7年級數(shù)學知識點總結(jié)
第1篇:7年級數(shù)學知識點總結(jié)
初中數(shù)學是一個整體,七年級數(shù)學的知識點很多,但都比較簡單,以下是小編為大家精心準備的:7年級數(shù)學知識點總結(jié)。歡迎參考閱讀!
1.1正數(shù)和負數(shù)
以前學過的0以外的數(shù)前面加上負號“-”的書叫做負數(shù)。
以前學過的0以外的數(shù)叫做正數(shù)。
數(shù)0既不是正數(shù)也不是負數(shù),0是正數(shù)與負數(shù)的分界。
在同一個問題中,分別用正數(shù)和負數(shù)表示的量具有相反的意義
1.2有理數(shù)
1.2.1有理數(shù)
正整數(shù)、0、負整數(shù)統(tǒng)稱整數(shù),正分數(shù)和負分數(shù)統(tǒng)稱分數(shù)。
整數(shù)和分數(shù)統(tǒng)稱有理數(shù)。
1.2.2數(shù)軸
規(guī)定了原點、正方向、單位長度的直線叫做數(shù)軸。
數(shù)軸的作用:所有的有理數(shù)都可以用數(shù)軸上的點來表達。
注意事項:⑴數(shù)軸的原點、正方向、單位長度三要素,缺一不可。
⑵同一根數(shù)軸,單位長度不能改變。
一般地,設(shè)是一個正數(shù),則數(shù)軸上表示a的點在原點的右邊,與原點的距離是a個單位長度;表示數(shù)-a的點在原點的左邊,與原點的距離是a個單位長度。
1.2.3相反數(shù)
只有符號不同的兩個數(shù)叫做互為相反數(shù)。
數(shù)軸上表示相反數(shù)的兩個點關(guān)于原點對稱。
在任意一個數(shù)前面添上“-”號,新的數(shù)就表示原數(shù)的相反數(shù)。
1.2.4絕對值
一般地,數(shù)軸上表示數(shù)a的點與原點的距離叫做數(shù)a的絕對值。
一個正數(shù)的絕對值是它的本身;一個負數(shù)的絕對值是它的相反數(shù);0的絕對值是0。
在數(shù)軸上表示有理數(shù),它們從左到右的順序,就是從小到大的順序,即左邊的數(shù)小于右邊的數(shù)。
比較有理數(shù)的大小:⑴正數(shù)大于0,0大于負數(shù),正數(shù)大于負數(shù)。
⑵兩個負數(shù),絕對值大的反而小。
1.3有理數(shù)的加減法
1.3.1有理數(shù)的加法
有理數(shù)的加法法則:
⑴同號兩數(shù)相加,取相同的符號,并把絕對值相加。
⑵絕對值不相等的異號兩數(shù)相加,取絕對值較大的加數(shù)的符號,并用較大的絕對值減去較小的絕對值。互為相反數(shù)的兩個數(shù)相加得0。
⑶一個數(shù)同0相加,仍得這個數(shù)。
兩個數(shù)相加,交換加數(shù)的位置,和不變。
加法交換律:a+b=b+a
三個數(shù)相加,先把前面兩個數(shù)相加,或者先把后兩個數(shù)相加,和不變。
加法結(jié)合律:(a+b)+c=a+(b+c)
1.3.2有理數(shù)的減法
有理數(shù)的減法可以轉(zhuǎn)化為加法來進行。
有理數(shù)減法法則:
減去一個數(shù),等于加這個數(shù)的相反數(shù)。
a-b=a+(-b)
1.4有理數(shù)的乘除法
1.4.1有理數(shù)的乘法
有理數(shù)乘法法則:
兩數(shù)相乘,同號得正,異號得負,并把絕對值相乘。
任何數(shù)同0相乘,都得0。
乘積是1的兩個數(shù)互為倒數(shù)。
幾個不是0的數(shù)相乘,負因數(shù)的個數(shù)是偶數(shù)時,積是正數(shù);負因數(shù)的個數(shù)是奇數(shù)時,積是負數(shù)。
兩個數(shù)相乘,交換因數(shù)的位置,積相等。
