直線與方程知識點總結
直線與方程知識點總結
大家在數(shù)學中的直線與方程知識能拿到多少分呢?下面以下直線與方程知識是小編為大家精心整理的直線與方程知識點總結,歡迎大家閱讀。
直線與方程知識點總結
(1)直線的傾斜角
定義:x軸正向與直線向上方向之間所成的角叫直線的傾斜角。特別地,當直線與x軸平行或重合時,我們規(guī)定它的傾斜角為0度。因此,傾斜角的取值范圍是0°≤α<180°
(2)直線的斜率
、俣x:傾斜角不是90°的直線,它的傾斜角的正切叫做這條直線的斜率。直線的斜率常用k表示。即 。斜率反映直線與軸的傾斜程度。
當 時, ; 當 時, ; 當 時, 不存在。
、谶^兩點的直線的斜率公式:
注意下面四點:(1)當 時,公式右邊無意義,直線的斜率不存在,傾斜角為90°;
(2)k與P1、P2的順序無關;(3)以后求斜率可不通過傾斜角而由直線上兩點的坐標直接求得;
(4)求直線的傾斜角可由直線上兩點的坐標先求斜率得到。
(3)直線方程
①點斜式: 直線斜率k,且過點
注意:當直線的斜率為0°時,k=0,直線的方程是y=y1。
當直線的斜率為90°時,直線的斜率不存在,它的方程不能用點斜式表示.但因l上每一點的橫坐標都等于x1,所以它的方程是x=x1。
、谛苯厥: ,直線斜率為k,直線在y軸上的截距為b
、蹆牲c式: ( )直線兩點 ,
④截矩式:
其中直線 與 軸交于點 ,與 軸交于點 ,即 與 軸、 軸的截距分別為 。
、菀话闶: (A,B不全為0)
注意:各式的適用范圍 特殊的方程如:
平行于x軸的`直線: (b為常數(shù)); 平行于y軸的直線: (a為常數(shù));
(5)直線系方程:即具有某一共同性質的直線
(一)平行直線系
平行于已知直線 ( 是不全為0的常數(shù))的直線系: (C為常數(shù))
(二)垂直直線系
垂直于已知直線 ( 是不全為0的常數(shù))的直線系: (C為常數(shù))
(三)過定點的直線系
(ⅰ)斜率為k的直線系: ,直線過定點 ;
(ⅱ)過兩條直線 , 的交點的直線系方程為
( 為參數(shù)),其中直線 不在直線系中。
(6)兩直線平行與垂直當 , 時,;
注意:利用斜率判斷直線的平行與垂直時,要注意斜率的存在與否。
(7)兩條直線的交點相交
交點坐標即方程組 的一組解。
方程組無解 ; 方程組有無數(shù)解 與 重合
(8)兩點間距離公式:設 是平面直角坐標系中的兩個點,
則
(9)點到直線距離公式:一點 到直線 的距離
(10)兩平行直線距離公式
在任一直線上任取一點,再轉化為點到直線的距離進行求解。
版權聲明:本文內容由互聯(lián)網(wǎng)用戶自發(fā)貢獻,該文觀點僅代表作者本人。本站僅提供信息存儲空間服務,不擁有所有權,不承擔相關法律責任。如發(fā)現(xiàn)本站有涉嫌抄襲侵權/違法違規(guī)的內容, 請發(fā)送郵件至 yyfangchan@163.com (舉報時請帶上具體的網(wǎng)址) 舉報,一經(jīng)查實,本站將立刻刪除