初中數(shù)學教案(精選13篇)
初中數(shù)學教案
一、什么是教案
教案是教師為順利而有效地開展教學活動,根據(jù)課程標準,教學大綱和教科書要求及學生的實際情況,以課時或課題為單位,對教學內(nèi)容、教學步驟、教學方法等進行的具體設計和安排的一種實用性教學文書。教案包括教材簡析和學生分析、教學目的、重難點、教學準備、教學過程及練習設計等。
二、初中數(shù)學教案(精選13篇)
作為一名教學工作者,總不可避免地需要編寫教案,教案有助于順利而有效地開展教學活動。那么寫教案需要注意哪些問題呢?以下是小編精心整理的初中數(shù)學教案(精選13篇),歡迎大家借鑒與參考,希望對大家有所幫助。
初中數(shù)學教案1
一、教學目標:
1、知道一次函數(shù)與正比例函數(shù)的定義。
2、理解掌握一次函數(shù)的圖象的特征和相關的性質(zhì)。
3、弄清一次函數(shù)與正比例函數(shù)的區(qū)別與聯(lián)系。
4、掌握直線的平移法則簡單應用。
5、能應用本章的基礎知識熟練地解決數(shù)學問題。
二、教學重、難點:
重點:初步構建比較系統(tǒng)的函數(shù)知識體系。
難點:對直線的平移法則的理解,體會數(shù)形結合思想。
三、教學過程:
1、一次函數(shù)與正比例函數(shù)的定義:
一次函數(shù):一般地,若y=kx+b(其中k,b為常數(shù)且k≠0),那么y是一次函數(shù)。
正比例函數(shù):對于y=kx+b,當b=0,k≠0時,有y=kx,此時稱y是x的正比例函數(shù),k為正比例系數(shù)。
2、一次函數(shù)與正比例函數(shù)的區(qū)別與聯(lián)系:
。1)從解析式看:y=kx+b(k≠0,b是常數(shù))是一次函數(shù);而y=kx(k≠0,b=0)是正比例函數(shù),顯然正比例函數(shù)是一次函數(shù)的特例,一次函數(shù)是正比例函數(shù)的推廣。
。2)從圖象看:正比例函數(shù)y=kx(k≠0)的圖象是過原點(0,0)的一條直線;而一次函數(shù)y=kx+b(k≠0)的圖象是過點(0,b)且與y=kx
平行的一條直線。
基礎訓練:
1、寫出一個圖象經(jīng)過點(1,—3)的函數(shù)解析式為:
2、直線y=—2X—2不經(jīng)過第象限,y隨x的增大而。
3、如果P(2,k)在直線y=2x+2上,那么點P到x軸的距離是:
4、已知正比例函數(shù)y=(3k—1)x,,若y隨x的增大而增大,則k是:
5、過點(0,2)且與直線y=3x平行的直線是:
6、若正比例函數(shù)y=(1—2m)x的圖像過點A(x1,y1)和點B(x2,y2)當x1<x2時,y1>y2,則m的取值范圍是:
7、若y—2與x—2成正比例,當x=—2時,y=4,則x=時,y=—4。
8、直線y=—5x+b與直線y=x—3都交y軸上同一點,則b的值為。
9、已知圓O的半徑為1,過點A(2,0)的直線切圓O于點B,交y軸于點C。
(1)求線段AB的長。
(2)求直線AC的解析式。
初中數(shù)學教案2
一、教學目標:
1、理解二元一次方程及二元一次方程的解的概念;
2、學會求出某二元一次方程的幾個解和檢驗某對數(shù)值是否為二元一次方程的解;
3、學會把二元一次方程中的一個未知數(shù)用另一個未知數(shù)的一次式來表示;
4、在解決問題的過程中,滲透類比的思想方法,并滲透德育教育。
二、教學重點、難點:
重點:二元一次方程的意義及二元一次方程的解的概念。
難點:把一個二元一次方程變形成用關于一個未知數(shù)的代數(shù)式表示另一個未知數(shù)的形式,其實質(zhì)是解一個含有字母系數(shù)的方程。
三、教學方法與教學手段:
通過與一元一次方程的比較,加強學生的類比的思想方法;通過“合作學習”,使學生認識數(shù)學是根據(jù)實際的需要而產(chǎn)生發(fā)展的觀點。
四、教學過程:
1、情景導入:
新聞鏈接:x70歲以上老人可領取生活補助。
得到方程:80a+150b=902880、
2、新課教學:
引導學生觀察方程80a+150b=902880與一元一次方程有異同?
得出二元一次方程的概念:含有兩個未知數(shù),并且所含未知數(shù)的項的次數(shù)都是1次的方程叫做二元一次方程。
做一做:
。1)根據(jù)題意列出方程:
①小明去看望奶奶,買了5kg蘋果和3kg梨共花去23元,分別求蘋果和梨的單價、設蘋果的單價x元/kg,梨的單價y元/kg;
②在高速公路上,一輛轎車行駛2時的路程比一輛卡車行駛3時的路程還多20千米,如果設轎車的速度是a千米/小時,卡車的速度是b千米/小時,可得方程:
。2)課本P80練習2、判定哪些式子是二元一次方程方程。
合作學習:
活動背景愛心滿人間——記求是中學“學雷鋒、關愛老人”志愿者活動。
問題:參加活動的36名志愿者,分為勞動組和文藝組,其中勞動組每組3人,文藝組每組6人、團支書擬安排8個勞動組,2個文藝組,單從人數(shù)上考慮,此方案是否可行?為什么?把x=8,y=2代入二元一次方程3x+6y=36,看看左右兩邊有沒有相等?由學生檢驗得出代入方程后,能使方程兩邊相等、得出二元一次方程的解的概念:使二元一次方程兩邊的值相等的'一對未知數(shù)的值叫做二元一次方程的一個解。
并提出注意二元一次方程解的書寫方法。
3、合作學習:
給定方程x+2y=8,男同學給出y(x取絕對值小于10的整數(shù))的值,女同學馬上給出對應的x的值;接下來男女同學互換、(比一比哪位同學反應快)請算的最快最準確的同學講他的計算方法、提問:給出x的值,計算y的值時,y的系數(shù)為多少時,計算y最為簡便?
出示例題:已知二元一次方程x+2y=8。
。1)用關于y的代數(shù)式表示x;
(2)用關于x的代數(shù)式表示y;
。3)求當x=2,0,—3時,對應的y的值,并寫出方程x+2y=8的三個解。
。ó斢煤瑇的一次式來表示y后,再請同學做游戲,讓同學體會一下計算的速度是否要快)
4、課堂練習:
(1)已知:5xm—2yn=4是二元一次方程,則m+n=;
。2)二元一次方程2x—y=3中,方程可變形為y=當x=2時,y=;
5、你能解決嗎?