ab=ba
三個數(shù)相乘,先把前兩個數(shù)相乘,或者先把后兩個數(shù)相乘,積相等。
(ab)c=a(bc)
一個數(shù)同兩個數(shù)的和相乘,等于把這個數(shù)分別同這兩個數(shù)相乘,再把積相加。
a(b+c)=ab+ac
數(shù)字與字母相乘的書寫規(guī)范:
⑴數(shù)字與字母相乘,乘號要省略,或用“”
⑵數(shù)字與字母相乘,當系數(shù)是1或-1時,1要省略不寫。
⑶帶分數(shù)與字母相乘,帶分數(shù)應(yīng)當化成假分數(shù)。
用字母x表示任意一個有理數(shù),2與x的乘積記為2x,3與x的乘積記為3x,則式子2x+3x是2x與3x的和,2x與3x叫做這個式子的項,2和3分別是著兩項的系數(shù)。
一般地,合并含有相同字母因數(shù)的式子時,只需將它們的系數(shù)合并,所得結(jié)果作為系數(shù),再乘字母因數(shù),即
ax+bx=(a+b)x
上式中x是字母因數(shù),a與b分別是ax與bx這兩項的系數(shù)。
去括號法則:
括號前是“+”,把括號和括號前的“+”去掉,括號里各項都不改變符號。
括號前是“-”,把括號和括號前的“-”去掉,括號里各項都改變符號。
括號外的因數(shù)是正數(shù),去括號后式子各項的符號與原括號內(nèi)式子相應(yīng)各項的符號相同;括號外的因數(shù)是負數(shù),去括號后式子各項的符號與原括號內(nèi)式子相應(yīng)各項的符號相反。
1.4.2有理數(shù)的除法
有理數(shù)除法法則:
除以一個不等于0的數(shù),等于乘這個數(shù)的倒數(shù)。
a÷b=a(b≠0)
兩數(shù)相除,同號得正,異號得負,并把絕對值相除。0除以任何一個不等于0的數(shù),都得0。
因為有理數(shù)的除法可以化為乘法,所以可以利用乘法的運算*質(zhì)簡化運算。乘除混合運算往往先將除法化成乘法,然后確定積的符號,最后求出結(jié)果。
1.5有理數(shù)的乘方
1.5.1乘方
求n個相同因數(shù)的積的運算,叫做乘方,乘方的結(jié)果叫做冪。在an中,a叫做底數(shù),n叫做指數(shù),當an看作a的n次方的結(jié)果時,也可以讀作a的n次冪。
負數(shù)的奇次冪是負數(shù),負數(shù)的偶次冪是正數(shù)。
正數(shù)的任何次冪都是正數(shù),0的任何正整數(shù)次冪都是0。
有理數(shù)混合運算的運算順序:
⑴先乘方,再乘除,最后加減;
⑵同級運算,從左到右進行;
⑶如有括號,先做括號內(nèi)的運算,按小括號、中括號、大括號依次進行
1.5.2科學記數(shù)法
把一個大于10的數(shù)表示成a×10n的形式(其中a是整數(shù)數(shù)位只有一位的數(shù),n是正整數(shù)),使用的是科學記數(shù)法。
用科學記數(shù)法表示一個n位整數(shù),其中10的指數(shù)是n-1。
1.5.3近似數(shù)和有效數(shù)字
接近實際數(shù)目,但與實際數(shù)目還有差別的數(shù)叫做近似數(shù)。
精確度:一個近似數(shù)四舍五入到哪一位,就說精確到哪一位。
從一個數(shù)的左邊第一個非0數(shù)字起,到末位數(shù)字止,所有數(shù)字都是這個數(shù)的有效數(shù)字。
對于用科學記數(shù)法表示的數(shù)a×10n,規(guī)定它的有效數(shù)字就是a中的有效數(shù)字。
2.1從算式到方程
2.1.1一元一次方程
含有未知數(shù)的等式叫做方程。
只含有一個未知數(shù)(元),未知數(shù)的指數(shù)都是1(次),這樣的方程叫做一元一次方程。
