《圓錐的體積》教學(xué)設(shè)計(jì)(通用10篇)
《圓錐的體積》教學(xué)設(shè)計(jì)(通用10篇)
作為一名人民教師,就有可能用到教學(xué)設(shè)計(jì),借助教學(xué)設(shè)計(jì)可以更好地組織教學(xué)活動(dòng)。那么應(yīng)當(dāng)如何寫教學(xué)設(shè)計(jì)呢?以下是小編精心整理的《圓錐的體積》教學(xué)設(shè)計(jì),希望對(duì)大家有所幫助。
《圓錐的體積》教學(xué)設(shè)計(jì)1
教學(xué)內(nèi)容:
小學(xué)數(shù)學(xué)人教版第12冊(cè)42頁(yè)—43頁(yè)
教學(xué)目標(biāo):
1.通過(guò)動(dòng)手操作實(shí)驗(yàn),推導(dǎo)出圓錐體體積的計(jì)算方法,并能運(yùn)用公式計(jì)算圓錐體的體積。
2.通過(guò)學(xué)生動(dòng)腦、動(dòng)手,培養(yǎng)學(xué)生的思維能力和空間想象能力。
3、培養(yǎng)學(xué)生個(gè)人的自主學(xué)習(xí)能力和小組合作學(xué)習(xí)的能力。
教學(xué)重點(diǎn)和難點(diǎn):
掌握?qǐng)A錐體體積公式的推導(dǎo)。
教具準(zhǔn)備:
1、等底等高的圓柱體和圓錐體6套,大小不同的圓柱體和圓錐體6套、水槽6套。
2、多媒體課件設(shè)計(jì)。
教學(xué)過(guò)程設(shè)計(jì) (一)復(fù)習(xí)準(zhǔn)備:
1.怎樣計(jì)算圓柱的體積?(板書:圓柱體的體積=底面積×高)
2.一個(gè)圓柱的底面積是60平方分米,高15分米,它的體積是多少立方分米?
3.圓錐有什么特征?
學(xué)生回答后,教師用課件演示:屏摹上顯示一個(gè)圓錐體,將它的底面、側(cè)面、高和頂點(diǎn)閃爍。
。ǘ⿲(dǎo)入新課
今天我們就利用這些知識(shí)探討新的問題-----怎樣計(jì)算圓錐的體積(板書課題)
。ㄈ┻M(jìn)行新課
探討圓錐的體積公式
教師:怎樣探討圓錐的體積計(jì)算公式呢?在回答這個(gè)問題之前,請(qǐng)同學(xué)們先想一想,我們是怎樣知道圓柱體積公式的:
學(xué)生回答,教師板書:圓柱------(轉(zhuǎn)化)------長(zhǎng)方體圓柱體積公式--------(推導(dǎo))長(zhǎng)方體體積公式
教師:借鑒這種方法,為了我們研究圓錐體體積的方便,每個(gè)組都準(zhǔn)備了一個(gè)圓柱體和一個(gè)圓錐體。你們小組比比看,這兩個(gè)形體有什么相同的地方?學(xué)生操作比較。
。1)提問學(xué)生:你發(fā)現(xiàn)到什么?(這個(gè)圓柱體和這個(gè)圓錐體的形狀有什么關(guān)系)
(學(xué)生得出:底面積相等,高也相等。)底面積相等,高也相等,用數(shù)學(xué)語(yǔ)言說(shuō)就叫“等底等高”。(板書:等底等高)
(2)為什么?既然這兩個(gè)形體是等底等高的,那么我們就跟求圓柱體體積一樣,就用“底面積×高”來(lái)求圓錐體體積行不行?(不行,因?yàn)閳A錐體的體積小)
教師:(把圓錐體套在透明的圓柱體里)是啊,圓錐體的體積小,那你估計(jì)一下這兩個(gè)形體的體積大小有什么樣的倍數(shù)關(guān)系?(指名發(fā)言)
的水和圓柱體、圓錐體做實(shí)驗(yàn)。怎樣做這個(gè)實(shí)驗(yàn)由小組同學(xué)自己商量,但最后要向同學(xué)們匯報(bào),你們組做實(shí)驗(yàn)的圓柱體和圓錐體在體積大小上有什么樣的倍數(shù)關(guān)系。
。3)學(xué)生分組做實(shí)驗(yàn)。
a.誰(shuí)來(lái)匯報(bào)一下,你們組是怎樣做實(shí)驗(yàn)的?
b.你們做實(shí)驗(yàn)的圓柱體和圓錐體在體積大小上發(fā)現(xiàn)有什么倍數(shù)關(guān)系?
(學(xué)生發(fā)言:圓柱體的體積是圓錐體體積的3倍)
同學(xué)們得出這個(gè)結(jié)論非常重要,其他組也是這樣的嗎?
我們學(xué)過(guò)用字母表示數(shù),誰(shuí)來(lái)把這個(gè)公式整理一下?(指名發(fā)言)
(4)學(xué)生操作:出示另外一組大小不同的圓柱體和圓錐體進(jìn)行體積大小的比較,通過(guò)比較你發(fā)現(xiàn)什么?
學(xué)生回答后,教師整理歸納:不是任何一個(gè)圓錐體的體積都是任何一個(gè)圓柱體體積的。(老師拿起一個(gè)小圓錐、一個(gè)大圓柱)如果老師把這個(gè)大圓錐體里裝滿了水,往這個(gè)小圓柱體里倒,倒三次能倒?jié)M嗎?(不能)為什么你們做實(shí)驗(yàn)的圓錐體里裝滿了水往圓柱體里倒,倒三次能倒?jié)M呢?(因?yàn)槭堑鹊椎雀叩膱A柱體和圓錐體。)
(老師在體積公式與“等底等高”四個(gè)字上連線。)
現(xiàn)在我們得到的這個(gè)結(jié)論就更完整了。(指名反復(fù)敘述公式。)
今后我們求圓錐體體積就用這種方法來(lái)計(jì)算。
(三)鞏固反饋
1.例一個(gè)圓錐形的零件,底面積是19平方厘米,高是12厘米,這個(gè)零件的體積是多少?
A學(xué)生完成后,進(jìn)行小組交流。
B你是怎樣想的和怎樣解決問題。(提問學(xué)生多人)
2.練習(xí)題。
一個(gè)圓錐體,半徑為6cm,高為18cm。體積是多少?(學(xué)生在黑板上只列式,反饋。)
3、出示例2:要求學(xué)生自己讀題,理解題意思。
在打谷場(chǎng)上,有一個(gè)近似于圓錐形的小麥堆,測(cè)得底面直徑是4米,高是1.2米,每立方米小麥約重735千克,這堆小麥約有多少千克?(得數(shù)保留整千克)
。1)提問:從題目中你知道什么?
。2)學(xué)生獨(dú)立完成后教師提問。并回答同學(xué)的質(zhì)疑:3.14×()×1.2×表示什么?為什么要先求圓錐的體積?得數(shù)保留整千克數(shù)是什么意思?….
4、比較:例1和例2有什么地方不同?
。1)直接告訴了我們底面積,而(2)沒有直接告訴,要求我們先求出底面積,再求出圓錐體積;
(2)例1是直接求體積,例2是求出體積后再求重量。
我們已經(jīng)學(xué)會(huì)了求圓錐體的體積,現(xiàn)在我們來(lái)解決有關(guān)圓錐體體積的問題。
四、鞏固練習(xí):
1、一個(gè)圓錐形沙堆,高是1.5米,底面半徑是2米,每立方米沙重1.8噸。這堆沙約重多少噸?
2、選擇題。每道題下面有3個(gè)答案,你認(rèn)為哪個(gè)答案正確就用手指數(shù)表示。。
(1)一個(gè)圓錐體的體積是a立方米,和它等底等高的圓柱體體積是()
、帕⒎矫注3a立方米③9立方米
(2)把一段圓鋼切削成一個(gè)最大的圓錐體,圓柱體體積是6立方米,圓錐體體積是()立方米
。1)6立方米(2)3立方米(3)2立方米
2、學(xué)生操作:
看看我們的教室是什么體?(長(zhǎng)方體)
要在我們的教室里放一個(gè)盡可能大的圓錐體,想一想,怎樣放體積最大?(小組討論)
指名發(fā)言。當(dāng)爭(zhēng)論不出結(jié)果時(shí),讓學(xué)生以小組為單位動(dòng)手測(cè)量數(shù)據(jù):教室長(zhǎng)12m,寬6m,高4m。并板書出來(lái),再比較怎樣放體積最大的圓錐體。
五:這節(jié)課你有什么收獲? 六、作業(yè):
書本44頁(yè)第3、4、5。
《圓錐的體積》教學(xué)設(shè)計(jì)2
教材分析
本節(jié)課屬于空間與圖形知識(shí)的教學(xué),是小學(xué)階段幾何知識(shí)的重難點(diǎn)部分,是小學(xué)學(xué)習(xí)立體圖形體積計(jì)算的飛躍,通過(guò)這部分知識(shí)的教學(xué),可以發(fā)展學(xué)生的空間觀念、想象能力,較深入地理解幾何體體積推導(dǎo)方法的新領(lǐng)域,為學(xué)生進(jìn)一步學(xué)習(xí)幾何知識(shí)奠定良好的基礎(chǔ)。
本節(jié)內(nèi)容是在學(xué)生了解了圓錐的特征,掌握了圓柱體積的計(jì)算方法基礎(chǔ)上進(jìn)行教學(xué)的,教材重視類比,轉(zhuǎn)化思想的滲透,直觀引導(dǎo)學(xué)生經(jīng)歷“猜測(cè)、類比、觀察、實(shí)驗(yàn)、探究、推理、總結(jié)”的探索過(guò)程,理解掌握求圓錐體積的計(jì)算公式,會(huì)運(yùn)用公式計(jì)算圓錐的體積。這樣不僅幫助學(xué)生建立空間觀念,還能培養(yǎng)學(xué)生抽象的邏輯思維能力,激發(fā)學(xué)生的想象力.