小紅到郵局給遠在農(nóng)村的爺爺寄掛號信,需要郵資3元8角、小紅有票額為6角和8角的郵票若干張,問各需要多少張這兩種面額的郵票?說說你的方案。
6、課堂小結:
。1)二元一次方程的意義及二元一次方程的解的概念(注意書寫格式);
(2)二元一次方程解的不定性和相關性;
。3)會把二元一次方程化為用一個未知數(shù)的代數(shù)式表示另一個未知數(shù)的形式。
7、布置作業(yè):
初中數(shù)學教案3
教學目標:
1、了解公式的意義,使學生能用公式解決簡單的實際問題;
2、初步培養(yǎng)學生觀察、分析及概括的能力;
3、通過本節(jié)課的教學,使學生初步了解公式來源于實踐又反作用于實踐。
教學建議:
一、教學重點、難點
重點:通過具體例子了解公式、應用公式。
難點:從實際問題中發(fā)現(xiàn)數(shù)量之間的關系并抽象為具體的公式,要注意從中反應出來的歸納的思想方法。
二、重點、難點分析
人們從一些實際問題中抽象出許多常用的、基本的數(shù)量關系,往往寫成公式,以便應用。如本課中梯形、圓的面積公式。應用這些公式時,首先要弄清楚公式中的字母所表示的意義,以及這些字母之間的數(shù)量關系,然后就可以利用公式由已知數(shù)求出所需的未知數(shù)。具體計算時,就是求代數(shù)式的值了。有的公式,可以借助運算推導出來;有的公式,則可以通過實驗,從得到的反映數(shù)量關系的一些數(shù)據(jù)(如數(shù)據(jù)表)出發(fā),用數(shù)學方法歸納出來。用這些抽象出的具有一般性的公式解決一些問題,會給我們認識和改造世界帶來很多方便。
三、知識結構
本節(jié)一開始首先概述了一些常見的公式,接著三道例題循序漸進的講解了公式的直接應用、公式的先推導后應用以及通過觀察歸納推導公式解決一些實際問題。整節(jié)內(nèi)容滲透了由一般到特殊、再由特殊到一般的辨證思想。
四、教法建議
1、對于給定的可以直接應用的公式,首先在給出具體例子的前提下,教師創(chuàng)設情境,引導學生清晰地認識公式中每一個字母、數(shù)字的意義,以及這些數(shù)量之間的對應關系,在具體例子的基礎上,使學生參與挖倔其中蘊涵的思想,明確公式的應用具有普遍性,達到對公式的靈活應用。
2、在教學過程中,應使學生認識有時問題的解決并沒有現(xiàn)成的公式可套,這就需要學生自己嘗試探求數(shù)量之間的關系,在已有公式的基礎上,通過分析和具體運算推導新公式。
3、在解決實際問題時,學生應觀察哪些量是不變的,哪些量是變化的,明確數(shù)量之間的對應變化規(guī)律,依據(jù)規(guī)律列出公式,再根據(jù)公式進一步地解決問題。這種從特殊到一般、再從一般到特殊認識過程,有助于提高學生分析問題、解決問題的能力。
教學設計示例:
一、教學目標
。ㄒ唬┲R教學點
1、使學生能利用公式解決簡單的實際問題。
2、使學生理解公式與代數(shù)式的關系。
。ǘ┠芰τ柧汓c
1、利用數(shù)學公式解決實際問題的能力。
2、利用已知的公式推導新公式的能力。
。ㄈ┑掠凉B透點
數(shù)學來源于生產(chǎn)實踐,又反過來服務于生產(chǎn)實踐。
。ㄋ模┟烙凉B透點
數(shù)學公式是用簡潔的數(shù)學形式來闡明自然規(guī)定,解決實際問題,形成了色彩斑斕的多種數(shù)學方法,從而使學生感受到數(shù)學公式的簡潔美。
二、學法引導
1、數(shù)學方法:引導發(fā)現(xiàn)法,以復習提問小學里學過的公式為基礎、突破難點。
2、學生學法:觀察→分析→推導→計算。
三、重點、難點、疑點及解決辦法
1、重點:利用舊公式推導出新的圖形的計算公式。
2、難點:同重點。
3、疑點:把要求的圖形如何分解成已經(jīng)熟悉的圖形的和或差。
四、課時安排
1課時
五、教具學具準備
投影儀,自制膠片。
六、師生互動活動設計
教者投影顯示推導梯形面積計算公式的圖形,學生思考,師生共同完成例1解答;教者啟發(fā)學生求圖形的面積,師生總結求圖形面積的公式。
七、教學步驟
。ㄒ唬﹦(chuàng)設情景,復習引入
師:同學們已經(jīng)知道,代數(shù)的一個重要特點就是用字母表示數(shù),用字母表示數(shù)有很多應用,公式就是其中之一,我們在小學里學過許多公式,請大家回憶一下,我們已經(jīng)學過哪些公式,教法說明,讓學生一開始就參與課堂教學,使學生在后面利用公式計算感到不生疏。
在學生說出幾個公式后,師提出本節(jié)課我們應在小學學習的基礎上,研究如何運用公式解決實際問題。
板書:公式
師:小學里學過哪些面積公式?
板書:S=ah
(出示投影1)。解釋三角形,梯形面積公式
讓學生感知用割補法求圖形的面積。
初中數(shù)學教案4
一、內(nèi)容簡介
本節(jié)課的主題:通過一系列的探究活動,引導學生從計算結果中總結出完全平方公式的兩種形式。
關鍵信息:
1、以教材作為出發(fā)點,依據(jù)《數(shù)學課程標準》,引導學生體會、參與科學探究過程。首先提出等號左邊的兩個相乘的多項式和等號右邊得出的三項有什么關系。通過學生自主、獨立的發(fā)現(xiàn)問題,對可能的答案做出假設與猜想,并通過多次的檢驗,得出正確的結論。學生通過收集和處理信息、表達與交流等活動,獲得知識、技能、方法、態(tài)度特別是創(chuàng)新精神和實踐能力等方面的發(fā)展。
2、用標準的數(shù)學語言得出結論,使學生感受科學的嚴謹,啟迪學習態(tài)度和方法。
二、學習者分析:
1、在學習本課之前應具備的基本知識和技能:
、偻愴椀亩x。
、诤喜⑼愴椃▌t
、鄱囗検匠艘远囗検椒▌t。
2、學習者對即將學習的內(nèi)容已經(jīng)具備的水平:
在學習完全平方公式之前,學生已經(jīng)能夠整理出公式的右邊形式。這節(jié)課的目的就是讓學生從等號的左邊形式和右邊形式之間的關系,總結出公式的應用方法。
三、教學/學習目標及其對應的課程標準:
(一)教學目標:
1、經(jīng)歷探索完全平方公式的過程,進一步發(fā)展符號感和推力能力。
2、會推導完全平方公式,并能運用公式進行簡單的計算。
(二)知識與技能:經(jīng)歷從具體情境中抽象出符號的過程,認識有理數(shù)、實數(shù)、代數(shù)式、防城、不等式、函數(shù);掌握必要的運算,(包括估算)技能;探索具體問題中的數(shù)量關系和變化規(guī)律,并能運用代數(shù)式、防城、不等式、函數(shù)等進行描述。
(四)解決問題:能結合具體情景發(fā)現(xiàn)并提出數(shù)學問題;嘗試從不同角度尋求解決問題的方法,并能有效地解決問題,嘗試評價不同方法之間的差異;通過對解決問題過程的反思,獲得解決問題的經(jīng)驗。
(五)情感與態(tài)度:敢于面對數(shù)學活動中的困難,并有獨立克服困難和運用知識解決問題的成功體驗,有學好數(shù)學的自信心;并尊重與理解他人的見解;能從交流中獲益。
四、教育理念和教學方式:
1、教師是學生學習的組織者、促進者、合作者:學生是學習的主人,在教師指導下主動的、富有個性的學習,用自己的身體去親自經(jīng)歷,用自己的心靈去親自感悟。
教學是師生交往、積極互動、共同發(fā)展的過程。當學生迷路的時候,教師不輕易告訴方向,而是引導他怎樣去辨明方向;當學生登山畏懼了的時候,教師不是拖著他走,而是喚起他內(nèi)在的精神動力,鼓勵他不斷向上攀登。
2、采用“問題情景—探究交流—得出結論—強化訓練”的模式展開教學。