分析實際問題中的數(shù)量關(guān)系,利用其中的相等關(guān)系列出方程,是數(shù)學解決實際問題的一種方法。
解方程就是求出使方程中等號左右兩邊相等的未知數(shù)的值,這個值就是方程的解。
2.1.2等式的*質(zhì)
等式的*質(zhì)1等式兩邊加(或減)同一個數(shù)(或式子),結(jié)果仍相等。
等式的*質(zhì)2等式兩邊乘同一個數(shù),或除以同一個不為0的數(shù),結(jié)果仍相等。
2.2從古老的代數(shù)書說起——一元一次方程的討論⑴
把等式一邊的某項變號后移到另一邊,叫做移項。
2.3從“買布問題”說起——一元一次方程的討論⑵
方程中有帶括號的式子時,去括號的方法與有理數(shù)運算中括號類似。
解方程就是要求出其中的未知數(shù)(例如x),通過去分母、去括號、移項、合并、系數(shù)化為1等步驟,就可以使一元一次方程逐步向著x=a的形式轉(zhuǎn)化,這個過程主要依據(jù)等式的*質(zhì)和運算律等。
去分母:
⑴具體做法:方程兩邊都乘各分母的最小公倍數(shù)
⑵依據(jù):等式*質(zhì)2
⑶注意事項:①分子打上括號
②不含分母的項也要乘
2.4再探實際問題與一元一次方程
第2篇:7年級下冊數(shù)學知識點
七年級的數(shù)學知識并不難學,都是比較基礎(chǔ)的知識,將課本知識學透徹,理解好,考試就不會覺得難。下面是百分網(wǎng)小編為大家整理的7年級下冊數(shù)學知識點,希望對大家有用!
相交線與平行線
一、相交線兩條直線相交,形成4個角。
1.鄰補角:兩個角有一條公共邊,它們的另一條邊互為反向延長線。具有這種關(guān)系的兩個角,互為鄰補角。如:∠1、∠2。
2.對頂角:兩個角有一個公共頂點,并且一個角的兩條
邊,分別是另一個角的兩條邊的反向延長線,具有這種
關(guān)系的兩個角,互為對頂角。如:∠1、∠3。
3.對頂角相等。
二、垂線
1.垂直:如果兩條直線相交成直角,那么這兩條直線互相垂直。
2.垂線:垂直是相交的一種特殊情形,兩條直線垂直,其中一條直線叫做另一條直線的垂線。
3.垂足:兩條垂線的交點叫垂足。
4.垂線特點:過一點有且只有一條直線與已知直線垂直。
5.點到直線的距離:直線外一點到這條直線的垂線段的長度,叫點到直線的距離。連接直線外一點與直線上各點的所有線段中,垂線段最短。
三、同位角、內(nèi)錯角、同旁內(nèi)角兩條直線被第三條直線所截形成8個角。
1.同位角:在兩條直線的上方,又在直線ef的同側(cè),具有這種位置關(guān)系的兩個角叫同位角。如:∠1和∠5。
2.內(nèi)錯角:在在兩條直線之間,又在直線ef的兩側(cè),具有這種位置關(guān)系的兩個角叫內(nèi)錯角。如:∠3和∠5。
3.同旁內(nèi)角:在在兩條直線之間,又在直線ef的同側(cè),
具有這種位置關(guān)系的兩個角叫同旁內(nèi)角。如:∠3和∠6。
四、平行線
(一)平行線
1.平行:兩條直線不相交;ハ嗥叫械膬蓷l直線,互為平行線。a∥b(在同一平面內(nèi),不相交的兩條直線叫做平行線。)
2.平行公理:經(jīng)過直線外一點,有且只有一條直線與這條直線平行。
3.平行公理推論:①平行于同一直線的兩條直線互相平行。②在同一平面內(nèi),垂直于同一直線的兩條直線互相平行。
(二)平行線的判定:
1.同位角相等,兩直線平行。
2.內(nèi)錯角相等,兩直線平行。
3.同旁內(nèi)角互補,兩直線平行。
(三)平行線的*質(zhì)
1.兩條平行線被第三條直線所截,同位角相等。
2.兩條平行線被第三條直線所截,內(nèi)錯角相等。
3.兩條平行線被第三條直線所截,同旁內(nèi)角互補。
4.兩條平行線被第三條直線所截,外錯角相等。
以上*質(zhì)可簡單說成:
1.兩條直線平行,同位角相等。
2.兩條直線平行,內(nèi)錯角相等。
