)論3:三條中位線將原三角形劃分出三個(gè)面積相等的平行四邊形。
結(jié)論4:三角形一條中線和與它相交的中位線互相平分。
結(jié)論5:三角形中任意兩條中位線的夾角與這夾角所對(duì)的三角形的頂角相等。
第十四章 整式乘除與因式分解
一.回顧知識(shí)點(diǎn)
1、主要知識(shí)回顧:
冪的運(yùn)算性質(zhì):
am·an=am+n (m、n為正整數(shù))
同底數(shù)冪相乘,底數(shù)不變,指數(shù)相加.
= amn (m、n為正整數(shù))
冪的乘方,底數(shù)不變,指數(shù)相乘.
(n為正整數(shù))
積的乘方等于各因式乘方的積.
= am-n (a≠0,m、n都是正整數(shù),且m>n)
同底數(shù)冪相除,底數(shù)不變,指數(shù)相減.
零指數(shù)冪的概念:
a0=1 (a≠0)
任何一個(gè)不等于零的數(shù)的零指數(shù)冪都等于l.
負(fù)指數(shù)冪的概念:
a-p= (a≠0,p是正整數(shù))
任何一個(gè)不等于零的數(shù)的-p(p是正整數(shù))指數(shù)冪,等于這個(gè)數(shù)的p指數(shù)冪的倒數(shù).
也可表示為:(m≠0,n≠0,p為正整數(shù))
單項(xiàng)式的乘法法則:
單項(xiàng)式相乘,把系數(shù)、同底數(shù)冪分別相乘,作為積的因式;對(duì)于只在一個(gè)單項(xiàng)式里含有的字母,則連同它的指數(shù)作為積的一個(gè)因式.
單項(xiàng)式與多項(xiàng)式的乘法法則:
單項(xiàng)式與多項(xiàng)式相乘,用單項(xiàng)式和多項(xiàng)式的每一項(xiàng)分別相乘,再把所得的積相加.
多項(xiàng)式與多項(xiàng)式的乘法法則:
多項(xiàng)式與多項(xiàng)式相乘,先用一個(gè)多項(xiàng)式的每一項(xiàng)與另一個(gè)多項(xiàng)式的每一項(xiàng)相乘,再把所得的積相加.
單項(xiàng)式的除法法則:
單項(xiàng)式相除,把系數(shù)、同底數(shù)冪分別相除,作為商的因式:對(duì)于只在被除式里含有的字母,則連同它的指數(shù)作為商的一個(gè)因式.
多項(xiàng)式除以單項(xiàng)式的法則:
多項(xiàng)式除以單項(xiàng)式,先把這個(gè)多項(xiàng)式的每一項(xiàng)除以這個(gè)單項(xiàng)式,再把所得的商相加.
2、乘法公式:
①平方差公式:(a+b)(a-b)=a2-b2
文字語(yǔ)言敘述:兩個(gè)數(shù)的和與這兩個(gè)數(shù)的差相乘,等于這兩個(gè)數(shù)的平方差.
②完全平方公式:(a+b)2=a2+2ab+b2
(a-b)2=a2-2ab+b2
文字語(yǔ)言敘述:兩個(gè)數(shù)的和(或差)的平方等于這兩個(gè)數(shù)的平方和加上(或減去)這兩個(gè)數(shù)的積的2倍.
3、因式分解:
因式分解的定義.
把一個(gè)多項(xiàng)式化成幾個(gè)整式的乘積的形式,這種變形叫做把這個(gè)多項(xiàng)式因式分解.
掌握其定義應(yīng)注意以下幾點(diǎn):
(1)分解對(duì)象是多項(xiàng)式,分解結(jié)果必須是積的形式,且積的因式必須是整式,這三個(gè)要素缺一不可;
(2)因式分解必須是恒等變形;
(3)因式分解必須分解到每個(gè)因式都不能分解為止.
弄清因式分解與整式乘法的內(nèi)在的關(guān)系.
因式分解與整式乘法是互逆變形,因式分解是把和差化為積的形式,而整式乘法是把積化為和差的形式.
二、熟練掌握因式分解的常用方法.