設(shè)計(jì)理念
數(shù)學(xué)課程標(biāo)準(zhǔn)中指出:應(yīng)放手讓學(xué)生經(jīng)歷探索的過(guò)程,在觀察、操作、推理、歸納、總結(jié)過(guò)程中掌握知識(shí)、發(fā)展空間觀念,從而提高學(xué)生自主解決問題的能力。
教學(xué)目標(biāo)
1、知識(shí)與技能:掌握?qǐng)A錐的體積計(jì)算公式,能運(yùn)用公式求圓錐的體積,并且能運(yùn)用這一知識(shí)解決生活中一些簡(jiǎn)單的實(shí)際問題。
2、過(guò)程與方法:通過(guò)“直覺猜想——試驗(yàn)探索——合作交流——得出結(jié)論——實(shí)踐運(yùn)用”探索過(guò)程,獲得圓錐體積的推導(dǎo)過(guò)程和學(xué)習(xí)的方法。
3、情感、態(tài)度與價(jià)值觀:培養(yǎng)學(xué)生勇于探索的求知精神,感受到數(shù)學(xué)來(lái)源于生活,能積極參與數(shù)學(xué)活動(dòng),自覺養(yǎng)成與人合作交流與獨(dú)立思考的良好習(xí)慣。
教學(xué)重點(diǎn):
圓錐體積公式的理解,并能運(yùn)用公式求圓錐的體積。
教學(xué)難點(diǎn):
圓錐體積公式的推導(dǎo)
學(xué)情分析
學(xué)生已學(xué)習(xí)了圓柱的體積計(jì)算,在教學(xué)中采用放手讓學(xué)生操作、小組合作探討的形式,讓學(xué)生在研討中自主探索,發(fā)現(xiàn)問題并運(yùn)用學(xué)過(guò)的圓柱知識(shí)遷移到圓錐,得出結(jié)論。所以對(duì)于新的知識(shí)教學(xué),他們一定能表現(xiàn)出極大的熱情。
教法學(xué)法:
試驗(yàn)探究法、小組合作學(xué)習(xí)法
教具學(xué)具準(zhǔn)備:
多媒體課件,等底等高圓柱圓錐各6個(gè),水槽6個(gè)(裝有適量的水)
教學(xué)課時(shí):
1課時(shí)
教學(xué)流程
一、回顧舊知識(shí)
1、你能計(jì)算哪些規(guī)則物體的體積?
2、你能說(shuō)出圓錐各部分的名稱嗎?
設(shè)計(jì)意圖通過(guò)對(duì)舊知識(shí)的回顧,進(jìn)一步為學(xué)習(xí)新知識(shí)作好鋪墊。
二、創(chuàng)設(shè)情景、激發(fā)激情
展示磚工師傅使用的鉛錘體(圓錐),你能測(cè)試出它的體積嗎?
設(shè)計(jì)意圖以生活中的數(shù)學(xué)的形式進(jìn)行設(shè)置情景,引疑激趣遷移,激發(fā)學(xué)生好奇心和求知欲。(揭示課題:圓錐的體積)
三、試驗(yàn)探究、合作學(xué)習(xí)(探討圓柱與圓錐體積之間的關(guān)系)
探究一:(分組試驗(yàn))圓柱與圓錐的底和高各有什么關(guān)系?
1、猜想:猜想它們的底、高之間各有什么關(guān)系?
2、試驗(yàn)驗(yàn)證猜想:每組拿出圓柱、圓錐各1個(gè),分組試驗(yàn),試驗(yàn)后記錄結(jié)果。
3、小組匯報(bào)試驗(yàn)結(jié)論,集體評(píng)議。(注意匯報(bào)出試驗(yàn)步驟和結(jié)論)
4、教師介紹數(shù)學(xué)專用名詞:等底等高。
設(shè)計(jì)意圖通過(guò)探究一活動(dòng),初步突破了本課的難點(diǎn),為探究二活動(dòng)活動(dòng)開展作好了鋪墊。
探究二:(分組試驗(yàn))研討等底等高圓柱與圓錐的體積之間有什么關(guān)系?
1、大膽猜想:等底等高圓柱與圓錐體積之間的關(guān)系
2、試驗(yàn)驗(yàn)證猜想:每組拿出水槽(裝有適量的水),通過(guò)試驗(yàn),你發(fā)現(xiàn)了圓柱的體積和圓錐的體積有什么關(guān)系?邊試驗(yàn)邊記錄試驗(yàn)數(shù)據(jù)。(教師巡視指導(dǎo)每組的試驗(yàn))
3、小組匯報(bào)試驗(yàn)結(jié)論。(提醒學(xué)生匯報(bào)出試驗(yàn)步驟)
教學(xué)預(yù)設(shè):
(1)圓椎的體積是圓柱體積的3倍;
(2)圓錐的體積是圓柱體積的三分之一;
(3)當(dāng)?shù)鹊椎雀邥r(shí),圓柱體積是圓錐體積的3倍,或圓錐的體積是圓柱體積的三分之一等等。
4、通過(guò)學(xué)生匯報(bào)的試驗(yàn)結(jié)論,分析歸納總結(jié)試驗(yàn)結(jié)論。
5、你能用字母表示出它們的關(guān)系嗎?要求圓錐的體積必須知道什么條件呢?(學(xué)生反復(fù)朗讀公式)
設(shè)計(jì)意圖
通過(guò)學(xué)生分組試驗(yàn)探究,在實(shí)驗(yàn)過(guò)程中自主猜想、感知、驗(yàn)證、得出結(jié)論的過(guò)程,充分調(diào)動(dòng)學(xué)生主動(dòng)探索的意識(shí),激發(fā)了學(xué)生的求知欲,培養(yǎng)了學(xué)生的動(dòng)手能力,突破了本課的難點(diǎn),突出了教學(xué)的重點(diǎn)。
探究三:(伸展試驗(yàn)---演示試驗(yàn))研討不等底等高圓柱與圓錐題的體積是否具有三分之一的關(guān)系。
1、觀察老師的試驗(yàn),你發(fā)現(xiàn)了圓柱與圓錐的底和高各有什么關(guān)系?
2、觀察老師的試驗(yàn),你發(fā)現(xiàn)了不等底等高的圓柱與圓錐的體積之間還有三分之一的關(guān)系嗎?
3、學(xué)生通過(guò)觀看試驗(yàn)匯報(bào)結(jié)論。
4、教師引導(dǎo)學(xué)生分析歸納總結(jié)圓錐體積是圓柱體積的三分之一所存在的條件。
5、結(jié)合探究二和探究三,進(jìn)一步引導(dǎo)學(xué)生掌握?qǐng)A錐的體積公式。
設(shè)計(jì)意圖
通過(guò)教師課件演示試驗(yàn),進(jìn)一步讓學(xué)生明白圓錐體積是圓柱體積的三分之一所存在的條件,更進(jìn)一步加強(qiáng)學(xué)生對(duì)圓錐體積公式理解,再次突出了本課的難點(diǎn),培養(yǎng)了學(xué)生的觀察能,分析能力,邏輯思維能力等,進(jìn)一步讓學(xué)生從感性認(rèn)識(shí)上升到了理性認(rèn)識(shí)。
四、實(shí)踐運(yùn)用、提升技能
1、判斷題:題目?jī)?nèi)容見多媒體展示獨(dú)立思考---抽生匯報(bào)---說(shuō)明理由---師生評(píng)議。
2、口答題:題目?jī)?nèi)容見多媒體展示獨(dú)立思考---抽生匯報(bào)---學(xué)生評(píng)議。
3、拓展運(yùn)用:課本例題3學(xué)生分析題意---小組合作解答---學(xué)生解答展示---師生評(píng)議。
設(shè)計(jì)意圖通過(guò)判斷題、口答題題型的訓(xùn)練,及時(shí)檢查學(xué)生對(duì)所學(xué)知識(shí)的理解程度,鞏固了圓錐體的體積公式。而拓展題型具有開放性給學(xué)生提供思維發(fā)展的空間,讓他們有跳起來(lái)摘果子的機(jī)會(huì),以達(dá)到培養(yǎng)能力、發(fā)展個(gè)性的目的。
五、談?wù)勈斋@:這節(jié)課你學(xué)到了什么呢?