3、教學評價方式:
(1)通過課堂觀察,關注學生在觀察、總結、訓練等活動中的主動參與程度與合作交流意識,及時給與鼓勵、強化、指導和矯正。
(2)通過判斷和舉例,給學生更多機會,在自然放松的狀態(tài)下,揭示思維過程和反饋知識與技能的掌握情況,使老師可以及時診斷學情,調(diào)查教學。
(3)通過課后訪談和作業(yè)分析,及時查漏補缺,確保達到預期的教學效果。
五、課后反思
本節(jié)課雖然算不上課本中的難點,但在整式一章中是個重點。它是多項式乘法特殊形式下的一種簡便運算。學生需要熟練掌握公式兩種形式的使用方法,以提高運算速度。授課過程中,應注重讓學生總結公式的等號兩邊的特點,讓學生用語言表達公式的內(nèi)容,讓學生說明運用公式過程中容易出現(xiàn)的問題和特別注意的細節(jié)。然后再通過逐層深入的練習,鞏固完全平方公式兩種形式的應用。為完全平方公式第二節(jié)課的實際應用和提高應用做好充分的準備
初中數(shù)學教案5
教材分析:
一元二次方程根與系數(shù)的關系的知識內(nèi)容主要是以前一單元中的求根公式為基礎的。教材通過一元二次方程ax2+bx+c=0(a≠0)的根x1、x2得出一元二次方程根與系數(shù)的關系,以及以數(shù)x1、x2為根的一元二次方程的求方程模型。然后通過4個例題介紹了利用根與系數(shù)的關系簡化一些計算的知識。
學情分析:
1.學生已學習用求根公式法解一元二次方程。
2.本課的教學對象是九年級學生,學生對事物的認識多是直觀、形象的,他們所注意的多是事物外部的、直接的、具體形象的特征。
3.在教學初始,出示一些學生所熟悉和感興趣的東西,結合一元二次方程求根公式使他們在現(xiàn)代化的教學模式和傳統(tǒng)的教學模式相結合的基礎上掌握一元二次方程根與系數(shù)的關系。
教學目標:
1、知識目標:要求學生在理解的基礎上掌握一元二次方程根與系數(shù)的關系式,能運用根與系數(shù)的關系由已知一元二次方程的一個根求出另一個根與未知數(shù),會求一元二次方程兩個根的倒數(shù)和與平方數(shù),兩根之差。
2、能力目標:通過韋達定理的教學過程,使學生經(jīng)歷觀察、實驗、猜想、證明等數(shù)學活動過程,發(fā)展推理能力,能有條理地、清晰地闡述自己的觀點,進一步培養(yǎng)學生的創(chuàng)新意識和創(chuàng)新精神。
3、情感目標:通過情境教學過程,激發(fā)學生的求知欲望,培養(yǎng)學生積極學習數(shù)學的態(tài)度。體驗數(shù)學活動中充滿著探索與創(chuàng)造,體驗數(shù)學活動中的成功感,建立自信心。
教學重難點:
1、重點:一元二次方程根與系數(shù)的關系。
2、難點:讓學生從具體方程的根發(fā)現(xiàn)一元二次方程根與系數(shù)之間的關系,并用語言表述,以及由一個已知方程求作新方程,使新方程的根與已知的方程的根有某種關系,比較抽象,學生真正掌握有一定的難度,是教學的難點。
板書設計:
一元二次方程根與系數(shù)的關系如果ax+bx+c=0(a≠0)的兩根是x1,x2,那么x1+x2=,x1x2=。
問題6.在方程ax+bx+c=0(a≠0)中,a、b、c的作用嗎?①二次項系數(shù)a是否為零,決定著方程是否為二次方程;②當a≠0時,b=0,a、c異號,方程兩根互為相反數(shù);③當a≠0時,△=b-4ac可判定根的情況;④當a≠0,b-4ac≥0時,x1+x2=,x1x2=。⑤當a≠0,c=0時,方程必有一根為0。
學生學習活動評價設計:
本節(jié)課充分讓學生分析、觀察、提高了學生的歸納能力及推理論證的能力。
教學反思:
1.一元二次方程根與系數(shù)的關系的推導是在求根公式的基礎上進行。它深化了兩根的和與積同系數(shù)之間的關系,是我們今后繼續(xù)研究一元二次方程根的情況的主要工具,必須熟記,為進一步使用打下基礎。
2.以一元二次方程根與系數(shù)的關系的探索與推導,向?qū)W生展示認識事物的一般規(guī)律,提倡積極思維,勇于探索的精神,借此鍛煉學生分析、觀察、歸納的能力及推理論證的能力。
3.一元二次方程的根與系數(shù)的關系,在中考中多以填空,選擇,解答題的形式出現(xiàn),考查的頻率較高,也常與幾何、二次函數(shù)等問題結合考查,是考試的熱點,它是方程理論的重要組成部分。
4.使學生體會解題方法的多樣性,開闊解題思路,優(yōu)化解題方法,增強擇優(yōu)能力。力求讓學生在自主探索和合作交流的過程中進行學習,獲得數(shù)學活動經(jīng)驗,教師應注意引導。
初中數(shù)學教案6
近年來,命題改革中加強對學生閱讀能力的考核,特別是閱讀理解題成了中考數(shù)學的新題不僅在各級各類的命題改革中加強對學生閱讀能力的考核,對數(shù)學閱讀教學提出了新的要求,而且從人的發(fā)展、人才的培養(yǎng)角度思考,也需要加強數(shù)學閱讀能力的培養(yǎng)。特別是閱讀理解題成了中考數(shù)學的新題型,具有很強的選拔功能。因此,在初中數(shù)學教學中,應當重視閱讀教學,充分利用閱讀的形式,加強數(shù)學閱讀能力的培養(yǎng)。
一、加強廣大師生對數(shù)學閱讀重要性的理解
數(shù)學教科書是專家在充分考慮學生生理心理特征、教育教學原理、數(shù)學學科特點等因素的基礎上精心編寫而成,具有極高的閱讀價值。數(shù)學教學活動中,數(shù)學閱讀是“人——本”對話的數(shù)學交流形式。在這種形式中,學生能通過教科書的標準語言來規(guī)范自己的數(shù)學用語,能有效地促進數(shù)學閱讀水平的發(fā)展,準確敘述解題過程中有關的觀點和進行嚴謹?shù)倪壿嬐评。因此,?shù)學閱讀不僅能促進學生數(shù)學語言水平的發(fā)展,而且有助于學生更好地掌握數(shù)學。另外,每年一度的中考試題中都設置了數(shù)學應用題,閱讀理解題,而學生每遇到應用題的問答便覺得困難重重,其主要原因是學生缺乏閱讀數(shù)學的方法。因此,數(shù)學教學有必要重視數(shù)學閱讀。
二、初中數(shù)學閱讀教學的教學原則
在初中數(shù)學教學中進行閱讀教學,應當遵循如下的教學原則:
1.主體性原則。從根本上承認和尊重受學生的主體性,使學生能動地參與到數(shù)學閱讀活動的全過程中來,將自己進行的閱讀活動作為意識對象,不斷對其進行積極的監(jiān)控,調(diào)節(jié);規(guī)劃閱讀進程,獨自獲得必要的信息和資料;不斷培養(yǎng)自我監(jiān)控,自我調(diào)節(jié)的習慣,逐步學會探索地進行數(shù)學閱讀與數(shù)學學習。
2.差異性原則。學生在個體發(fā)展區(qū)、學習方式、知識基礎、思維品質(zhì)等多種因素上的差異導致學生閱讀能力的差異。也決定了教師必須對不同層面學生給以不同的關注,在閱讀過程中,學生獨立閱讀的過程為教師提供了充足的課堂巡視時間,使教師能夠?qū)⒔y(tǒng)一學習變成個別指導,重點對個別閱讀能力較差進行指導。
3.內(nèi)化性原則。內(nèi)化的基本條件是對數(shù)學語言的感知水平,不僅包括對數(shù)學學科本身的概念、法則、定律、公式等的理解,而且包括學生的元認知水平的控制和調(diào)節(jié)。因此,在閱讀過程中要不斷地使學生充分實踐監(jiān)控的各種具體策略和技能,進而逐步內(nèi)化為自我監(jiān)控能力,使其能在新的條件下,靈活運用這些策略和技能進行自我監(jiān)控。