1、提公因式法
(1)掌握提公因式法的概念;
(2)提公因式法的關(guān)鍵是找出公因式,公因式的構(gòu)成一般情況下有三部分:①系數(shù)一各項(xiàng)系數(shù)的最大公約數(shù);②字母——各項(xiàng)含有的相同字母;③指數(shù)——相同字母的最低次數(shù);
(3)提公因式法的步驟:第一步是找出公因式;第二步是提取公因式并確定另一因式.需注意的是,提取完公因式后,另一個(gè)因式的項(xiàng)數(shù)與原多項(xiàng)式的項(xiàng)數(shù)一致,這一點(diǎn)可用來(lái)檢驗(yàn)是否漏項(xiàng).
(4)注意點(diǎn):①提取公因式后各因式應(yīng)該是最簡(jiǎn)形式,即分解到“底”;②如果多項(xiàng)式的第一項(xiàng)的系數(shù)是負(fù)的,一般要提出“-”號(hào),使括號(hào)內(nèi)的第一項(xiàng)的系數(shù)是正的.
2、公式法
運(yùn)用公式法分解因式的實(shí)質(zhì)是把整式中的乘法公式反過(guò)來(lái)使用;
常用的公式:
①平方差公式: a2-b2= (a+b)(a-b)
、谕耆椒焦剑篴2+2ab+b2=(a+b)2
a2-2ab+b2=(a-b)2
第十五章 分式
知識(shí)點(diǎn)一:分式的定義
一般地,如果A,B表示兩個(gè)整數(shù),并且B中含有字母,那么式子叫做分式,A為分子,B為分母。
知識(shí)點(diǎn)二:與分式有關(guān)的條件
、俜质接幸饬x:分母不為0()
、诜质綗o(wú)意義:分母為0()
、鄯质街禐0:分子為0且分母不為0()
④分式值為正或大于0:分子分母同號(hào)(或)
、莘质街禐樨(fù)或小于0:分子分母異號(hào)(或)
⑥分式值為1:分子分母值相等(A=B)
、叻质街禐-1:分子分母值互為相反數(shù)(A+B=0)
知識(shí)點(diǎn)三:分式的基本性質(zhì)
分式的分子和分母同乘(或除以)一個(gè)不等于0的整式,分式的值不變。
字母表示:,,其中A、B、C是整式,C0。
拓展:分式的符號(hào)法則:分式的分子、分母與分式本身的符號(hào),改變其中任何兩個(gè),分式的值不變,即
注意:在應(yīng)用分式的基本性質(zhì)時(shí),要注意C0這個(gè)限制條件和隱含條件B0。
知識(shí)點(diǎn)四:分式的約分
定義:根據(jù)分式的基本性質(zhì),把一個(gè)分式的分子與分母的公因式約去,叫做分式的約分。
步驟:把分式分子分母因式分解,然后約去分子與分母的公因。
注意:①分式的分子與分母為單項(xiàng)式時(shí)可直接約分,約去分子、分母系數(shù)的最大公約數(shù),然后約去分子分母相同因式的最低次冪。
、诜肿臃帜溉魹槎囗(xiàng)式,約分時(shí)先對(duì)分子分母進(jìn)行因式分解,再約分。
知識(shí)點(diǎn)四:最簡(jiǎn)分式的定義
一個(gè)分式的分子與分母沒(méi)有公因式時(shí),叫做最簡(jiǎn)分式。
知識(shí)點(diǎn)五:分式的通分
① 分式的通分:根據(jù)分式的基本性質(zhì),把幾個(gè)異分母的分式分別化成與原來(lái)的分式相等的同分母分式,叫做分式的通分。
② 分式的通分最主要的步驟是最簡(jiǎn)公分母的確定。
最簡(jiǎn)公分母的定義:取各分母所有因式的最高次冪的積作公分母,這樣的公分母叫做最簡(jiǎn)公分母。
確定最簡(jiǎn)公分母的'一般步驟:
、 取各分母系數(shù)的最小公倍數(shù);
Ⅱ 單獨(dú)出現(xiàn)的字母(或含有字母的式子)的冪的因式連同它的指數(shù)作為一個(gè)因式;
、 相同字母(或含有字母的式子)的冪的因式取指數(shù)最大的。