3.兩條直線平行,同旁內(nèi)角互補。
一、平面直角坐標系
(一)有序數(shù)對
1.有序數(shù)對
用兩個數(shù)來表示一個確定個位置,其中兩個數(shù)各自表示不同的意義,我們把這種有順序的兩個數(shù)組成的數(shù)對,叫做有序數(shù)對,記作(a,b)
2.坐標:數(shù)軸(或平面)上的點可以用一個數(shù)(或數(shù)對)來表示,這個數(shù)(或數(shù)對)叫做這個點的坐標。
(二)平面直角坐標系
1.平面直角坐標系:在平面內(nèi)畫兩條互相垂直,并且有公共原點的數(shù)軸。這樣我們就說在平面上建立了平面直角坐標系,簡稱直角坐標系。
2.x軸:水平的數(shù)軸叫x軸或橫軸。向右方向為正方向。
3.y軸:豎直的數(shù)軸叫y軸或縱軸。向上方向為正方向。
4.原點:兩個數(shù)軸的交點叫做平面直角坐標系的原點。
5.在平面直角坐標系中對稱點的特點:
①關(guān)于x成軸對稱的點的坐標,橫坐標相同,縱坐標互為相反數(shù)。②關(guān)于y成軸對稱的點的坐標,縱坐標相同,橫坐標互為相反數(shù)。③關(guān)于原點成中心對稱的點的坐標,橫坐標與橫坐標互為相反數(shù),縱坐標與縱坐標互為相反數(shù)。
(三)象限
1.象限:x軸和y軸把坐標平面分成四個部分,也叫四個象限。右上面的叫做第一象限,其他三個部分按逆時針方向依次叫做第二象限、第三象限和第四象限。象限以數(shù)軸為界,橫軸、縱軸上的點及原點不屬于任何象限。一般,在x軸和y軸取相同的單位長度。
2.象限的特點:
①特殊位置的點的坐標的特點:
(1).x軸上的點的縱坐標為零;y軸上的點的橫坐標為零。
(2).第一、三象限角平分線上的點橫、縱坐標相等;第二、四象限角平分線上的點橫、縱坐標互為相反數(shù)。
(3).在任意的兩點中,如果兩點的橫坐標相同,則兩點的連線平行于縱軸;如果兩點的縱坐標相同,則兩點的連線平行于橫軸。②點到軸及原點的距離:
點到x軸的距離為|y|;
點到y(tǒng)軸的距離為|x|;
點到原點的距離為x的平方加y的平方再開根號;
③各象限內(nèi)和坐標軸上的點和坐標的規(guī)律:
第一象限:(+,+)
第二象限:(-,+)
第三象限:(-,-)
第四象限:(+,-)。
x軸正方向:(+,0)
x軸負方向:(-,0)
y軸正方向:(0,+)
y軸負方向:(0,-)。
坐標原點:(0,0)
x軸上的點縱坐標為0,
y軸橫坐標為0。
三角形
7.1與三角形有關(guān)的線段
1.三角形的定:由不在同一直線上的三條線段首尾順次連接所組成的封閉圖形叫做三角形。記作:△abc
2.三角形三邊的關(guān)系:兩邊之和大于第三邊。三角形的兩邊的差一定小于第三邊。
7.1.2三角形的高、中線與角平分線
1.高:從三角形的頂點向它所對的邊做垂線,所得的線段叫三角形這個邊上的高。
2.中線:連接項點和它所對的邊的中點,所得的線段叫三角形這個邊上的中線。
3.角平分線:三角形一個頂角的平分線與它所對的邊相交,所得的線段叫三角形的角平分線。
7.1.3三角形的穩(wěn)定*
三角形具有穩(wěn)定*,四邊形沒有穩(wěn)定*。
7.2與三角形有關(guān)的角
1.內(nèi)角:三角形的內(nèi)角和等于180。。
2.外角:三角形一邊與另一邊的延長線組成的角叫三角形的外角。①三角形一個外角等于與它不相鄰的兩個內(nèi)角的和。
②三角形一個外角大于與它不相鄰的任何一個內(nèi)角。
7.3多邊形及其內(nèi)角和
1.多邊形:由有一些線段首位順次相接組成的圖形叫做多邊形
2.多邊形內(nèi)角:多邊形相鄰兩邊組成的角叫做它的內(nèi)角,
3.外角:多邊形的邊與它的鄰邊的延長線組成的角叫做多邊形的外角。
4.對角線:連接多邊形不相鄰的兩個頂點的線段,叫做多邊形的對
角線。