4.反饋性原則。個體的自我反饋,自我評價的意識和能力是至關重要的。教師應及時、準確、適當?shù)貙W生的自我監(jiān)控做出評價,指導他們逐步學會對學習方法,策略運用及結果進行反饋和評價。同時,學生根據(jù)教師的指導,對自己的閱讀監(jiān)控過程,所用的策略及結果進行調(diào)控和改進,不斷提高思維的抽象概括水平,從而不斷發(fā)展與完善自己的數(shù)學認知結構。
5.建構性原則。閱讀過程是數(shù)學建構的過程,是通過對數(shù)學材料進行部分與整體的交替感知去構建數(shù)學結構,領悟形式化運動的過程。在閱讀過程中學生主動探索,充分利用數(shù)學知識特有的邏輯性和數(shù)學內(nèi)容的結構特點,不斷在課文的適當?shù)胤接缮衔淖龀霾孪、估計,再通過與已知相對照,加以修正,從而獲得新知識。
三、實施數(shù)學閱讀教學的具體途徑
1.預習的閱讀指導
在課堂教學中存在這樣的現(xiàn)象:部分學生認為,沒有預習的必要,反正教師都要講,上課認真聽就是了。這是一種錯誤的認識。預習的作用主要表現(xiàn)在以下幾個方面:能提高學生聽課的效率,有利于他們更好地做課堂筆記;培養(yǎng)學生的自學能力;可以鞏固學生對知識的記憶。那么,怎樣指導學生預習呢?可以按如下步驟進行:首先選擇好預習的時間,指導學生迅速地瀏覽即將學習的教材,然后讓他們帶著問題詳細閱讀第二遍,并在閱讀過程中做好預習筆記,以便于接下來學生能有目的地聽課。
2.數(shù)學教材的閱讀指導
。1)閱讀目錄標題。目錄標題是課本的綱目,是每一章節(jié)的精華。閱讀目錄標題就等于了解了全文的框架結構。閱讀了課本內(nèi)容就使目錄標題具體化了。逐步養(yǎng)成“標題聯(lián)想”的習慣。
。2)閱讀概念
我們所希望達到的指導效果是:讓學生在閱讀概念時能夠正確理解概念中的字、詞、句,能正確進行文字語言、圖形語言和符號語言的互譯,并能注意到聯(lián)系實際找出反例或?qū)嵨铮粚W生能弄清數(shù)學概念的內(nèi)涵和外延,也就是既能區(qū)分相近的概念,又能知道其適用范圍。
。3)閱讀代數(shù)式
大多數(shù)學生在閱讀代數(shù)式時,只是按照代數(shù)式的順序去讀。教師應教會學生用多種方法讀同一個代數(shù)式,同時,在閱讀的過程中要注意式子本身的特點及其普遍性。
。4)閱讀例題
對于初中學生例題閱讀的指導,應按以下幾個步驟進行:首先,要讓學生認真審題;分析解題過程的關鍵所在,嘗試解題;其次,要讓學生比較例題和教材解法的優(yōu)劣,對一組相關聯(lián)的例題要相互比較,著力尋找,領悟解題規(guī)律,掌握規(guī)范書寫格式。并使解題過程的表達即簡潔又符合書寫格式;最后,還要引導學生總結解題規(guī)律,并努力探求新的解題途徑。
(5)閱讀公式
不要讓學生死記硬背公式,關鍵是要讓他們看清教材是怎樣把公式一步一步推導出來的,要提醒學生注意認真閱讀公式的推導過程。同時要讓學生明白公式的特征并能設法記住,另外還要讓他們注意公式的應用條件,弄明白有關公式的內(nèi)在聯(lián)系,了解公式的運用、通用、合用、變用和巧用。
。6)閱讀數(shù)學定理。注意分清定理的條件和結論;探討定理的證明途徑和方法,通過與課本對照,分析證法的正誤、優(yōu)劣;注意聯(lián)系類似定理,進行分析比較、掌握其應用;要思考定理可否逆用,推廣及引伸。
(7)閱讀提示與說明
教材中相關知識及許多習題的后面都附有說明或小括號式的提示語。例如,代數(shù)式概念中的“運算符號”,教材特指加、減、乘、除、乘方運算;要告訴學生對于這些說明或提示語,千萬不可忽視,往往解題的某一條件或關鍵正隱藏在這里,同時對選學內(nèi)容,教師也應在自習課上給出相關的閱讀材料。
(8)閱讀章頭圖和小結
章頭圖讓學生對本章要學的知識有一個初步的認識和了解,明確要學的內(nèi)容,做到心中有數(shù)、目的明確;而認真閱讀小結,則能教學生學會自我總結,這是一個歸納、總結、提升的過程。
3.加強課外閱讀,豐富學生知識
近年來應用題的考試情況告訴我們,數(shù)學閱讀不能僅僅局限于教材。教師應向?qū)W生推薦適宜的課外閱讀材料,給學生提供一些數(shù)學應用題讓學生閱讀,不一定要求他們?nèi)珪觯仨毰孱}意,對于當今社會實踐中出現(xiàn)的新名詞有所了解,如“低炭”、“環(huán)保”、“利息稅”、“利潤”、“毛利潤”等。
四、數(shù)學閱讀教學的價值
重視數(shù)學閱讀,培養(yǎng)閱讀能力,有助于個別化學習,使每個學生都能夠通過自身的努力達到他所能達到的最高水平,實現(xiàn)素質(zhì)教育的目標。要想使數(shù)學素質(zhì)教育的目標得到落實,使學生不再感到數(shù)學難學,就必須重視數(shù)學閱讀教學。教師應加強指導學生認真閱讀課文,強調(diào)學生對數(shù)學課文的閱讀和理解,以促使學生養(yǎng)成良好的自學能力,即終身學習的能力。這將在整個中學數(shù)學教學中形成一種以培養(yǎng)自學能力為目的的教學風氣,同時有利于轉(zhuǎn)變數(shù)學教師的教學觀念,改變傳統(tǒng)的教學方式,優(yōu)化過程,提高技巧,提高課堂教學的效率,拓展教師的視野及知識結構。
初中數(shù)學教案7
在初中的數(shù)學教學過程中,函數(shù)教學是比較難的章節(jié),我們該如何設計我們的教學過程呢?下面我來談談我的一些很淺的看法:首先函數(shù)是刻畫和研究現(xiàn)實世界變化規(guī)律的重要模型,也是初中數(shù)學里代數(shù)領域的重要內(nèi)容,它在初中數(shù)學中具有較強的綜合性。在教學中,學生常常覺得函數(shù)抽象深奧,高不可攀,老師也覺得函數(shù)難講,講了學生也理解不了,理解了也不會解題。事實果真如此難教又難學嗎?下面我談談在教學設計方面一些方法和實踐。
一、注重類比教學
不同的事物往往具有一些相同或相似的屬性,人們正是利用相似事物具有的這種屬性,通過對一事物的認識來認識與它相似的另一事物,這種認識事物的思維方法就是類比法,利用類比的思想進行教學設計實施教學,可稱為類比教學。在函數(shù)教學中我們期望的是通過對前面知識的學習方法的傳授,達到對后續(xù)知識的學習產(chǎn)生影響,使學生達到舉一反三,觸類旁通的目的,讓學生順利地由學會到會學,真正實現(xiàn)教是為了不教的目的。有經(jīng)驗的老師都會發(fā)現(xiàn),初中學習的正比例函數(shù)、一次函數(shù)、反比例函數(shù)、二次函數(shù)在概念的得來、圖象性質(zhì)的研究、及基本解題方法上都有著本質(zhì)上的相似。因此采用類比的教學方法不但省時、省力,還有助于學生的理解和應用。是一種既經(jīng)濟又實效的教學方法。下面我就舉例說明如何采用類比的方法實現(xiàn)函數(shù)的教學。
首先是正比例函數(shù),它是一次函數(shù)特例,也是初中數(shù)學中的一種簡單最基本的函數(shù)。但是,我們有些教師卻因為正比例函數(shù)過于簡單,而輕視。匆匆給出概念,然后應用。等到講到一次函數(shù)、反比例函數(shù)、二次函數(shù)又感到力不從心,學生接受起來概念模糊,性質(zhì)混亂,解題方法不明確。造成這種困擾的原因是因為忽視正比例函數(shù)的基礎作用,我們應該借助正比例函數(shù)這個最簡單的函數(shù)載體,把函數(shù)研究經(jīng)典流程完整呈現(xiàn),正所謂麻雀雖小,五臟俱全。再學習其他函數(shù)時,在此基礎上類比學習,循序漸進,螺旋上升。例如:
《正比例函數(shù)》教學流程
。ㄒ唬┉h(huán)節(jié)一:概念的建立
通過對問題的處理用函數(shù)y=200x來反映汽車的行程與時間的對應規(guī)律引入新課。學生自覺思考教師提問,共同得出每個問題的函數(shù)關系式。引導學生觀察以上函數(shù)關系式的特點得出正比例函數(shù)的描述定義及解析式特點。
。ǘ┉h(huán)節(jié)二:函數(shù)圖象
這個環(huán)節(jié)是教學的重點,由學生先動手按列表——描點——連線的過程畫函數(shù)y=2x和y=-2x的圖象,相互交流比較然后教師利用多媒體展示畫函數(shù)圖象的過程并通過比較使學生正確掌握畫函數(shù)圖象的方法。
。ㄈ┉h(huán)節(jié)三:探究函數(shù)性質(zhì)
讓學生觀察函數(shù)圖象并引導學生通過比較來歸納正比例函數(shù)的性質(zhì),這個環(huán)節(jié)是本課的難點,教師要引導學生從圖象的形狀,從左往右的升降情況,經(jīng)過的象限及自變量變化時函數(shù)值的變化規(guī)律。這幾個方面來歸納,最終得出正比例函數(shù)的性質(zhì)。
。ㄋ模┉h(huán)節(jié)四:概念的歸納
將觀察、探究出的函數(shù)圖象的特征、函數(shù)的性質(zhì)等做出系統(tǒng)的歸納。
二、注重數(shù)形結合的教學
數(shù)形結合的思想方法是初中數(shù)學中一種重要的思想方法。數(shù)學是研究現(xiàn)實世界數(shù)量關系和空間形式的科學。而數(shù)形結合就是通過數(shù)與形之間的對應和轉(zhuǎn)化來解決數(shù)學問題。它包含以形助數(shù)和以數(shù)解形兩個方面,利用它可使復雜問題簡單化,抽象問題具體化,它兼有數(shù)的嚴謹與形的直觀之長。
函數(shù)的三種表示方法:解析法、列表法、圖象法本身就體現(xiàn)著函數(shù)的數(shù)形結合。函數(shù)圖象就是將變化抽象的函數(shù)拍照下來研究的有效工具,函數(shù)教學離不開函數(shù)圖象的研究。在借助圖象研究函數(shù)的過程中,我們需要注意以下幾點原則:
(1)讓學生經(jīng)歷繪制函數(shù)圖象的具體過程。首先,對于函數(shù)圖象的意義,只有學生在親身經(jīng)歷了列表、描點、連線等繪制函數(shù)圖象的具體過程,才能知道函數(shù)圖象的由來,才能了解圖象上點的橫、縱坐標與自變量值、函數(shù)值的對應關系,為學生利用函數(shù)圖象數(shù)形結合研究函數(shù)性質(zhì)打好基礎。其次,對于具體的一次函數(shù)、反比例函數(shù)、二次函數(shù)的圖象的認識,學生通過親身畫圖,自己發(fā)現(xiàn)函數(shù)圖象的形狀、變化趨勢,感悟不同函數(shù)圖象之間的關系,為發(fā)現(xiàn)函數(shù)圖象間的規(guī)律,探索函數(shù)的性質(zhì)做好準備。
。2)切莫急于呈現(xiàn)畫函數(shù)圖象的簡單畫法。首先,在探索具體函數(shù)形狀時,不能取得點太少,否則學生無法發(fā)現(xiàn)點分布的規(guī)律,從而猜想出圖象的形狀;其次,教師過早強調(diào)圖象的.簡單畫法,追求方法的最優(yōu)化,縮短了學生知識探索的經(jīng)歷過程。所以,在教新知識時,教師要允許學生從最簡單甚至最笨拙的方法做起,漸漸過渡到最佳方法的掌握,達到認識上的最佳狀態(tài)。
。3)注意讓學生體會研究具體函數(shù)圖象規(guī)律的方法。初中階段一般采用兩種方法研究函數(shù)圖象:一是有特殊到一般的歸納法,二是控制參數(shù)法。
函數(shù)是一個整體,各個具體函數(shù)是函數(shù)的特例,研究方法應是相同的,通過類比和數(shù)形結合的方法,對比性質(zhì)的差異性,將具體函數(shù)逐步納入到整個函數(shù)學習中去,這也符合教材設計的螺旋式上升的理念。這樣自然使二次函數(shù)變得難著不難,水到渠成。
關于待定系數(shù)法,首先要讓學生理解感受到待定系數(shù)法的本質(zhì):對于某些數(shù)學問題,如果已知所求結果具有某種確定的形式,則可引進一些尚待確定的系數(shù)來表示這種結果,通過已知條件建立起給定的算式和結果之間的恒等式,得到以待定系數(shù)為元的方程或方程組,解之即得待定的系數(shù)。待定系數(shù)法在確定各種函數(shù)解析式中有著重要的作用,不論是正、反比例函數(shù),還是一次函數(shù)、二次函數(shù),確定函數(shù)解析式時都離不開待定系數(shù)法。因此我們要重視簡單的正比例函數(shù)、一次函數(shù)的待定系數(shù)法的.應用。要在簡單的函數(shù)中講出待定系數(shù)法的本質(zhì)來,等到了反比例函數(shù)和二次函數(shù)及綜合情況,學生已能形成能力,自如使用此方法,這時就是技巧的點撥。
初中數(shù)學教案8
在教學過程中,很多教師總認為自己在上課中講得井井有條,知識條理十分透徹,演算透徹清晰,但結果是有大多數(shù)學生不能舉一反三,數(shù)學學習困難重重。產(chǎn)生這種現(xiàn)象的原因,多數(shù)教師都歸因于學生素質(zhì)差、家庭教育環(huán)境不良等教師以外的因素,很少發(fā)現(xiàn)是自己教學能力和素養(yǎng)導致而成。
課堂教學是師生的雙邊活動。課堂教學的實質(zhì)是師生雙方的信息交流,共同學校的過程。教師得知學生在數(shù)學學習很困難時,是否想到了可能教師自己對教材理解不夠,沒有準確地把握教材的重點、難點,對教材內(nèi)容層次沒有理清和教學方法不適呢?《數(shù)學課程標準》指導下,我們的數(shù)學教學目的是要學生在數(shù)學學習中,由“聽”到“懂”,再到“會”,最后到“通”。為此,教師必須深刻反思自己的教育教學行為,批判性地考察自我主體行為表現(xiàn)及其行為依據(jù)。通過觀察、回顧、診斷、自我監(jiān)控等方式,或給予肯定、支持與強化,或給予否定、思索與修正,將“學會教學”與“學會學習”結合起來,從而努力提升教學實踐的合理性,提高課堂教學效能,到達提高教學質(zhì)量的目的,F(xiàn)就以下幾方面談談自己的看法。
一、教師要反思教育觀念
新課標下要求教師要改變學科的教育觀,始終體現(xiàn)“學生是教學活動的主體”科學理念,著眼于學生的終身發(fā)展,注重培養(yǎng)學生濃厚的學習興趣和正確的學習習慣。數(shù)學非常重視教學內(nèi)容與實際生活的緊密聯(lián)系。但是在教學活動中還是有不少教師習慣于傳統(tǒng)的教學模式,偏重于知識的傳授,強調(diào)接受式學習,這樣使很多學生在學習數(shù)學上失去了興趣。教學中教師要抓住時機,不斷地引導學生在設疑、質(zhì)疑、解疑的過程中,創(chuàng)設認知“沖突”,激發(fā)學生持續(xù)的學習興趣和求知欲望,順利地建立數(shù)學概念,把握數(shù)學定義、定理和規(guī)律。