六、課堂作業(yè):
1、做在書上作業(yè):練習(xí)四第4、7題
2、坐在作業(yè)本上作業(yè):練習(xí)四第3題
《圓錐的體積》教學(xué)設(shè)計(jì)3
教學(xué)目標(biāo):
1、通過(guò)實(shí)驗(yàn)發(fā)現(xiàn)等底等高的圓柱和圓錐體積之間的關(guān)系,從而得出體積的計(jì)算公式,能運(yùn)用公式解答有關(guān)實(shí)際問題。
2、通過(guò)動(dòng)手操作參與實(shí)驗(yàn),發(fā)現(xiàn)等底等高的圓柱和圓錐體積之間的關(guān)系,并通過(guò)猜想、探索和發(fā)現(xiàn)的過(guò)程,推導(dǎo)出圓錐的體積公式。
3、通過(guò)實(shí)驗(yàn),引導(dǎo)學(xué)生探索知識(shí)的內(nèi)在聯(lián)系,滲透轉(zhuǎn)化思想,感受數(shù)學(xué)方法的內(nèi)在魅力,激發(fā)學(xué)生參加探索的興趣。
教學(xué)重點(diǎn):通過(guò)實(shí)驗(yàn)的方法,得到計(jì)算圓錐的體積。
教學(xué)難點(diǎn):運(yùn)用圓錐的體積公式進(jìn)行正確地計(jì)算。
教學(xué)準(zhǔn)備:等底等高的圓柱和圓錐容器模型各一個(gè)。
教學(xué)過(guò)程:
一、復(fù)習(xí)導(dǎo)入
師:同學(xué)們,請(qǐng)看大屏幕(課件出示圓柱削成最大圓錐)。
1、圓柱體積的計(jì)算公式是什么?(指名學(xué)生回答)
2、圓錐有什么特征?
同學(xué)們,圓柱的體積我們已經(jīng)知道怎么求,那與它等底等高的圓錐的體積同學(xué)們知道怎么求嗎?讓我們一同走進(jìn)圓錐的體積與等底等高的圓柱體體積有什么關(guān)系的知識(shí)課堂吧。ò鍟簣A錐的體積)
二、探究新知
課件出示等底等高的圓柱和圓錐
1、引導(dǎo)學(xué)生觀察:這個(gè)圓柱和圓錐有什么相同的地方?
學(xué)生回答:它們是等底等高的。
猜想:
(1)、你認(rèn)為圓錐體積的大小與它的什么有關(guān)?
。2)、你認(rèn)為圓錐的體積和什么圖形的體積關(guān)系最密切?猜一猜它們的體積有什么關(guān)系?
2、學(xué)生動(dòng)手操作實(shí)驗(yàn)
(1)、用圓錐裝滿水(要裝滿但不能溢出來(lái))往圓柱倒,倒幾次才把圓柱倒?jié)M?
(2)、通過(guò)實(shí)驗(yàn),你發(fā)現(xiàn)了什么?
小結(jié):通過(guò)實(shí)驗(yàn)我們發(fā)現(xiàn)圓柱的體積是與它等底等高圓錐體積的3倍。也可以說(shuō)成圓錐的體積是與它等底等高圓柱體積的三分之一。
3、教師課件邊演示邊敘述:現(xiàn)在圓錐和圓柱里都是空的。看看圓柱和圓錐有什么相同的地方?(等底等高)請(qǐng)同學(xué)們注意觀察,用圓錐裝滿水往圓柱里倒,倒幾次才把圓柱倒?jié)M?
問:把圓柱裝滿一共倒了幾次?
生:3次。
師:這說(shuō)明了什么?
生:這說(shuō)明圓錐的體積是和它等底等高的圓柱體積的三分之一。(板書:圓錐的體積=1/3×圓柱體積)
師:圓柱的體積等于什么?
生:等于“底面積×高”。
師:那么,圓錐的體積可以怎樣表示呢?(板書:圓錐的體積=1/3×底面積×高)
師:用字母應(yīng)該怎樣表示?(V=1/3sh)
師:在這個(gè)公式里你覺得哪里最應(yīng)該注意?
三、教學(xué)試一試
一個(gè)圓柱形零件,底面積是170平方厘米,高是12厘米。這個(gè)零件的體積是多少立方厘米?
四、鞏固練習(xí)
1、計(jì)算圓錐的體積
2、判一判
3、算一算
4、拓展延伸
五、總結(jié)
通過(guò)這節(jié)課的學(xué)習(xí),你有什么收獲呢?
六、板書:
圓錐的體積=圓柱的體積×1/3
圓錐的體積=底面積×高×1/3
用字母表示V=1/3sh
《圓錐的體積》教學(xué)設(shè)計(jì)4
設(shè)計(jì)意圖:
本節(jié)內(nèi)容是在學(xué)生了解了圓錐的特征,掌握了圓柱體積的計(jì)算方法基礎(chǔ)上進(jìn)行教學(xué)的,教材重視類比,轉(zhuǎn)化思想的滲透,旨在讓學(xué)生理解掌握求圓錐體積的計(jì)算公式,會(huì)運(yùn)用公式計(jì)算圓錐的體積。
我的設(shè)計(jì)是“顛倒課堂”的一次嘗試,旨在讓學(xué)生晚上在家觀看教學(xué)視頻,進(jìn)行深層次的掌握學(xué)習(xí),一次學(xué)不會(huì),還可以反復(fù)學(xué)習(xí),直到學(xué)會(huì)為止。這是與傳統(tǒng)的“白天在課室聽老師講課,晚上回家做作業(yè)”的方式正好相反的課堂模式。
教學(xué)目標(biāo):
1、理解掌握求圓錐體積的計(jì)算公式和推導(dǎo)過(guò)程,會(huì)運(yùn)用公式計(jì)算圓錐的體積。
2、會(huì)應(yīng)用公式計(jì)算圓錐的體積并解決一些實(shí)際問題。
3、幫助學(xué)生建立空間觀念,培養(yǎng)學(xué)生抽象的邏輯思維能力,激發(fā)學(xué)生的想象力。
教學(xué)重點(diǎn):
使學(xué)生初步掌握?qǐng)A錐體積的計(jì)算方法并解決一些實(shí)際問題
教學(xué)難點(diǎn):
圓錐體積計(jì)算方法和推導(dǎo)過(guò)程。
教學(xué)過(guò)程: 一、復(fù)習(xí)鋪墊:
1、揭示課題:今天我們一起來(lái)探究如何計(jì)算圓錐的體積。
2、以舊引新:我們知道,圓柱的體積=底面積×高,字母公式:V=Sh。如何計(jì)算圓錐的體積呢?圓柱的底面是圓的,圓錐的底面也是圓的,圓錐的體積與圓柱的體積有沒有關(guān)系呢?
二、實(shí)驗(yàn)操作:
1、請(qǐng)看接下來(lái)的2個(gè)實(shí)驗(yàn):
2、實(shí)驗(yàn)準(zhǔn)備:2組等底等高的圓柱、圓錐容器;水與沙子。
3、播放視頻:
實(shí)驗(yàn)一:我們將圓錐容器裝滿水,再往圓柱容器里面倒(倒3次),3次正好裝滿。
實(shí)驗(yàn)二:我們將圓柱容器裝滿沙,再往圓錐容器里面倒(倒3次),3次正好裝滿。
4、通過(guò)實(shí)驗(yàn)?zāi)銈儼l(fā)現(xiàn)了什么?
三、公式推導(dǎo):
1、通過(guò)兩次的實(shí)驗(yàn)我們可以得出結(jié)論:
圓柱的體積是與它等底等高的圓錐體積的3倍;也就是說(shuō)圓錐的體積是與它等底等高的圓柱體積的。
2、寫成公式:圓錐的體積=與它等底等高的圓柱體積×;因?yàn)閳A柱的體積=底面積×高,所以圓錐的體積=底面積×高×;寫成字母公式:V= Sh。因此,要求圓錐的體積,必須知道圓錐的底面積與高。
3、如果知道圓錐的底面半徑r與高h(yuǎn),圓錐的體積公式還可以怎樣表示呢?因?yàn)榈酌鎴A的面積s=πr2,所以圓錐的體積V= πr2h。
4、在應(yīng)用圓錐體積公式時(shí)不要忘記乘!
四、知識(shí)應(yīng)用
1、接下來(lái)我們應(yīng)用公式解決實(shí)際問題。
題:工地上有一堆沙子,近似于一個(gè)圓錐體,沙堆底面直徑4m,高1。2m。這堆沙子大約有多少立方米?(得數(shù)保留兩位小數(shù))
2、分析題意:要求這堆沙子大約有多少立方米,就是求圓錐體沙堆的體積。根據(jù)公式我們需要知道沙堆的底面積與高。根據(jù)底面直徑4m,可以先求出沙堆的底面積,再用底面積乘高求出沙堆的體積。
3、列式解答。(分步與綜合)
五、知識(shí)小結(jié):
今天我們學(xué)習(xí)了圓錐的體積計(jì)算:V= Sh= πr2h。
在應(yīng)用圓錐體積公式時(shí)我們要記住乘,還要留意單位名稱是否統(tǒng)一!