5.凸多邊形:畫出多邊形的任何一條邊所在的直線,如果整個多邊形都在這條直線的同一側(cè),那么這個多邊形就是凸多邊形,否則就是凹多邊形。
6.正多邊形各個角都相等,各條邊都相等的多邊形叫做正多邊形。
7.如果說四邊形的一對角互補,那么另一組角也互補。
8.多邊形的內(nèi)角和:n邊形的內(nèi)角和等于180°×(n-2);
9.多邊形的外角和等于360
(n邊形的邊=(內(nèi)角和÷180°)+2;過n邊形一個頂點有(n-3)條對角線;n邊形過一個頂點引出所有對角線后,把多邊形分成n-2個三角形)
1.7年級下冊數(shù)學期中試卷及*
2.7年級下冊數(shù)學期末試卷及*
3.七年級下冊數(shù)學期末試卷及*
4.北師版七年級下冊數(shù)學試卷
5.8年級下冊數(shù)學知識點
第3篇:六年級數(shù)學知識點總結(jié)
小學的數(shù)學相對來說是較為簡單的,但是小學數(shù)學也正是學習數(shù)學最重要的基礎(chǔ),以下是小編為大家收集整理的六年級數(shù)學知識點總結(jié),希望大家喜歡!
一、分數(shù)乘法
(一)分數(shù)乘法的計算法則:
1、分數(shù)與整數(shù)相乘:分子與整數(shù)相乘的積做分子,分母不變。(整數(shù)和分母約分)
2、分數(shù)與分數(shù)相乘:用分子相乘的積做分子,分母相乘的積做分母。
3、為了計算簡便,能約分的要先約分,再計算。
注意:當帶分數(shù)進行乘法計算時,要先把帶分數(shù)化成假分數(shù)再進行計算。
(二)規(guī)律:(乘法中比較大小時)
一個數(shù)(0除外)乘大于1的數(shù),積大于這個數(shù)。
一個數(shù)(0除外)乘小于1的數(shù)(0除外),積小于這個數(shù)。
一個數(shù)(0除外)乘1,積等于這個數(shù)。
(三)分數(shù)混合運算的運算順序和整數(shù)的運算順序相同。
(四)整數(shù)乘法的交換律、結(jié)合律和分配律,對于分數(shù)乘法也同樣適用。
乘法交換律:a×b=b×a
乘法結(jié)合律:(a×b)×c=a×(b×c)
乘法分配律:(a+b)×c=ac+bcac+bc=(a+b)×c
二、分數(shù)乘法的解決問題(詳細見重難點分解)
(已知單位“1”的量(用乘法),求單位“1”的幾分之幾是多少)
1、找單位“1”:在分率句中分率的前面;或“占”、“是”、“比”的后面
2、求一個數(shù)的幾倍:一個數(shù)×幾倍;求一個數(shù)的幾分之幾是多少:一個數(shù)×。
3、寫數(shù)量關(guān)系式技巧:
(1)“的”相當于“×”(乘號)
“占”、“是”、“比”“相當于”相當于“=”(等號)
(2)分率前是“的”:
單位“1”的量×分率=分率對應(yīng)量
(3)分率前是“多或少”的意思:
單位“1”的量×(1±分率)=分率的對應(yīng)量
二、分數(shù)除法
(一)倒數(shù)
1、倒數(shù)的意義:乘積是1的兩個數(shù)互為倒數(shù)。
強調(diào):互為倒數(shù),即倒數(shù)是兩個數(shù)的關(guān)系,它們互相依存,倒數(shù)不能單獨存在。(要說清誰是誰的倒數(shù))。
2、求倒數(shù)的方法:(原數(shù)與倒數(shù)之間不要寫等號哦)
(1)求分數(shù)的倒數(shù):交換分子分母的位置。
(2)求整數(shù)的倒數(shù):把整數(shù)看做分母是1的分數(shù),再交換分子分母的位置。
(3)求帶分數(shù)的倒數(shù):把帶分數(shù)化為假分數(shù),再求倒數(shù)。
(4)求小數(shù)的倒數(shù):把小數(shù)化為分數(shù),再求倒數(shù)。
3、因為1×1=1,1的倒數(shù)是1;