教師在探究教學中要立足與培養(yǎng)學生的獨立性和自主性,引導他們質(zhì)疑、調(diào)查和探究,學會在實踐中學,在合作中學,逐步形成適合于自己的學習策略。例如,在學習等腰三角形三線合一的性質(zhì)時可以讓三個同學合作分別去畫出頂角平分線、底邊上的高、底邊上的中線,這是學生會發(fā)現(xiàn)三條線為什么會是一條線?證明三角形全等的方法有多種,為什么“角邊邊”不能判定兩三角形全等?在學習鑲嵌時,可以提這樣的問題,為什么正三角形、正方形、長方形正六邊形可以,而正五邊形不可以?等等。
這樣教師不斷地設問,不斷地質(zhì)疑,就能引導學生進行積極思考,激發(fā)起學生濃厚的學習興趣和求知欲望,促使學生在生活中發(fā)現(xiàn)和歸納各種各樣的數(shù)學規(guī)律,為下一步學習數(shù)學知識打下堅實的基礎。所以我們的教師必須反思自己的教育觀念,緊緊抓住主導和主體的關系,解決好學生學習積極性的問題。
二、教師要反思教學設計
教學設計是課堂教學的藍本,是對課堂教學的整體規(guī)劃和預設,勾勒出了課堂教學活動的效益取向。設計教學方案時,教師對當前的教學內(nèi)容及其地位(概念的“解構”、思想方法的“析出”、相關知識的聯(lián)系方式等),學生已有知識經(jīng)驗,教學目的,重點與難點,如何依據(jù)學生已有認知水平和知識的邏輯過程設計教學過程,如何突出重點和突破難點,學生在理解概念和思想方法時可能會出現(xiàn)哪些情況以及如何處理這些情況,設計哪些練習以鞏固新知識,如何評價學生的學習效果等,都應該有一定的思考和預設。教學設計的反思就是對這些思考和預設是否考慮到了。教學后,要對實際進程和學生的接受程度進行比較和反思,找出成功和不足之處及其原因,從而有效地改進教學。
三、教師要反思教學方法
教師教得好,本質(zhì)上講是學生學得好。在實際教學過程中我們的教學方法是否合乎學生實際呢?上課、評卷、答疑解難時,有的教師自以為講清楚明白了,學生受到了一定的啟發(fā),但反思后發(fā)現(xiàn),教師的講解并沒有很好地從學生原有的知識基礎出發(fā),從根本上解決學生認識上鴻溝問題。有的教師只是一味的設想按照自己某個固定的程序去解決某一類問題,也許學生當時聽明白了,但往往是是而非,并沒有真正理解問題的本質(zhì)。
初中數(shù)學教學中,例習題教學是數(shù)學教學中重要的組成部分,是概念類教學的延伸和發(fā)展。教材中的例習題都是編者精心編制的,具有典型性和啟發(fā)性,它們不僅是對基礎知識的鞏固,同時對培養(yǎng)學生智力、掌握數(shù)學思想和方法,及培養(yǎng)學生應用數(shù)學意識和能力,提高學生的數(shù)學素養(yǎng)等都有重要意義。
四、教師要反思學生學習方法
《數(shù)學課程標準》指出,有效的數(shù)學學習活動不能單純依賴模仿與記憶,動手實踐、自主探索與合作交流是學生學習數(shù)學的重要方式,因此,轉(zhuǎn)變數(shù)學學習方式,倡導有意義的學習方式是課程改革的核心任務。初中學生年齡一般在十二至十六歲之間,正處生長發(fā)育期,思想不成熟,行為不穩(wěn)定,辦事情緒化,喜表露,易沖動,既有面見師長的羞澀,有初生牛犢不怕虎的習性。在數(shù)學學習上憑興趣,看心情,個性反映較為突出,有不少學生學習方法也存在一定的問題。同時他們往往又很難發(fā)現(xiàn)自己的學習方法不妥。所以,教師就應該反思學生的學習方法,找一找哪些問題,并幫助他們努力改變不恰當?shù)姆椒ǎ箤W生達到《新課標》的要求。
總之,為學之道,必本與思,思則得之,不思則不得。教學也是這個規(guī)律,只教不思就會成為教死書的教書匠,學生也得不到很好的受益。要想成為優(yōu)秀的教師,只有一邊教書一邊總結,一邊教書一邊反思,才能實現(xiàn)自己的目的。
初中數(shù)學教案9
一、內(nèi)容特點
在知識與方法上類似于數(shù)系的第一次擴張。
也是后繼內(nèi)容學習的基礎。
內(nèi)容定位:了解無理數(shù)、實數(shù)概念,了解(算術)平方根的概念;會用根號表示數(shù)的(算術)平方根,會求平方根、立方根,用有理數(shù)估計一個無理數(shù)的大致范圍,實數(shù)簡單的四則運算(不要求分母有理化)。
二、設計思路
整體設計思路:無理數(shù)的引入----無理數(shù)的表示----實數(shù)及其相關概念(包括實數(shù)運算),實數(shù)的應用貫穿于內(nèi)容的始終。
學習對象----實數(shù)概念及其運算;學習過程----通過拼圖活動引進無理數(shù),通過具體問題的解決說明如何表示無理數(shù),進而建立實數(shù)概念;以類比,歸納探索的方式,尋求實數(shù)的運算法則;學習方式----操作、猜測、抽象、驗證、類比、推理等。
具體過程:首先通過拼圖活動和計算器探索活動,給出無理數(shù)的概念,然后通過具體問題的解決,引入平方根和立方根的概念和開方運算。
最后教科書總結實數(shù)的概念及其分類,并用類比的方法引入實數(shù)的相關概念、運算律和運算性質(zhì)等。
第一節(jié):數(shù)怎么又不夠用了:通過拼圖活動,讓學生感受無理數(shù)產(chǎn)生的實際背景和引入的必要性;借助計算器探索無理數(shù)是無限不循環(huán)小數(shù),并從中體會無限逼近的思想;會判斷一個數(shù)是有理數(shù)還是無理數(shù)。
第二、三節(jié):平方根、立方根:如何表示正方形的邊長?它的值到底是多少?并引入算術平方根、平方根、立方根等概念和開方運算。
第四節(jié):公園有多寬:在實際生活和生產(chǎn)實際中,對于無理數(shù)我們常常通過估算來求它的近似值,為此這一節(jié)內(nèi)容介紹估算的方法,包括通過估算比較大小,檢驗計算結果的合理性等,其目的是發(fā)展學生的數(shù)感。
第五節(jié):用計算器開方:會用計算器求平方根和立方根。
經(jīng)歷運用計算器探求數(shù)學規(guī)律的活動,發(fā)展合情推理的能力。
第六節(jié):實數(shù)。
總結實數(shù)的概念及其分類,并用類比的.方法引入實數(shù)的相關概念、運算律和運算性質(zhì)等。
三、一些建議
1.注重概念的形成過程,讓學生在概念的形成的過程中,逐步理解所學的概念;關注學生對無理數(shù)和實數(shù)概念的意義理解。
2.鼓勵學生進行探索和交流,重視學生的分析、概括、交流等能力的考察。
3.注意運用類比的方法,使學生清楚新舊知識的區(qū)別和聯(lián)系。
4.淡化二次根式的概念。
初中數(shù)學教案10
一、教學目的:
1.理解并掌握菱形的定義及兩個判定方法;會用這些判定方法進行有關的論證和計算;
2.在菱形的判定方法的探索與綜合應用中,培養(yǎng)學生的觀察能力、動手能力及邏輯思維能力.
二、重點、難點
1.教學重點:菱形的兩個判定方法.
2.教學難點:判定方法的證明方法及運用.
三、例題的意圖分析
本節(jié)課安排了兩個例題,其中例1是教材P109的例3,例2是一道補充的題目,這兩個題目都是菱形判定方法的直接的運用,主要目的是能讓學生掌握菱形的判定方法,并會用這些判定方法進行有關的論證和計算.這些題目的推理都比較簡單,學生掌握起來不會有什么困難,可以讓學生自己去完成.程度好一些的班級,可以選講例3.
四、課堂引入
1.復習
。1)菱形的定義:一組鄰邊相等的平行四邊形;
。2)菱形的性質(zhì)1菱形的四條邊都相等;
性質(zhì)2菱形的對角線互相平分,并且每條對角線平分一組對角;
。3)運用菱形的定義進行菱形的判定,應具備幾個條件?(判定:2個條件)
2.要判定一個四邊形是菱形,除根據(jù)定義判定外,還有其它的判定方法嗎?