六、結(jié)束!
1、學(xué)生看完視頻對(duì)于實(shí)驗(yàn)成功的必要條件“等底等高”、“每次倒?jié)M”等有了一定的認(rèn)識(shí),且會(huì)躍躍欲試,為課堂的實(shí)驗(yàn)操作做了鋪墊。
2、課堂上組織學(xué)生分小組實(shí)驗(yàn):
圓柱與圓錐等底不等高時(shí),實(shí)驗(yàn)結(jié)果會(huì)怎樣?
圓柱與圓錐等高不等底時(shí),實(shí)驗(yàn)結(jié)果會(huì)怎樣?
“圓錐的體積是圓柱體積的”這一關(guān)系存在的條件是什么?
圓錐與圓柱體積相等時(shí),如果高相等,底面積有什么關(guān)系?如果底面積相等,高有什么關(guān)系?
3、課堂檢測(cè),促進(jìn)知識(shí)內(nèi)化。
本節(jié)課教學(xué)目標(biāo)定位為學(xué)生初步掌握?qǐng)A錐體積的計(jì)算公式,并能運(yùn)用公式正確地計(jì)算圓錐的體積,所以設(shè)計(jì)時(shí)力求每個(gè)環(huán)節(jié)都為教學(xué)目標(biāo)服務(wù)。
課前觀看視頻。首先回憶圓柱體積公式,通過(guò)圓柱與圓錐的底面都是圓的,讓學(xué)生猜測(cè)圓柱與圓錐體積之間的關(guān)系,然后通過(guò)兩次的實(shí)驗(yàn)驗(yàn)證圓錐體體積的計(jì)算方法,實(shí)現(xiàn)了一個(gè)“做數(shù)學(xué)”的過(guò)程。通過(guò)課外的視頻學(xué)習(xí),能加深學(xué)生對(duì)圖形特征以及圖形之間的內(nèi)在聯(lián)系的認(rèn)識(shí),進(jìn)一步領(lǐng)會(huì)轉(zhuǎn)化的數(shù)學(xué)思想。
課內(nèi)通過(guò)小組實(shí)驗(yàn)操作進(jìn)一步驗(yàn)證“圓錐的體積是圓柱體積的”這一關(guān)系存在的必要條件是等底等高,從而推導(dǎo)出圓錐的體積計(jì)算公式:V= Sh= πr2h,從而培養(yǎng)了學(xué)生構(gòu)建知識(shí)系統(tǒng)的能力和知識(shí)遷移及綜合整理的能力。課堂上不再重復(fù)學(xué)習(xí)微課程中的知識(shí),把時(shí)間花在完成練習(xí)上,通過(guò)不同的練習(xí)檢測(cè)學(xué)生的掌握情況,對(duì)暴露的問題進(jìn)行有針對(duì)性的輔導(dǎo),從而提高教學(xué)效率。
《圓錐的體積》教學(xué)設(shè)計(jì)5
教學(xué)過(guò)程: 一、情境引入:
。1)(老師出示鉛錘):你有辦法知道這個(gè)鉛錘的體積嗎?
(2)學(xué)生發(fā)言:(把它放進(jìn)盛水的量杯里,看水面升高多少……)
(3)教師評(píng)價(jià):這種方法可行,你利用上升的這部分水的體積就是鉛錘的體積,間接地求出了鉛錘的體積。真是一個(gè)愛動(dòng)腦筋的孩子。
。4)提出疑問:是不是每一個(gè)圓錐體都可以這樣測(cè)量呢?(學(xué)生思考后發(fā)言)
。5)引入:如果每個(gè)圓錐都這樣測(cè),太麻煩了!類似圓錐的麥堆也能這樣測(cè)嗎?(學(xué)生發(fā)表看法),那我們今天就來(lái)共同探究解決這類問題的普遍方法。(老師板書課題)
設(shè)計(jì)意圖:情景的創(chuàng)設(shè),激發(fā)了學(xué)生學(xué)習(xí)的興趣,使學(xué)生產(chǎn)生了自己想探索的需求,情緒高漲地積極投入到學(xué)習(xí)活動(dòng)中去。
二、新課探究
。ㄒ唬⑻骄繄A錐體積的計(jì)算公式。
1、大膽猜測(cè):
。1)圓錐的體積該怎樣求呢?能不能通過(guò)我們已學(xué)過(guò)的圖形來(lái)求呢?(指出:我們可以通過(guò)實(shí)驗(yàn)的方法,得到計(jì)算圓錐體積的公式)
(2)圓錐和我們認(rèn)識(shí)的哪種立體圖形有共同點(diǎn)?(學(xué)生答:圓柱)為什么?(圓柱的底面是圓,圓錐的底面也是圓……)
。3)請(qǐng)你猜猜圓錐的體積和圓柱的體積有沒有關(guān)系呢?有什么關(guān)系?(學(xué)生大膽猜測(cè)后,課件出示一個(gè)圓錐與3個(gè)底、高都不同的圓柱,其中一個(gè)圓柱與圓錐等底等高),請(qǐng)同學(xué)們猜一猜,哪一個(gè)圓錐的體積與這個(gè)圓柱的體積關(guān)系最密切?(學(xué)生答:等底等高的)
(4)老師拿教具演示等底等高。拿出等底等高的圓柱和圓錐各一個(gè),通過(guò)演示,使學(xué)生發(fā)現(xiàn)“這個(gè)圓錐和圓柱是等底等高的。”
(5)學(xué)生用上面的方法驗(yàn)證自己做的圓錐與圓柱是否等底等高。(把等底等高的放在桌上備用。)
2、試驗(yàn)探究圓錐和圓柱體積之間的關(guān)系
我們通過(guò)試驗(yàn)來(lái)研究等底等高的圓錐體積和圓柱體積的關(guān)系。
。1)課件出示試驗(yàn)記錄單:
a、提問:我們做幾次實(shí)驗(yàn)?選擇一個(gè)圓柱和圓錐我們比較什么?
b、通過(guò)實(shí)驗(yàn),你發(fā)現(xiàn)了什么?
。2)學(xué)生分組用等底等高的圓柱圓錐試驗(yàn),做好記錄。教師在組間巡回指導(dǎo)。
(3)匯報(bào)交流:
你們的試驗(yàn)結(jié)果都一樣嗎?這個(gè)試驗(yàn)說(shuō)明了什么?
。4)老師用等底等高的圓柱圓錐裝紅色水演示。
先在圓錐里裝滿水,然后倒入圓柱。讓學(xué)生注意觀察,倒幾次正好把圓柱裝滿?把圓柱裝滿水往圓錐里倒,幾次才能倒完?
。ń處熥寣W(xué)生注意記錄幾次,使學(xué)生清楚地看到倒3次正好把圓柱裝滿。)
。5)學(xué)生拿小組內(nèi)不等底等高的圓錐,換圓錐做這個(gè)試驗(yàn)幾次,看看有沒有這樣的關(guān)系?(學(xué)生匯報(bào),有的說(shuō)我用自己的圓錐裝了5次,才把圓柱裝滿;有的說(shuō),我裝了2次半……)
。6)試驗(yàn)小結(jié):上面的試驗(yàn)說(shuō)明了什么?(學(xué)生小組內(nèi)討論后交流)
(這說(shuō)明圓柱的體積是與它等底等高圓錐體積的3倍.也可以說(shuō)成圓錐的體積是和它等底等高的圓柱的體積的三分之一。)
3、公式推導(dǎo)
(1)你能把上面的試驗(yàn)結(jié)果用式子表示嗎?(學(xué)生嘗試)
。2)老師結(jié)合學(xué)生的回答板書:
圓錐的體積公式及字母公式:
。3)在探究圓錐體積公式的過(guò)程中,你認(rèn)為哪個(gè)條件最重要?(等底等高)
進(jìn)一步強(qiáng)調(diào)等底等高的圓錐和圓柱才存在這種關(guān)系。
設(shè)計(jì)意圖:放手讓學(xué)生自主探究,在實(shí)踐中真正去體驗(yàn)圓柱和圓錐之間的關(guān)系。
。ǘ﹫A錐的體積計(jì)算公式的應(yīng)用
1、已知圓錐的底面積和高,求圓錐的體積。
。1)出示例2:現(xiàn)在你能求出老師手中的鉛錘的體積嗎?(已知鉛錘底面積24平方厘米,高8厘米)學(xué)生嘗試解決。
。2)提問:已知圓錐的底面積和高應(yīng)該怎樣計(jì)算?