因為找不到與0相乘得1的數(shù)0沒有倒數(shù)。
4、對于任意數(shù)a(a≠0),它的倒數(shù)為1/a;非零整數(shù)a的倒數(shù)為1/a;分數(shù)b/a的倒數(shù)是a/b;
5、真分數(shù)的倒數(shù)大于1;假分數(shù)的倒數(shù)小于或等于1;帶分數(shù)的倒數(shù)小于1。
(二)分數(shù)除法
1、分數(shù)除法的意義:
分數(shù)除法與整數(shù)除法的意義相同,表示已知兩個因數(shù)的積和其中一個因數(shù),求另一個因數(shù)的運算。
2、分數(shù)除法的計算法則:除以一個不為0的數(shù),等于乘這個數(shù)的倒數(shù)。
3、規(guī)律(分數(shù)除法比較大小時):
(1)當除數(shù)大于1,商小于被除數(shù);
(2)當除數(shù)小于1(不等于0),商大于被除數(shù);
(3)、當除數(shù)等于1,商等于被除數(shù)。
4、“[]”叫做中括號。一個算式里,如果既有小括號,又有中括號,要先算小括號里面的,再算中括號里面的。
(三)分數(shù)除法解決問題(詳細見重難點分解)
(未知單位“1”的量(用除法):已知單位“1”的幾分之幾是多少,求單位“1”的量。)
1、數(shù)量關(guān)系式和分數(shù)乘法解決問題中的關(guān)系式相同:
(1)分率前是“的”:
單位“1”的量×分率=分率對應(yīng)量
(2)分率前是“多或少”的意思:
單位“1”的量×(1分率)=分率對應(yīng)量
2、解法:(建議:最好用方程解答)
(1)方程:根據(jù)數(shù)量關(guān)系式設(shè)未知量為x,用方程解答。
(2)算術(shù)(用除法):分率對應(yīng)量÷對應(yīng)分率=單位“1”的量
3、求一個數(shù)是另一個數(shù)的幾分之幾:就用一個數(shù)÷另一個數(shù)
4、求一個數(shù)比另一個數(shù)多(少)幾分之幾:
①求多幾分之幾:大數(shù)÷小數(shù)?1
②求少幾分之幾:1-小數(shù)÷大數(shù)
或①求多幾分之幾(大數(shù)-小數(shù))÷小數(shù)
②求少幾分之幾:(大數(shù)-小數(shù))÷大數(shù)
(四)比和比的應(yīng)用
1、比的意義:兩個數(shù)相除又叫做兩個數(shù)的比。
2、在兩個數(shù)的比中,比號前面的數(shù)叫做比的前項,比號后面的數(shù)叫做比的后項。比的前項除以后項所得的商,叫做比值(比值通常用分數(shù)表示,也可以用小數(shù)或整數(shù)表示)。
例如
15:10=15÷10=1.5
∶∶∶∶
前項比號后項比值
3、比可以表示兩個相同量的關(guān)系,即倍數(shù)關(guān)系。也可以表示兩個不同量的比,得到一個新量。
例:路程÷速度=時間。
4、區(qū)分比和比值
比:表示兩個數(shù)的關(guān)系,可以寫成比的形式,也可以用分數(shù)表示。
比值:相當于商,是一個數(shù),可以是整數(shù),分數(shù),也可以是小數(shù)。
5、根據(jù)分數(shù)與除法的關(guān)系,兩個數(shù)的比也可以寫成分數(shù)形式。
6、比和除法、分數(shù)的聯(lián)系:
7、比和除法、分數(shù)的區(qū)別:除法是一種運算,分數(shù)是一個數(shù),比表示兩個數(shù)的關(guān)系。
8、根據(jù)比與除法、分數(shù)的關(guān)系,可以理解比的后項不能為0。
體育比賽中出現(xiàn)兩隊的分是2:0等,這只是一種記分的形式,不表示兩個數(shù)相除的關(guān)系。
(五)比的基本*質(zhì)
1、根據(jù)比、除法、分數(shù)的關(guān)系:
