《恒等變形》中考奧數(shù)知識點整理
第1篇:《恒等變形》中考奧數(shù)知識點整理
恒等概念是對兩個代數(shù)式而言,如果兩個代數(shù)式里的字母換成任意的數(shù)值,這兩個代數(shù)式的值都相等,就說這兩個代數(shù)式恒等.
表示兩個代數(shù)式恒等的等式叫做恒等式.
如:a+b=b+a;2x+5x=7x都是恒等式.而t2+6=5t,x+7=4都不是恒等式.以前學(xué)過的運算律都是恒等式.
將一個代數(shù)式換成另一個和它恒等的代數(shù)式,叫做恒等變形(或恒等變換).
以恒等變形的意義來看,它不過是將一個代數(shù)式,從一種形式變?yōu)榱硪环N形式,但有一個條件,要求變形前和變形后的兩個代數(shù)式是恒等的,就是“形”變“值”不變.
如何判斷一個等式是否是恒等式,通常有以下兩種判斷多項式恒等的方法.
1.如果兩個多項式的同次項的系數(shù)都相等,那么這兩個多項式是恒等的.
如2x2+3x-4和3x-4+2x2當然恒等,因為這兩個多項式就是同一個.
反之,如果兩個多項式恒等,那么它們的同次項的系數(shù)也都相等(兩個多項的常數(shù)項也看作是同次項).
2.通過一系列的恒等變形,*兩個多項式是恒等的.
如:如果ax2+bx+c=px2+qx+r是恒等式,那么必有:a=p,b=q,c=r
例:求b、c的值,使下面的恒等成立.
x2+3x+2=(x-1)2+b(x-1)+c①
解一:∵①是恒等式,對x的任意數(shù)值,等式都成立
設(shè)x=1,代入①,得
12+3×1+2=(1-1)2+b(1-1)+c
c=6
再設(shè)x=2,代入①,由于已得c=6,故有
22+3×2+2=(2-1)2+b(2-1)+6
b=5
∴x2+3x+2=(x-1)2+5(x-1)+6
解二:將右邊展開x2+3x+2
=(x-1)2+b(x-1)+c
=x2-2x+1+bx-b+c=x2+(b-2)x+(1-b+c)比較兩邊同次項的系數(shù),
得由②得b=5將b=5代入③得1-5+c=2c=6
∴x2+3x+2=(x-1)2+5(x-1)+6這個問題為依照x-1的冪展開多項式x2+3x+2,
這個解題方法叫做待定系數(shù)法,它是先假定一個恒等式,其中含有待定的系數(shù),如上例的b、c,然后根據(jù)恒等的意義或*質(zhì)
列出b、c應(yīng)適合的條件,
然后求出待定系數(shù)值.
第2篇:初中奧數(shù)恒等變形知識點匯總整理
恒等概念是對兩個代數(shù)式而言,如果兩個代數(shù)式里的字母換成任意的數(shù)值,這兩個代數(shù)式的值都相等,就說這兩個代數(shù)式恒等.
表示兩個代數(shù)式恒等的等式叫做恒等式.
如:a+b=b+a;2x+5x=7x都是恒等式.而t2+6=5t,x+7=4都不是恒等式.以前學(xué)過的運算律都是恒等式.
將一個代數(shù)式換成另一個和它恒等的代數(shù)式,叫做恒等變形(或恒等變換).
以恒等變形的意義來看,它不過是將一個代數(shù)式,從一種形式變?yōu)榱硪环N形式,但有一個條件,要求變形前和變形后的兩個代數(shù)式是恒等的,就是“形”變“值”不變.
如何判斷一個等式是否是恒等式,通常有以下兩種判斷多項式恒等的方法.
1.如果兩個多項式的同次項的系數(shù)都相等,那么這兩個多項式是恒等的.
如2x2+3x-4和3x-4+2x2當然恒等,因為這兩個多項式就是同一個.
反之,如果兩個多項式恒等,那么它們的同次項的系數(shù)也都相等(兩個多項的常數(shù)項也看作是同次項).
2.通過一系列的恒等變形,*兩個多項式是恒等的.