3.(教材P109的探究)用一長一短兩根木條,在它們的中點處固定一個小釘,做成一個可轉(zhuǎn)動的十字,四周圍上一根橡皮筋,做成一個四邊形.轉(zhuǎn)動木條,這個四邊形什么時候變成菱形?
通過演示,容易得到:
菱形判定方法1對角線互相垂直的平行四邊形是菱形.
注意此方法包括兩個條件:(1)是一個平行四邊形;(2)兩條對角線互相垂直.
通過教材P109下面菱形的作圖,可以得到從一般四邊形直接判定菱形的方法:
菱形判定方法2四邊都相等的四邊形是菱形.
五、例習題分析
例1(教材P109的例3)略
例2(補充)已知:如圖ABCD的對角線AC的垂直平分線與邊AD、BC分別交于E、F.
求證:四邊形AFCE是菱形.
證明:∵四邊形ABCD是平行四邊形,
∴AE∥FC.
∴∠1=∠2.
又∠AOE=∠COF,AO=CO,
∴△AOE≌△COF.
∴EO=FO.
∴四邊形AFCE是平行四邊形.
又EF⊥AC,
∴AFCE是菱形(對角線互相垂直的平行四邊形是菱形).
※例3(選講)已知:如圖,△ABC中,∠ACB=90°,BE平分∠ABC,CD⊥AB與D,EH⊥AB于H,CD交BE于F.
求證:四邊形CEHF為菱形.
略證:易證CF∥EH,CE=EH,在Rt△BCE中,∠CBE+∠CEB=90°,在Rt△BDF中,∠DBF+∠DFB=90°,因為∠CBE=∠DBF,∠CFE=∠DFB,所以∠CEB=∠CFE,所以CE=CF.
所以,CF=CE=EH,CF∥EH,所以四邊形CEHF為菱形.
六、隨堂練習
1.填空:
。1)對角線互相平分的四邊形是;
。2)對角線互相垂直平分的四邊形是________;
。3)對角線相等且互相平分的四邊形是________;
。4)兩組對邊分別平行,且對角線的四邊形是菱形.
2.畫一個菱形,使它的兩條對角線長分別為6cm、8cm.
3.如圖,O是矩形ABCD的對角線的交點,DE∥AC,CE∥BD,DE和CE相交于E,求證:四邊形OCED是菱形。
七、課后練習
1.下列條件中,能判定四邊形是菱形的是()
(A)兩條對角線相等(B)兩條對角線互相垂直
。–)兩條對角線相等且互相垂直(D)兩條對角線互相垂直平分
2.已知:如圖,M是等腰三角形ABC底邊BC上的中點,DM⊥AB,EF⊥AB,ME⊥AC,DG⊥AC.求證:四邊形MEND是菱形.
3.做一做:
設計一個由菱形組成的花邊圖案.花邊的長為15cm,寬為4cm,由有一條對角線在同一條直線上的四個菱形組成,前一個菱形對角線的交點,是后一個菱形的一個頂點.畫出花邊圖形.
初中數(shù)學教案11
一、教學目標
1、了解二次根式的意義;
2、掌握用簡單的一元一次不等式解決二次根式中字母的取值問題;
3、掌握二次根式的性質(zhì)和,并能靈活應用;
4、通過二次根式的計算培養(yǎng)學生的邏輯思維能力;
5、通過二次根式性質(zhì)和的介紹滲透對稱性、規(guī)律性的數(shù)學美。
二、教學重點和難點
重點:
。1)二次根的意義;
。2)二次根式中字母的取值范圍。
難點:確定二次根式中字母的取值范圍。
三、教學方法
啟發(fā)式、講練結合。
四、教學過程
(一)復習提問
1、什么叫平方根、算術平方根?
2、說出下列各式的意義,并計算
(二)引入新課
新課:二次根式
定義:式子叫做二次根式。
對于請同學們討論論應注意的問題,引導學生總結:
。1)式子只有在條件a≥0時才叫二次根式,是二次根式嗎?呢?
若根式中含有字母必須保證根號下式子大于等于零,因此字母范圍的限制也是根式的一部分。
。2)是二次根式,而,提問學生:2是二次根式嗎?顯然不是,因此二次
根式指的是某種式子的“外在形態(tài)”。請學生舉出幾個二次根式的例子,并說明為什么是二次根式。下面例題根據(jù)二次根式定義,由學生分析、回答。
例1當a為實數(shù)時,下列各式中哪些是二次根式?
例2x是怎樣的實數(shù)時,式子在實數(shù)范圍有意義?
解:略。
說明:這個問題實質(zhì)上是在x是什么數(shù)時,x—3是非負數(shù),式子有意義。
例3當字母取何值時,下列各式為二次根式:
分析:由二次根式的定義,被開方數(shù)必須是非負數(shù),把問題轉(zhuǎn)化為解不等式。
解:(1)∵a、b為任意實數(shù)時,都有a2+b2≥0,∴當a、b為任意實數(shù)時,是二次根式。
。2)—3x≥0,x≤0,即x≤0時,是二次根式。
(3),且x≠0,∴x>0,當x>0時,是二次根式。
。4),即,故x—2≥0且x—2≠0,∴x>2。當x>2時,是二次根式。
例4下列各式是二次根式,求式子中的字母所滿足的條件:
分析:這個例題根據(jù)二次根式定義,讓學生分析式子中字母應滿足的條件,進一步鞏固二次根式的定義,。即:只有在條件a≥0時才叫二次根式,本題已知各式都為二次根式,故要求各式中的被開方數(shù)都大于等于零。
解:(1)由2a+3≥0,得。
(2)由,得3a—1>0,解得。
。3)由于x取任何實數(shù)時都有|x|≥0,因此,|x|+0。1>0,于是,式子是二次根式。所以所求字母x的取值范圍是全體實數(shù)。
。4)由—b2≥0得b2≤0,只有當b=0時,才有b2=0,因此,字母b所滿足的條件是:b=0。
初中數(shù)學教案12
教學目標:
。1)能夠根據(jù)實際問題,熟練地列出二次函數(shù)關系式,并求出函數(shù)的自變量的取值范圍。
。2)注重學生參與,聯(lián)系實際,豐富學生的感性認識,培養(yǎng)學生的良好的學習習慣
重點難點:
能夠根據(jù)實際問題,熟練地列出二次函數(shù)關系式,并求出函數(shù)的自變量的取值范圍。
教學過程:
一、試一試
1.設矩形花圃的垂直于墻的一邊AB的長為xm,先取x的一些值,算出矩形的另一邊BC的長,進而得出矩形的面積ym2.試將計算結果填寫在下表的空格中,
2.x的值是否可以任意取?有限定范圍嗎?
3.我們發(fā)現(xiàn),當AB的長(x)確定后,矩形的面積(y)也隨之確定,y是x的函數(shù),試寫出這個函數(shù)的關系式,
對于1.,可讓學生根據(jù)表中給出的AB的長,填出相應的BC的長和面積,然后引導學生觀察表格中數(shù)據(jù)的變化情況,提出問題:(1)從所填表格中,你能發(fā)現(xiàn)什么?(2)對前面提出的問題的解答能作出什么猜想?讓學生思考、交流、發(fā)表意見,達成共識:當AB的長為5cm,BC的長為10m時,圍成的矩形面積最大;最大面積為50m2。對于2,可讓學生分組討論、交流,然后各組派代表發(fā)表意見。形成共識,x的值不可以任意取,有限定范圍,其范圍是0<x<10。對于3,教師可提出問題,(1)當AB=xm時,BC長等于多少m?(2)面積y等于多少?并指出y=x(20-2x)(0<x<10)就是所求的函數(shù)關系式.