商不變的*質(zhì):被除數(shù)和除數(shù)同時乘或除以相同的數(shù)(0除外),商不變。
分數(shù)的基本*質(zhì):分數(shù)的分子和分母同時乘或除以相同的數(shù)時(0除外),分數(shù)值不變。
比的基本*質(zhì):比的前項和后項同時乘或除以相同的數(shù)(0除外),比值不變。
2、最簡整數(shù)比:比的前項和后項都是整數(shù),并且是互質(zhì)數(shù),這樣的比就是最簡整數(shù)比。
3、根據(jù)比的基本*質(zhì),可以把比化成最簡單的整數(shù)比。
4.化簡比:
(1)用比的基本*質(zhì)化簡
①用比的前項和后項同時除以它們的最大公因數(shù)。
②兩個分數(shù)的比:用前項后項同時乘分母的最小公倍數(shù),再按化簡整數(shù)比的方法來化簡。
③兩個小數(shù)的比:向右移動小數(shù)點的位置,先化成整數(shù)比再化簡。
(2)用求比值的方法。注意:最后結(jié)果要寫成比的形式。
5.按比例分配:把一個數(shù)量按照一定的比來進行分配。這種方法通常叫做按比例分配。
如:已知兩個量之比為,則設(shè)這兩個量分別為。
6、路程一定,速度比和時間比成反比。(如:路程相同,速度比是4:5,時間比則為5:4)
工作總量一定,工作效率和工作時間成反比。
(如:工作總量相同,工作時間比是3:2,工作效率比則是2:3)
三、百分數(shù)
(一)百分數(shù)的意義和寫法
1、百分數(shù)的意義:表示一個數(shù)是另一個數(shù)的百分之幾。
百分數(shù)是指的兩個數(shù)的比,因此也叫百分率或百分比。
2、百分數(shù)和分數(shù)的主要聯(lián)系與區(qū)別:
(1)聯(lián)系:都可以表示兩個量的倍比關(guān)系。
(2)區(qū)別:
①意義不同:百分數(shù)只表示兩個數(shù)的倍比關(guān)系,不能表示具體的數(shù)量,所以不能帶單位;
分數(shù)既可以表示具體的數(shù),又可以表示兩個數(shù)的關(guān)系,表示具本數(shù)時可以帶單位。
②、百分數(shù)的分子可以是整數(shù),也可以是小數(shù);
分數(shù)的分子不能是小數(shù),只能是除0以外的自然數(shù)。
3、百分數(shù)的寫法:通常不寫成分數(shù)形式,而在原來分子后面加上“%”來表示。
(二)百分數(shù)與小數(shù)的互化:
1、小數(shù)化成百分數(shù):把小數(shù)點向右移動兩位,同時在后面添上百分號。
2.百分數(shù)化成小數(shù):把小數(shù)點向左移動兩位,同時去掉百分號。
(三)百分數(shù)的和分數(shù)的互化
1、百分數(shù)化成分數(shù):
先把百分數(shù)化成分數(shù),先把百分數(shù)改寫成分母是否100的分數(shù),能約分要約成最簡分數(shù)。
2、分數(shù)化成百分數(shù):
①用分數(shù)的基本*質(zhì),把分數(shù)分母擴大或縮小成分母是100的分數(shù),再寫成百分數(shù)形式。
②先把分數(shù)化成小數(shù)(除不盡時,通常保留三位小數(shù)),再把小數(shù)化成百分數(shù)。
版權(quán)聲明:本文內(nèi)容由互聯(lián)網(wǎng)用戶自發(fā)貢獻,該文觀點僅代表作者本人。本站僅提供信息存儲空間服務(wù),不擁有所有權(quán),不承擔相關(guān)法律責任。如發(fā)現(xiàn)本站有涉嫌抄襲侵權(quán)/違法違規(guī)的內(nèi)容, 請發(fā)送郵件至 yyfangchan@163.com (舉報時請帶上具體的網(wǎng)址) 舉報,一經(jīng)查實,本站將立刻刪除