。3)引導(dǎo)學(xué)生對(duì)照?qǐng)A錐體積的計(jì)算公式代入數(shù)據(jù),然后讓學(xué)生自己進(jìn)行計(jì)算。
2、已知圓錐的底面半徑和高,求圓錐的體積。
(1)出示例題:
底面半徑是3平方厘米,高12厘米的圓錐的體積。
。2)學(xué)生嘗試解答
。3)提問:已知圓錐的底面半徑和高,可以直接利用公式
v=1/3兀r2h來(lái)求圓錐的體積。
3、已知圓錐的底面直徑和高,求圓錐的體積。
。1)出示例3:
工地上有一些沙子,堆起來(lái)近似于一個(gè)圓錐,這堆沙子大約多少立方米?(得數(shù)保留兩位小數(shù))
。2)要求沙堆的體積需要已知哪些條件?(由于這堆沙堆近似圓錐形,所以可利用圓錐的體積公式來(lái)求,需先已知沙堆的底面積和高)
。3)題目的條件中不知道圓錐的底面積,應(yīng)該怎么辦?(先算出沙堆的底面半徑,再利用圓的面積公式算出麥堆的底面積,然后根據(jù)圓錐的體積公式求出沙堆的體積)
。4)分析完后,指定兩名學(xué)生板演,其余學(xué)生將計(jì)算步驟寫在教科書第26頁(yè)上.做完后集體訂正。(注意學(xué)生最后得數(shù)的取舍方法是否正確)
。5)提問
4、已知圓錐的底面直徑和高,可以直接利用公式。
v=1/3兀(d/2)2h來(lái)求圓錐的體積。
設(shè)計(jì)意圖:公式的延伸讓學(xué)生對(duì)所學(xué)知識(shí)做到靈活應(yīng)用,培養(yǎng)了學(xué)生活學(xué)活用的本領(lǐng)。
《圓錐的體積》教學(xué)設(shè)計(jì)6
一、教學(xué)內(nèi)容:
六年制小學(xué)數(shù)學(xué)教材第十二冊(cè)第25-26頁(yè)
二、教學(xué)目標(biāo):
1、知識(shí)技能目標(biāo):
◆使學(xué)生探索并初步掌握?qǐng)A錐體積的計(jì)算方法和推導(dǎo)過(guò)程;
◆使學(xué)生會(huì)應(yīng)用公式計(jì)算圓錐的體積并解決一些實(shí)際問題。
2、思維能力目標(biāo):
◆提高學(xué)生實(shí)踐操作、觀察比較、抽象概括及邏輯推斷的能力,發(fā)展空間觀念。
3、情感態(tài)度目標(biāo):
◆培養(yǎng)學(xué)生的合作意識(shí)和探究意識(shí);
◆使學(xué)生獲得成功的體驗(yàn),體驗(yàn)數(shù)學(xué)與生活的聯(lián)系。
三、教學(xué)重點(diǎn)、難點(diǎn):
重點(diǎn):使學(xué)生初步掌握?qǐng)A錐體積的計(jì)算方法并解決一些實(shí)際問題
難點(diǎn):探索圓錐體積方法和推導(dǎo)過(guò)程。
教學(xué)過(guò)程:
一、質(zhì)疑引入
1 圓錐有什么特征?指名學(xué)生回答。
2 說(shuō)一說(shuō)圓柱體積的計(jì)算公式。
(1)已知 s、h 求 v
(2)已知 r、h 求 v
(3)已知 d、h 求 v
3 我們已經(jīng)認(rèn)識(shí)了圓錐又學(xué)過(guò)圓柱體積的計(jì)算公式,那么圓錐的體積又該如何計(jì)算呢?今天我們就來(lái)學(xué)習(xí)圓錐體積的計(jì)算。
板書課題:圓錐的體積
二、新課
。ㄒ唬 教學(xué)圓錐體積的計(jì)算公式
1、師:請(qǐng)大家回憶一下,我們是怎樣得到圓柱體積的計(jì)算公式的?
指名學(xué)生敘述圓柱體積的計(jì)算公式的推導(dǎo)過(guò)程:(學(xué)生:圓柱---轉(zhuǎn)化長(zhǎng)方體- 長(zhǎng)方體的體積公式----推導(dǎo)圓柱體公式)
2、 教師:那么圓錐的體積該怎樣求呢?能不能也通過(guò)學(xué)過(guò)的圖形來(lái)求呢?
先讓學(xué)生討論,然后指出:我們可以通過(guò)實(shí)驗(yàn)的方法,得到計(jì)算圓錐體積的公式
〈1〉學(xué)生獨(dú)立操作
讓兩名學(xué)生到講臺(tái)上做實(shí)驗(yàn)其他學(xué)生觀察,拿出等底等高的圓柱和圓錐各1個(gè),比圓柱體積多的水。先在圓錐里裝滿水,然后倒入圓柱?磶状握冒褕A柱裝滿?
〈2〉教師教具演示鞏固學(xué)生的操作效果,cai課件演示
a 屏幕上出示等底、等高
b 等底、不等高
c 等高、不等底
實(shí)驗(yàn)報(bào)告單
實(shí)驗(yàn)器材
實(shí)驗(yàn)結(jié)果
等底不等高的圓錐、圓柱
等高不等底的圓錐、圓柱
等底等高的圓錐、圓柱
〈3〉引導(dǎo)學(xué)生發(fā)現(xiàn):
圓柱體的體積等于和它等底等高的圓錐體體積的3倍或圓錐的體積等于和它等底等高圓柱體積的 1/3 (板書 )
用字母表示圓錐的體積公式.v錐=1/3sh
做一做:
填空:
等底等高的圓錐和圓柱,圓柱的體積是圓錐的體積的( ),圓錐的體積是圓柱的體積的( )已知圓錐的體積是9立方分米,圓柱的體積是( );如果圓柱的體積是12立方分米,那么圓錐的體積是( )。
。ǘ┻\(yùn)用公式,嘗試練習(xí)
1、要求圓錐的體積,必須知道哪兩個(gè)條件?為什么要乘 1/3 ?
試一試:
一個(gè)圓錐體,底面積是19平方米, 高是12分米。這個(gè)圓錐的體積是多少?《圓錐的體積》教學(xué)設(shè)計(jì) 相關(guān)內(nèi)容:第四單元 圓 全單元教案六下第一單元 負(fù)數(shù) 教材分析《圓錐的認(rèn)識(shí)》說(shuō)課《分?jǐn)?shù)乘分?jǐn)?shù)》教后反思《納稅》教案 人教版第十一冊(cè)教案百分?jǐn)?shù)(五)折 扣圓柱的表面積第三單元分?jǐn)?shù)除法:分?jǐn)?shù)除法的意義和整數(shù)除以分?jǐn)?shù)查看更多>> 小學(xué)六年級(jí)數(shù)學(xué)教案
2、思考:求圓錐的體積,還可能出現(xiàn)那些情況?
(如果已知圓錐的高和底面半徑如果已知圓錐的高和底面半徑(或直徑、周長(zhǎng)),怎樣求圓錐的體積呢?)
練一練
3、求下面的體積。(只列式不計(jì)算)
(1)底面半徑是2 厘米,高3厘米。
3.14×22×3
(2)底面直徑是6分米,高6分米 。
3.14×(6 ÷2)2 ×6
(3)底面周長(zhǎng)是12.56厘米,高是6厘米
3.14×(12.56 ÷6.28)2 ×6
2、求下面各圓錐的體積如圖(單位厘米)
。1)底面直徑是8分米,高9分米 (2)底面半徑3分米和高7分米
通過(guò)公式我們發(fā)現(xiàn)計(jì)算圓錐的體積所必須的條件可以是底面積和高
a、底面積和高
b、底面半徑和高
c、底面直徑和高
d、底面周長(zhǎng)和高
三、鞏固練習(xí)
1、判斷:
、、圓錐的體積等于圓住體積的1/3。( )
、瓢岩粋(gè)圓柱切成一個(gè)圓錐,這個(gè)圓錐的體積是圓柱體積的1/3 ( )
、菆A柱的體積比和它等底等高圓錐的體積大2倍。( )
、且粋(gè)圓柱與一個(gè)圓錐的底面積和體積相等,那么圓錐的高是圓柱高的
2、填空
、乓粋(gè)圓錐與一個(gè)圓柱等底等高,已知圓錐的體積是 18 立方米,圓柱的體積是( )。
、埔粋(gè)圓錐與一個(gè)圓柱等底等體積,已知圓柱的高是 12 厘米, 圓錐的高是( )。
、且粋(gè)圓錐與一個(gè)圓柱等高等體積,已知圓柱的底面積是 314 平方米,圓錐的底面積是( )。
3、拓展練習(xí)
工地上有一些沙子,堆起來(lái)近似于一個(gè)圓錐,通過(guò)測(cè)量它的直徑是4厘米高是1.2厘米,這堆沙子大約多少立方米?(得數(shù)保留兩位小數(shù))
(引導(dǎo)學(xué)生說(shuō)出怎樣測(cè)量沙堆的底面的周長(zhǎng)、直徑、和高。)
用兩根竹竿平行地放在沙堆兩側(cè),測(cè)得兩根竹竿間的距離,就是直徑。將一根竹竿過(guò)沙堆的頂部水平位置,另一根竹竿豎直與水平竹竿成直角即可量得高。
《圓錐的體積》教學(xué)設(shè)計(jì)7
一、教學(xué)目標(biāo)
1、知識(shí)與技能
理解圓錐體積公式的推導(dǎo)過(guò)程,初步掌握?qǐng)A錐體積的計(jì)算公式,并能運(yùn)用公式正確地計(jì)算圓錐的體積。
2、過(guò)程與方法
通過(guò)操作、實(shí)驗(yàn)、觀察等方式,引導(dǎo)學(xué)生進(jìn)行比較、分析、綜合、猜測(cè),在感知的基礎(chǔ)上加以判斷、推理來(lái)獲取新知識(shí)。
3、情感態(tài)度與價(jià)值觀
滲透知識(shí)是“互相轉(zhuǎn)化”的辨證思想,養(yǎng)成善于猜測(cè)的習(xí)慣,在探索合作中感受教學(xué)與我的生活的密切聯(lián)系,讓學(xué)生感受探究成功的快樂。
二、教學(xué)重、難點(diǎn)
重點(diǎn):掌握?qǐng)A錐的體積計(jì)算方法及運(yùn)用圓錐的體積計(jì)算方法解決實(shí)際問題。
難點(diǎn):理解圓錐體積公式的推導(dǎo)過(guò)程。
三、教具學(xué)具
不同型號(hào)的圓柱、圓錐實(shí)物、容器;沙子、水、杯子;多媒體課件一套。
四、教學(xué)流程
(一)創(chuàng)設(shè)情境,提出問題
師:五一節(jié)放假期間,老師帶著自己的小外甥去商場(chǎng)購(gòu)物,正巧商場(chǎng)在搞冰淇淋促銷活動(dòng)。促銷的冰淇淋有三種(課件出示三個(gè)大小不同的冰淇淋),每種都是2元錢,小外甥吵著鬧著要買一只,請(qǐng)同學(xué)們幫老師參考一下買哪一種合算?