如:如果ax2+bx+c=px2+qx+r是恒等式,那么必有:a=p,b=q,c=r
例:求b、c的值,使下面的恒等成立.
x2+3x+2=(x-1)2+b(x-1)+c①
解一:∵①是恒等式,對x的任意數(shù)值,等式都成立
設(shè)x=1,代入①,得
12+3×1+2=(1-1)2+b(1-1)+c
c=6
再設(shè)x=2,代入①,由于已得c=6,故有
22+3×2+2=(2-1)2+b(2-1)+6
b=5
∴x2+3x+2=(x-1)2+5(x-1)+6
解二:將右邊展開
x2+3x+2=(x-1)2+b(x-1)+c
=x2-2x+1+bx-b+c
=x2+(b-2)x+(1-b+c)
比較兩邊同次項的系數(shù),得
由②得b=5
將b=5代入③得
1-5+c=2
c=6
∴x2+3x+2=(x-1)2+5(x-1)+6
這個問題為依照x-1的冪展開多項式x2+3x+2,這個解題方法叫做待定系數(shù)法,它是先假定一個恒等式,其中含有待定的系數(shù),如上例的b、c,然后根據(jù)恒等的意義或*質(zhì),列出b、c應(yīng)適合的條件,然后求出待定系數(shù)值.
第3篇:中考數(shù)學(xué)知識點整理
知識點1:一元二次方程的基本概念
1.一元二次方程3x2+5x-2=0的常數(shù)項是-2.
2.一元二次方程3x2+4x-2=0的一次項系數(shù)為4,常數(shù)項是-2.
3.一元二次方程3x2-5x-7=0的二次項系數(shù)為3,常數(shù)項是-7.
4.把方程3x(x-1)-2=-4x化為一般式為3x2-x-2=0.
知識點2:直角坐標系與點的位置
1.直角坐標系中,點a(3,0)在y軸上。
2.直角坐標系中,x軸上的任意點的橫坐標為0.
3.直角坐標系中,點a(1,1)在第一象限。
4.直角坐標系中,點a(-2,3)在第四象限。
5.直角坐標系中,點a(-2,1)在第二象限。
知識點3:已知自變量的值求函數(shù)值
1.當x=2時,函數(shù)y=的值為1.
2.當x=3時,函數(shù)y=的值為1.
3.當x=-1時,函數(shù)y=的值為1.
知識點4:基本函數(shù)的概念及*質(zhì)
1.函數(shù)y=-8x是一次函數(shù)。
2.函數(shù)y=4x+1是正比例函數(shù)。
3.函數(shù)是反比例函數(shù)。
4.拋物線y=-3(x-2)2-5的開口向下。
5.拋物線y=4(x-3)2-10的對稱軸是x=3.
6.拋物線的頂點坐標是(1,2)。
7.反比例函數(shù)的圖象在第一、三象限。
知識點5:數(shù)據(jù)的平均數(shù)中位數(shù)與眾數(shù)
1.數(shù)據(jù)13,10,12,8,7的平均數(shù)是10.
2.數(shù)據(jù)3,4,2,4,4的眾數(shù)是4.
3.數(shù)據(jù)1,2,3,4,5的中位數(shù)是3.
知識點6:特殊三角函數(shù)值
1.cos30°=。
2.sin260°+cos260°=1.
3.2sin30°+tan45°=2.
4.tan45°=1.
5.cos60°+sin30°=1.
知識點7:圓的基本*質(zhì)
1.半圓或直徑所對的圓周角是直角。
2.任意一個三角形一定有一個外接圓。
3.在同一平面內(nèi),到定點的距離等于定長的點的軌跡,是以定點為圓心,定長為半徑的圓。
4.在同圓或等圓中,相等的圓心角所對的弧相等。
5.同弧所對的圓周角等于圓心角的一半。
6.同圓或等圓的半徑相等。
7.過三個點一定可以作一個圓。
8.長度相等的兩條弧是等弧。
9.在同圓或等圓中,相等的圓心角所對的弧相等。
10.經(jīng)過圓心平分弦的直徑垂直于弦。
知識點8:直線與圓的位置關(guān)系
1.直線與圓有唯一公共點時,叫做直線與圓相切。
2.三角形的外接圓的圓心叫做三角形的外心。
3.弦切角等于所夾的弧所對的圓心角。
4.三角形的內(nèi)切圓的圓心叫做三角形的內(nèi)心。
5.垂直于半徑的直線必為圓的切線。
6.過半徑的外端點并且垂直于半徑的直線是圓的切線。
7.垂直于半徑的直線是圓的切線。
8.圓的切線垂直于過切點的半徑。
版權(quán)聲明:本文內(nèi)容由互聯(lián)網(wǎng)用戶自發(fā)貢獻,該文觀點僅代表作者本人。本站僅提供信息存儲空間服務(wù),不擁有所有權(quán),不承擔相關(guān)法律責任。如發(fā)現(xiàn)本站有涉嫌抄襲侵權(quán)/違法違規(guī)的內(nèi)容, 請發(fā)送郵件至 yyfangchan@163.com (舉報時請帶上具體的網(wǎng)址) 舉報,一經(jīng)查實,本站將立刻刪除