二、提出問題
某商店將每件進價為8元的某種商品按每件10元出售,一天可銷出約100件.該店想通過降低售價、增加銷售量的辦法來提高利潤,經(jīng)過市場調(diào)查,發(fā)現(xiàn)這種商品單價每降低0.1元,其銷售量可增加10件。將這種商品的售價降低多少時,能使銷售利潤最大?在這個問題中,可提出如下問題供學生思考并回答:
1.商品的利潤與售價、進價以及銷售量之間有什么關系?
[利潤=(售價-進價)×銷售量]
2.如果不降低售價,該商品每件利潤是多少元?一天總的利潤是多少元?
[10-8=2(元),(10-8)×100=200(元)]
3.若每件商品降價x元,則每件商品的利潤是多少元?一天可銷
售約多少件商品?
[(10-8-x);(100+100x)]
4.x的值是否可以任意取?如果不能任意取,請求出它的范圍,
[x的值不能任意取,其范圍是0≤x≤2]
5.若設該商品每天的利潤為y元,求y與x的函數(shù)關系式。
[y=(10-8-x)(100+100x)(0≤x≤2)]
將函數(shù)關系式y(tǒng)=x(20-2x)(0<x<10=化為:
y=-2x2+20x(0<x<10)……………………………(1)將函數(shù)關系式y(tǒng)=(10-8-x)(100+100x)(0≤x≤2)化為:y=-100x2+100x+20D(0≤x≤2)……………………(2)
三、觀察;概括
1.教師引導學生觀察函數(shù)關系式(1)和(2),提出以下問題讓學生思考回答;
(1)函數(shù)關系式(1)和(2)的自變量各有幾個?
(各有1個)
(2)多項式-2x2+20和-100x2+100x+200分別是幾次多項式?(分別是二次多項式)
(3)函數(shù)關系式(1)和(2)有什么共同特點?
(都是用自變量的二次多項式來表示的)
(4)本章導圖中的問題以及P1頁的問題2有什么共同特點?讓學生討論、交流,發(fā)表意見,歸結為:自變量x為何值時,函數(shù)y取得最大值。
2.二次函數(shù)定義:形如y=ax2+bx+c(a、b、c是常數(shù),a≠0)的函數(shù)叫做x的二次函數(shù),a叫做二次函數(shù)的系數(shù),b叫做一次項的系數(shù),c叫作常數(shù)項.
四、課堂練習
1.(口答)下列函數(shù)中,哪些是二次函數(shù)?
(1)y=5x+1(2)y=4x2-1
(3)y=2x3-3x2(4)y=5x4-3x+1
2.P3練習第1,2題。
五、小結
1.請敘述二次函數(shù)的定義.
2,許多實際問題可以轉(zhuǎn)化為二次函數(shù)來解決,請你聯(lián)系生活實際,編一道二次函數(shù)應用題,并寫出函數(shù)關系式。
六、作業(yè):略
初中數(shù)學教案13
教學目標:
1、使學生學會較熟煉地運用切線的判定方法和切線的性質(zhì)證明問題.
2、掌握運用切線的性質(zhì)和切線的判定的有關問題中輔助線引法的基本規(guī)律.
教學重點:
使學生準確、熟煉、靈活地運用切線的判定方法及其性質(zhì).教學難點:學生對題目不能準確地進行論證.證題中常會出現(xiàn)不知如何入手,不知往哪個方向證的情形.
教學過程:
一、新課引入:
我們已經(jīng)系統(tǒng)地學習了切線的判定方法和切線的性質(zhì),現(xiàn)在我們來利用這些知識證明有關幾何問題.
二、新課講解:
實際上在幾何證明題中,我們更多地將切線的判定定理和性質(zhì)定理應用在具體的問題中,而一道幾何題的分析過程,是證題中的最關鍵步驟.p.109例3如圖7-58,已知:ab是⊙o的直徑,bc是⊙o的切線,切點為b,oc平行于弦ad.求證:dc是⊙o的切線.
分析:欲證cd是⊙o的切線,d是⊙o的弦ad的一個端點當然在⊙o上,屬于公共點已給定,而證直線是圓的切線的情形.所以輔助線應該是連結oc.只要證od⊥cd即可.亦就是證∠odc=90°,所以只要證∠odc=∠obc即可,觀察圖形,兩個角分別位于△odc和△obc中,如果兩個三角形相似或全等都可以產(chǎn)生對應角相等的結果.而圖形中已存在明顯的條件od=ob,oc=oc,只要證∠3=∠4,便可造成兩個三角形全等.
∠3如何等于∠4呢?題中還有一個已知條件ad∥oc,平行的位置關系,可以造成角的相等關系,從而導致∠3=∠4.命題得證.證明:連結od.教師向?qū)W生解釋書上的證題格式屬于推出法和因為所以法的聯(lián)用,以后證題中同學可以借鑒.p.110例4如圖7-59,在以o為圓心的兩個同心圓中,大圓的弦ab和cd相等,且ab與小圓相切于點e求證:cd與小圓相切.
分析:欲證cd與小⊙o相切,但讀題后發(fā)現(xiàn)直線cd與小⊙o并未已知公共點.這個時候我們必須從圓心o向cd作垂線,設垂足為f.此時f點在直線cd上,如果我們能證得of等于小⊙o的半徑,則說明點f必在小⊙o上,即可根據(jù)切線的判定定理認定cd與小⊙o相切.題目中已告訴我們ab切小⊙o于e,連結oe,便得到小⊙o的一條半徑,再根據(jù)大⊙o中弦相等則弦心距也相等,則可得到of=oe.證明:連結oe,過o作of⊥cd,重足為f.
請同學們注意本題中證一條直線是圓的切線時,這種證明途徑是由直線與圓的公共點來給定所決定的.
練習一
p.111,1.已知:oc平分∠aob,d是oc上任意一點,⊙d與oa相切于點e.求證:ob與⊙d相切.分析:審題后發(fā)現(xiàn)欲證的ob與⊙d相切,屬于ob與⊙d無公共點的情況.這時應從圓心d向⊙b作垂線,垂足為f,然后證垂線段df等于⊙b的一條半徑,而題目中已給oa與⊙d切于點e,只要連結de.再根據(jù)角平分線的性質(zhì),問題便得到解決.證明:連結de,作df⊥ob,重足為f.p.111中2.已知如圖7-61,△abc為等腰三角形,o是底邊bc的中點,⊙o與腰ab相切于點d.求證:ac與⊙o相切.
分析:欲證ac與⊙o相切,同第1題一樣,同屬于直線與圓的公共點未給定情況.輔助線的方法同第1題,證法類同.只不過要針對本題特點還要連結oa.從等腰三角形的”三線合一”的性質(zhì)出發(fā),證得oa平分∠bac,然后再根據(jù)角平分線的性質(zhì),使問題得到證明.證明:連結od、oa,作oe⊥ac,垂足為e.同學們想一想,在證明oe=od時,還可以怎樣證?
(答案)可通過“角、角、邊”證rt△odb≌rt△oec.
三、新課講解
為培養(yǎng)學生閱讀教材的習慣讓學生閱讀109頁到110頁.從中總結出本課的主要內(nèi)容:
1.在證題中熟練應用切線的判定方法和切線的性質(zhì).
2.在證明一條直線是圓的切線時,只能遇到兩種情形之一,針對不同的情形,選擇恰當?shù)淖C明途徑,務必使同學們真正掌握.
(1)公共點已給定.做法是“連結”半徑,讓半徑“垂直”于直線.
(2)公共點未給定.做法是從圓心向直線“作垂線”,證“垂線段等于半徑”.
四、布置作業(yè)
1.教材p.116中8、9.2.教材p.117中2.
版權聲明:本文內(nèi)容由互聯(lián)網(wǎng)用戶自發(fā)貢獻,該文觀點僅代表作者本人。本站僅提供信息存儲空間服務,不擁有所有權,不承擔相關法律責任。如發(fā)現(xiàn)本站有涉嫌抄襲侵權/違法違規(guī)的內(nèi)容, 請發(fā)送郵件至 yyfangchan@163.com (舉報時請帶上具體的網(wǎng)址) 舉報,一經(jīng)查實,本站將立刻刪除