生:我選擇底面最大的;
生:我選擇高是最高的;
生:我選擇介于二者之間的。
師:每個(gè)人都認(rèn)為自己選擇的哪種最合算,那么誰(shuí)的意見正確呢?
生:只要求出冰淇淋的體積就可以了。
師:冰淇淋是個(gè)什么形狀?(圓錐體)
生:你會(huì)求嗎?
師:通過(guò)這節(jié)課的學(xué)習(xí),相信這個(gè)問題就很容易解答了。下面我們一起來(lái)研究圓錐的體積。并板書課題:圓錐的體積。
。ǘ┰O(shè)疑激趣,探求新知
師:那么你能想辦法求出圓錐的體積嗎?
。▽W(xué)生猜想求圓錐體積的方法。)
生:我們可以利用求不規(guī)則物體體積的方法,把它放進(jìn)一個(gè)有水的容器里,求出上升那部分水的體積。
師:如果這樣,你覺得行嗎?
教師根據(jù)學(xué)生的回答做出最后的評(píng)價(jià);
生:老師,我們前面學(xué)過(guò)把圓轉(zhuǎn)化成長(zhǎng)方形來(lái)研究,我想圓錐是不是也可以這樣做呢?
師:大家猜一猜圓錐體可能會(huì)轉(zhuǎn)化成哪一種圖形,你的根據(jù)是什么?
小組中大家商量。
生:我們組認(rèn)為可以將圓錐轉(zhuǎn)化成長(zhǎng)方體或正方體,比如:先用橡皮泥捏一個(gè)圓錐體,再把這塊橡皮泥捏成長(zhǎng)方體或正方體。
師:此種方法是否可行?
學(xué)生進(jìn)行評(píng)價(jià)。
師:哪個(gè)小組還有更好的辦法?
生:我們組認(rèn)為:圓錐體轉(zhuǎn)化成長(zhǎng)方體后,長(zhǎng)方體的長(zhǎng)、寬、高與圓錐的底面和高之間沒有直接的聯(lián)系。如果將圓錐轉(zhuǎn)化成圓柱,就更容易進(jìn)行研究。)
師:既然大家都認(rèn)為圓錐與圓柱的聯(lián)系最為密切,請(qǐng)各組先拿出學(xué)具袋的圓錐與圓柱,觀察比較他們的底與高的大小關(guān)系。
1、各小組進(jìn)行觀察討論。
2、各小組進(jìn)行交流,教師做適當(dāng)?shù)陌鍟?/p>
通過(guò)學(xué)生的交流出現(xiàn)以下幾種情況:一是圓柱與圓錐等底不等高;二是圓柱與圓錐等高不等底;三是圓柱與圓錐不等底不等高;四是圓柱與圓錐等底等高。
3、師啟發(fā)談話:現(xiàn)在我們面前擺了這么多的圓柱和圓錐,我們是否有必要把每一種情況都進(jìn)行研究?能否找到一種既簡(jiǎn)便又容易操作且能代表所有圓柱和圓錐關(guān)系的一組呢?(小組討論)
4、小組交流,在此環(huán)節(jié)著重讓學(xué)生說(shuō)出選擇等底等高的圓錐體與圓柱體進(jìn)行探究的`理由。
師:我們大家一致認(rèn)為應(yīng)該選擇等底等高的一組,那么我們就跟求圓柱體的體積一樣,就用“底面積×高”來(lái)表示圓錐體的體積行不行?為什么?
師:圓錐體的體積小,那你猜測(cè)一下這兩個(gè)形體的體積的大小有什么樣的關(guān)系?
生:大約是圓柱的一半。
生:……
師:到底誰(shuí)的意見正確呢?
師:下面請(qǐng)同學(xué)們?nèi)艘唤M利用你桌子的學(xué)具,找出兩組等底等高的圓錐與圓柱,共同探討它們之間的體積關(guān)系驗(yàn)證我們的猜想,不過(guò)在實(shí)驗(yàn)前先閱讀實(shí)驗(yàn)要求,(課件演示)只有目標(biāo)明確,才能更好的合作。開始吧!
要求:1、實(shí)驗(yàn)材料,任選沙、米、水中的一種。
2、實(shí)驗(yàn)方法可選擇用圓錐向圓柱里倒,到滿為止;或用圓柱向圓錐里倒,到空為止。
。ㄉM(jìn)行實(shí)驗(yàn)操作、小組交流)
師:1、誰(shuí)來(lái)匯報(bào)一下,你們組是怎樣做實(shí)驗(yàn)的?
2、通過(guò)做實(shí)驗(yàn),你們發(fā)現(xiàn)它們有什么關(guān)系?
生:我們利用空?qǐng)A柱裝滿水到入空?qǐng)A錐,三次倒完。圓柱的體積是等底等高圓錐體積的三倍。
生:我們利用空?qǐng)A錐裝滿米到入空?qǐng)A柱,三次倒?jié)M。圓錐的體積是等底等高圓柱的體積的1/3。)
師:同學(xué)們得出這個(gè)結(jié)論非常重要,其他組也是這樣的嗎?生略
師:請(qǐng)看大屏幕,看數(shù)學(xué)小博士是怎樣做的?(課件演示)
齊讀結(jié)論:
師:你能根據(jù)剛才我們的實(shí)驗(yàn)和課件演示的情況,也給圓錐的體積寫一個(gè)公式?
。ㄐ〗M討論,得出圓錐的體積公式,得到以下公式:圓柱體積÷3=圓錐體積,則v圓錐=sh÷3即v圓錐=1/3sh
師:同學(xué)們剛才我們得到了圓錐的體積公式,(請(qǐng)看課件)你能求出三種冰淇淋的體積?
。ㄠ!三種冰淇淋的體積原來(lái)一樣大)
五、聯(lián)系生活,拓展運(yùn)用 本練習(xí)共有三個(gè)層次:
1、基本練習(xí)
。1)判斷對(duì)錯(cuò),并說(shuō)明理由。
圓柱的體積相當(dāng)于圓錐體積的3倍。( )
一個(gè)圓柱木料,把它加工成最大的圓錐,削去的部分的體積和圓錐的體積比是( )
一個(gè)圓柱和一個(gè)圓錐等底等高體積相差21立方厘米,圓錐的體積是7立方厘米。( )
。2)計(jì)算下面圓錐的體積。(單位:厘米)
s=25.12 h=2.5
r=4, h=6
2、變形練習(xí)
出示學(xué)校沙堆:我班數(shù)學(xué)小組的同學(xué)利用課余時(shí)間測(cè)量了那堆沙子,
得到了以下信息:底面半徑:2米,底面直徑4米,底面周長(zhǎng)12.56米,底面積:12.56平方米,高1.2米,
。1)、你能根據(jù)這些信息,用不同的方法計(jì)算出這堆沙子的體積嗎?
。2)、找一找這些計(jì)算方法有什么共同的特點(diǎn)? v錐=1/3sh
。3)、準(zhǔn)備把這堆沙填在一個(gè)長(zhǎng)3米,寬1、5米的沙坑里,請(qǐng)同學(xué)們算一算能填多深?