、 保證凡出現(xiàn)的字母(或含有字母的式子)為底的冪的因式都要取。
注意:分式的分母為多項(xiàng)式時(shí),一般應(yīng)先因式分解。
知識(shí)點(diǎn)六分式的四則運(yùn)算與分式的乘方
、 分式的乘除法法則:
分式乘分式,用分子的積作為積的分子,分母的積作為積的分母。式子表示為:
分式除以分式:把除式的分子、分母顛倒位置后,與被除式相乘。式子表示為
② 分式的乘方:把分子、分母分別乘方。式子
、 分式的加減法則:
同分母分式加減法:分母不變,把分子相加減。式子表示為
異分母分式加減法:先通分,化為同分母的分式,然后再加減。式子表示為
整式與分式加減法:可以把整式當(dāng)作一個(gè)整數(shù),整式前面是負(fù)號(hào),要加括號(hào),看作是分母為1的分式,再通分。
、 分式的加、減、乘、除、乘方的混合運(yùn)算的運(yùn)算順序
先乘方、再乘除、后加減,同級(jí)運(yùn)算中,誰(shuí)在前先算誰(shuí),有括號(hào)的先算括號(hào)里面的,也要注意靈活,提高解題質(zhì)量。
注意:在運(yùn)算過(guò)程中,要明確每一步變形的目的和依據(jù),注意解題的格式要規(guī)范,不要隨便跳步,以便查對(duì)有無(wú)錯(cuò)誤或分析出錯(cuò)的原因。
加減后得出的結(jié)果一定要化成最簡(jiǎn)分式(或整式)。
知識(shí)點(diǎn)六整數(shù)指數(shù)冪
、 引入負(fù)整數(shù)、零指數(shù)冪后,指數(shù)的取值范圍就推廣到了全體實(shí)數(shù),并且正正整數(shù)冪的法則對(duì)對(duì)負(fù)整數(shù)指數(shù)冪一樣適用。即
科學(xué)記數(shù)法
若一個(gè)數(shù)x是0的數(shù),則可以表示為(,即a的整數(shù)部分只有一位,n為整數(shù))的形式,n的確定n=從左邊第一個(gè)0起到第一個(gè)不為0的數(shù)為止所有的0的個(gè)數(shù)的相反數(shù)。如0.000000125=
若一個(gè)數(shù)x是x>10的數(shù)則可以表示為(,即a的整數(shù)部分只有一位,n為整數(shù))的形式,n的確定n=比整數(shù)部分的數(shù)位的個(gè)數(shù)少1。如120 000 000=
知識(shí)點(diǎn)七分式方程的解的步驟
⑴去分母,把方程兩邊同乘以各分母的最簡(jiǎn)公分母。(產(chǎn)生增根的過(guò)程)
⑵解整式方程,得到整式方程的解。
、菣z驗(yàn),把所得的整式方程的解代入最簡(jiǎn)公分母中:
如果最簡(jiǎn)公分母為0,則原方程無(wú)解,這個(gè)未知數(shù)的值是原方程的增根;如果最簡(jiǎn)公分母不為0,則是原方程的解。
產(chǎn)生增根的條件是:①是得到的整式方程的解;②代入最簡(jiǎn)公分母后值為0。
知識(shí)點(diǎn)八列分式方程
基本步驟
、 審—仔細(xì)審題,找出等量關(guān)系。
② 設(shè)—合理設(shè)未知數(shù)。
、 列—根據(jù)等量關(guān)系列出方程(組)。
、 解—解出方程(組)。注意檢驗(yàn)
、 答—答題。
版權(quán)聲明:本文內(nèi)容由互聯(lián)網(wǎng)用戶自發(fā)貢獻(xiàn),該文觀點(diǎn)僅代表作者本人。本站僅提供信息存儲(chǔ)空間服務(wù),不擁有所有權(quán),不承擔(dān)相關(guān)法律責(zé)任。如發(fā)現(xiàn)本站有涉嫌抄襲侵權(quán)/違法違規(guī)的內(nèi)容, 請(qǐng)發(fā)送郵件至 yyfangchan@163.com (舉報(bào)時(shí)請(qǐng)帶上具體的網(wǎng)址) 舉報(bào),一經(jīng)查實(shí),本站將立刻刪除