3、拓展練習(xí)
一個(gè)近似圓錐形的煤堆,測(cè)得它的底面周長(zhǎng)是31.4米,高是2.4米。如果每立方米煤重1.4噸,這堆煤大約重多少噸?
活動(dòng)五:整理歸納,回顧體驗(yàn)
。ㄍㄟ^(guò)小結(jié)展示學(xué)生個(gè)性,學(xué)生在學(xué)習(xí)中的自我體驗(yàn),使孩子情感態(tài)度,價(jià)值觀得到升華。)
《圓錐的體積》教學(xué)設(shè)計(jì)8
1、認(rèn)知目的:
(1)讓學(xué)生認(rèn)識(shí)圓錐,掌握它的特征。
。2)理解圓錐的體積計(jì)算公式的推導(dǎo),并能靈活運(yùn)用公式計(jì)算圓錐的體積。
2、能力目的:
發(fā)展學(xué)生的空間觀念,培養(yǎng)學(xué)生觀察,動(dòng)手操作,總結(jié)規(guī)律的能力。
3、情感目的:
創(chuàng)造和諧的師生關(guān)系,調(diào)動(dòng)學(xué)生的非智力因素,激發(fā)學(xué)生的學(xué)習(xí)興趣。
教學(xué)重點(diǎn):
建立圓錐體的表象,概括圓錐體的特征,并能運(yùn)用公式計(jì)算圓錐體的體積。
教學(xué)難點(diǎn):
理解等底等高的圓錐體和圓柱體的關(guān)系,以及圓錐體積公式的推導(dǎo)過(guò)程。
教學(xué)準(zhǔn)備:
1、多媒體計(jì)算機(jī)軟、硬件一套。
2、學(xué)生實(shí)驗(yàn)用圓柱、圓錐容器十套,紅色溶液一桶。
3、幻燈機(jī),圓錐體實(shí)物如:小丑帽、重錘等。
教學(xué)過(guò)程:
一、復(fù)習(xí)準(zhǔn)備:
1、圓柱的體積計(jì)算公式是什么?
2、已知一個(gè)圓柱的半徑是2厘米,高是5厘米,它的體積是多少?
二、導(dǎo)出新課:
我們已經(jīng)學(xué)習(xí)過(guò)了長(zhǎng)方體和正方體及圓柱體的體積,在實(shí)際生活中,經(jīng)常會(huì)遇到另一種物體(出示圓錐體實(shí)物如:小丑帽、重錘),這種形體叫圓錐體。你們?cè)谏钪幸娺^(guò)這樣的物體嗎?(請(qǐng)學(xué)生回答)這節(jié)課我們重點(diǎn)研究圓錐的體積。(板書課題:圓錐的體積)
三、新授:
1、學(xué)生通過(guò)對(duì)圓錐實(shí)物及電腦圖形的觀察,多角度多種實(shí)物中得到對(duì)圓
錐感性認(rèn)識(shí),在建立了感性認(rèn)識(shí)的基礎(chǔ)上,師生共同總結(jié)出圓錐的特征是:它只有一個(gè)底面;這個(gè)底面是一個(gè)圓;它有一個(gè)頂點(diǎn)。
教師拿出已準(zhǔn)備好的圓錐教具,將其一分為二,叫學(xué)生觀察圓錐的高,指出從頂點(diǎn)到底面圓心的距離叫圓錐的高。
2、紹各部分的名稱(用電腦出示圓錐圖形)
3、圓錐體積公式的推導(dǎo):
通過(guò)分組實(shí)驗(yàn)讓學(xué)生自己發(fā)現(xiàn)圓柱、圓錐在等底等高時(shí)的體積關(guān)系。在實(shí)驗(yàn)前教師提出實(shí)驗(yàn)的要求和實(shí)驗(yàn)要解決的問題。
問題:
。1)圓錐與圓柱是否等底等高?
。2)倒了幾次才能倒?jié)M空?qǐng)A柱?
。3)這個(gè)實(shí)驗(yàn)說(shuō)明等底等高的圓柱、圓錐體積有怎樣的關(guān)系?
要求:
。1)分五人一組,相互合作,共同完成實(shí)驗(yàn)。
。2)教師每組給一個(gè)中空、未封底的圓錐,學(xué)生自己動(dòng)手制作一個(gè)與它等底等高的圓柱。制作的圓柱也不封底。
。3)將圓錐裝滿溶液,然后倒入圓柱里,裝滿圓柱為止。
實(shí)驗(yàn)結(jié)束后,讓學(xué)生自己總結(jié)得出結(jié)論,教師根據(jù)學(xué)生得出的結(jié)論得出Ⅴ錐=
《圓錐的體積》教學(xué)設(shè)計(jì)9
教學(xué)內(nèi)容:
《圓錐的體積》是九年義務(wù)教育六年制小學(xué)數(shù)學(xué)第十一冊(cè)第三單元的內(nèi)容。
教學(xué)目標(biāo):
1、通過(guò)讓學(xué)生小組合作探究,利用不同的方法測(cè)量出圓錐的體積。體驗(yàn)到計(jì)算圓錐體積的計(jì)算公式v=1/3sh是最簡(jiǎn)便的方法。
2、鍛煉學(xué)生的操作能力,估算能力,評(píng)價(jià)能力,更好的發(fā)展他們的創(chuàng)新能力。
3、培養(yǎng)學(xué)生的合作意識(shí)及主動(dòng)探索知識(shí)的精神。
教學(xué)重點(diǎn):
讓學(xué)生自己親身體驗(yàn)到計(jì)算圓錐體積的不同方法。從而理解計(jì)算公式v=1/3sh,并感受到計(jì)算公式的簡(jiǎn)便。
教學(xué)難點(diǎn):能利用不同方法計(jì)算不同物體的體積。知識(shí)的活學(xué)活用。
教學(xué)準(zhǔn)備:
1、個(gè)學(xué)生一組,每組各有量杯;量桶;一升的容器;等底等高的圓柱與圓錐器皿;大米,沙子或水;1立方厘米的小方塊若干。
2、教學(xué)軟件。
教學(xué)流程:
一、創(chuàng)設(shè)情景,激趣引新。
1、首先教師手中拿一圓柱體問:“同學(xué)們,老師想知道這個(gè)圓柱體的體積你們能幫助我嗎?”
。▽W(xué)生踴躍舉手說(shuō)明?梢韵葴y(cè)量出圓柱的半徑與高。再用圓周率乘半徑的平方得到底面積,最后乘以高就可以了。)
2、教師表示贊同,并抓住這一契機(jī)拿出于剛才圓柱等底等高的圓錐,問:“那老師這里還有一個(gè)圓錐體,它的體積應(yīng)該怎樣計(jì)算呢?你們知道嗎?”(學(xué)生齊答不)那你們想不想研究呢?(學(xué)生齊答想)好,下面我們就一起來(lái)研究圓錐的體積該怎樣計(jì)算。
〈設(shè)計(jì)意圖:通過(guò)以舊引新,不僅讓學(xué)生感受到圓錐與圓柱的聯(lián)系,而且還能體驗(yàn)得到新知的親切。從而產(chǎn)生學(xué)習(xí)新知的欲望!
二、小組合作,探究學(xué)習(xí)。
1、動(dòng)手操作,測(cè)量圓錐體的體積。
要求:每組同學(xué),利用桌面上的工具(量杯,量桶,與圓錐等底等高圓柱容器,大米,沙子,水,1立方分米小方塊)測(cè)量出自己組內(nèi)的圓錐體的體積。測(cè)量物體是容器的厚度不計(jì)。
〈全體學(xué)生在動(dòng)手操作,互相商量解決問題的辦法。教師巡回指導(dǎo)。課堂呈現(xiàn)小組探究學(xué)習(xí)的熱烈場(chǎng)面!
3、分組匯報(bào)不同的方法。
〈學(xué)生在匯報(bào)時(shí)可邊講解邊示范〉
方法一:可以利用量杯。首先把圓錐體容器內(nèi)裝滿水,然后把它倒入量杯內(nèi),我們看到水面的刻度就是水的體積也就是圓錐體的體積。
方法二:利用手中的一立方厘米的小木塊進(jìn)行估算。
方法三:受《曹沖稱象》的啟示。利用一生的容器。把它裝滿水后將圓錐體放入,溢出水后拿出圓錐體。這時(shí)看容器空出來(lái)的地方為長(zhǎng)方體,用一立方分米減去長(zhǎng)方體的體積就可以得到圓錐體的體積了。
方法四:把圓錐體內(nèi)裝滿大米、沙子或水,然后將它到入與它等底等高的圓柱體容器里。發(fā)現(xiàn)到了3次正好到慢。也就是說(shuō),圓錐體的體積等于與它等底等高的圓柱體的三分之一。用字母表示為:v=1/3sh
〈設(shè)計(jì)意圖:通過(guò)討論研究和動(dòng)手操作,發(fā)展學(xué)生的創(chuàng)新能力,和解決實(shí)際問題的能力!
。1)在講解第四個(gè)方法時(shí),教師可以向?qū)W生質(zhì)疑,在操作此過(guò)程時(shí)有一個(gè)非常重要的前提條件是什么?為什么圓錐體的體積等于與它等底等高圓柱體體積的三分之一?
。2)學(xué)生再次在小組內(nèi)操作探究。
(3)匯報(bào)結(jié)論。
。4)微機(jī)演示。
當(dāng)?shù)鹊撞坏雀邥r(shí),當(dāng)?shù)雀卟坏鹊讜r(shí),當(dāng)?shù)缀透叨疾幌嗟葧r(shí),出現(xiàn)的結(jié)果是怎樣的。
〈設(shè)計(jì)意圖:通過(guò)學(xué)生探究與微機(jī)演示,使學(xué)生直觀的感受圓錐體與圓柱體之間關(guān)系。加深對(duì)圓錐體體積計(jì)算公式的理解!
4、評(píng)價(jià)以上各種辦法
同學(xué)們的結(jié)論是用公式計(jì)算比較方便。
三、解決實(shí)際問題
。▎栴}一)
1、各小組量一量,算一算自己組內(nèi)的圓錐體的體積。(測(cè)量,計(jì)算時(shí)都要保留整數(shù))
2、匯報(bào)結(jié)果。
先測(cè)量出圓錐體的直徑,算出底面積。再測(cè)量出高,算出它的體積。算式:1/3x[3.14x(10/2)x10]≈262立方厘米(忽略厚度,即把溶劑可看作體積)
(問題二)
1、現(xiàn)知道手中的圓錐體每立方厘米約裝0.9克大米,計(jì)算這個(gè)圓錐體容器可裝多少克大米?
2、匯報(bào)結(jié)果。
用每立方厘米裝大米的克數(shù)乘圓錐的體積。算式:0.9x262≈236克
3、驗(yàn)證計(jì)算結(jié)果
用稱稱一稱,比較一下結(jié)果。
4、討論兩次結(jié)果為什么不同。
由于測(cè)量時(shí)厚度不計(jì),計(jì)算時(shí)是近似值。都存在誤差。
〈設(shè)計(jì)意圖:通過(guò)測(cè)量,計(jì)算等環(huán)節(jié),發(fā)展學(xué)生的應(yīng)用意識(shí)及估算的能力!
。▎栴}三)
利用圓錐體積公式計(jì)算。
。1)r=2cm h=6cm v=?(2)d=6m h=5mv=?
(問題四)
計(jì)算不規(guī)則物體體積或容積。(直說(shuō)出計(jì)算的方法即可)
1、用什么方法計(jì)算出葫蘆能裝多少水?
2、胡蘿卜的體積怎樣計(jì)算?
3、不規(guī)則的零件體積計(jì)算?
〈設(shè)計(jì)意圖:結(jié)合生活實(shí)際讓學(xué)生感受到數(shù)學(xué)與生活的聯(lián)系。及解決實(shí)際問題的不同方法及策略,培養(yǎng)創(chuàng)新能力。〉
四、總結(jié)全課
說(shuō)說(shuō)你的收獲,鼓勵(lì)學(xué)生學(xué)習(xí)知識(shí)要活學(xué)活用,大膽動(dòng)腦,勇于創(chuàng)新。
《圓錐的體積》教學(xué)設(shè)計(jì)10
教學(xué)內(nèi)容:
九年義務(wù)教育六年制小學(xué)數(shù)學(xué)第十二冊(cè)P32頁(yè)。
教學(xué)目標(biāo):
1、通過(guò)練習(xí),使學(xué)生進(jìn)一步理解和掌握?qǐng)A錐體積公式,能運(yùn)用公式正確迅速地計(jì)算圓錐的體積。
2、通過(guò)練習(xí),使學(xué)生進(jìn)一步深刻理解圓柱和圓錐體積之間的關(guān)系。
3、進(jìn)一步培養(yǎng)學(xué)生將所學(xué)知識(shí)運(yùn)用和服務(wù)于生活的能力。
教學(xué)重點(diǎn):
靈活運(yùn)用圓柱圓錐的有關(guān)知識(shí)解決實(shí)際問題。
教學(xué)難點(diǎn):
同教學(xué)難點(diǎn)。
設(shè)計(jì)理念:
練習(xí)的過(guò)程是學(xué)生將所學(xué)知識(shí)內(nèi)化、升華的過(guò)程,練習(xí)過(guò)程中既有基礎(chǔ)知識(shí)的合理鋪墊,又有不同程度的提高,練習(xí)的內(nèi)容有明顯的階梯性。力求使不同層次的學(xué)生都學(xué)有收獲。
教學(xué)步驟、教師活動(dòng)、學(xué)生活動(dòng)
一、復(fù)習(xí)鋪墊、內(nèi)化知識(shí)。1. 圓錐體的體積公式是什么?我們是如何推導(dǎo)的?
2.圓柱和圓錐體積相互關(guān)系填空,加深對(duì)圓柱和圓錐相互關(guān)系的理解。
。1)一個(gè)圓柱體積是18立方厘米,與它等底等高的圓錐的體積是()立方厘米。
。2)一個(gè)圓錐的體積是18立方厘米,與它等底等高的圓柱的體積是()立方厘米。
。3)一個(gè)圓柱與和它等底等高的圓錐的體積和是144立方厘米。圓柱的體積是()立方厘米,圓錐的體積是()立方厘米。
3.求下列圓錐體的體積。
。1)底面半徑4厘米,高6厘米。
。2)底面直徑6分米,高8厘米。
。3)底面周長(zhǎng)31.4厘米.高12厘米。
4、教師根據(jù)學(xué)生練習(xí)中存在的問題,集體評(píng)講。同座位的同學(xué)先說(shuō)一說(shuō)圓錐體積公式的推導(dǎo)過(guò)程。
學(xué)生獨(dú)立練習(xí),互相批改,指出問題。
學(xué)生交流一下這幾題在解題時(shí)要注意什么?
二、豐富拓展、延伸練習(xí)。1.拓展練習(xí):
(1)把一個(gè)圓柱體木料削成一個(gè)最大的圓錐體木料,圓錐的體積占圓柱體的幾分之幾?削去的部分占圓柱體的幾分之幾?
(2)一個(gè)圓柱體比它等底等高的圓錐體積大48立方厘米,圓柱體和圓錐體的體積各是多少?
2.完成31頁(yè)第5題。討論下列問題:
(1)圓柱和圓錐體積相等、底面積也相等,圓柱的高和圓錐的高有什么關(guān)系?
。2)圓柱和圓錐體積相等、高也相等,圓柱的底面積和圓錐的底面積有什么關(guān)系?
3.分組討論:圓柱的底面半徑是圓錐的2倍,圓錐的高是圓柱的高的2倍,圓柱和圓錐的體積之間有什么倍數(shù)關(guān)系?
學(xué)生分組討論,教師參與其中,以有疑問的方式參與討論。
三、充分提高,全面升華。
1.展示一個(gè)圓錐形的沙堆,小組討論一下用什么方法可以測(cè)量出它的體積。
2.教師給每一組一小袋米。讓學(xué)生在桌子上堆成一個(gè)近似的圓錐體,通過(guò)合作測(cè)量的形式求出它的體積。
3.討論練習(xí)八蒙古包所占空間的大小的方法。
(1)蒙古包是由哪幾個(gè)部分組成的?
(2)上部的圓錐和下部的圓柱有哪些相同的地方,有哪些不同的地方?
。3)同學(xué)們能獨(dú)立地求出蒙古包所占的空間的大小嗎?請(qǐng)?jiān)囈辉嚒?/p>
4.交流一下本節(jié)課的收獲。
學(xué)生分組討論后動(dòng)手實(shí)踐并計(jì)算。
學(xué)生先交流。
四、全課總結(jié),內(nèi)化知識(shí)。
1.提問:
(1)同學(xué)們掌握了圓錐體的哪些知識(shí)?
(2)你用圓錐體的體積的有關(guān)知識(shí)解決現(xiàn)實(shí)生活中的哪些問題?
2.學(xué)有余力的同學(xué)思考38頁(yè)思考題。
3.作業(yè):練習(xí)八6、7、8
學(xué)生獨(dú)立練習(xí)
版權(quán)聲明:本文內(nèi)容由互聯(lián)網(wǎng)用戶自發(fā)貢獻(xiàn),該文觀點(diǎn)僅代表作者本人。本站僅提供信息存儲(chǔ)空間服務(wù),不擁有所有權(quán),不承擔(dān)相關(guān)法律責(zé)任。如發(fā)現(xiàn)本站有涉嫌抄襲侵權(quán)/違法違規(guī)的內(nèi)容, 請(qǐng)發(fā)送郵件至 yyfangchan@163.com (舉報(bào)時(shí)請(qǐng)帶上具體的網(wǎng)址) 舉報(bào),一經(jīng)查實(shí),本站將立刻刪除