高中數(shù)學(xué)常用導(dǎo)數(shù)公式
高中數(shù)學(xué)常用導(dǎo)數(shù)公式
導(dǎo)數(shù)是微積分中的重要基礎(chǔ)概念,高中數(shù)學(xué)常用的導(dǎo)數(shù)公式有哪些呢?為此小編為大家推薦了一些高中數(shù)學(xué)常用導(dǎo)數(shù)公式,歡迎大家參閱。
高中數(shù)學(xué)導(dǎo)數(shù)公式
1.y=c(c為常數(shù)) y'=0
2.y=x^n y'=nx^(n-1)
3.y=a^x y'=a^xlna
y=e^x y'=e^x
4.y=logax y'=logae/x
y=lnx y'=1/x
5.y=sinx y'=cosx
6.y=cosx y'=-sinx
7.y=tanx y'=1/cos^2x
8.y=cotx y'=-1/sin^2x
9.y=arcsinx y'=1/√1-x^2
10.y=arccosx y'=-1/√1-x^2
11.y=arctanx y'=1/1+x^2
12.y=arccotx y'=-1/1+x^2
高中數(shù)學(xué)常用推導(dǎo)公式
在推導(dǎo)的過程中有這幾個(gè)常見的公式需要用到:
1.y=f[g(x)],y'=f'[g(x)]g'(x)『f'[g(x)]中g(shù)(x)看作整個(gè)變量,而g'(x)中把x看作變量』
2.y=u/v,y'=u'v-uv'/v^2
3.y=f(x)的反函數(shù)是x=g(y),則有y'=1/x'
證:1.顯而易見,y=c是一條平行于x軸的直線,所以處處的切線都是平行于x的,故斜率為0。用導(dǎo)數(shù)的定義做也是一樣的:y=c,⊿y=c-c=0,lim⊿x→0⊿y/⊿x=0。
2.這個(gè)的推導(dǎo)暫且不證,因?yàn)槿绻鶕?jù)導(dǎo)數(shù)的定義來推導(dǎo)的.話就不能推廣到n為任意實(shí)數(shù)的一般情況。在得到 y=e^x y'=e^x和y=lnx y'=1/x這兩個(gè)結(jié)果后能用復(fù)合函數(shù)的求導(dǎo)給予證明。
3.y=a^x,
⊿y=a^(x+⊿x)-a^x=a^x(a^⊿x-1)
⊿y/⊿x=a^x(a^⊿x-1)/⊿x
如果直接令⊿x→0,是不能導(dǎo)出導(dǎo)函數(shù)的,必須設(shè)一個(gè)輔助的函數(shù)β=a^⊿x-1通過換元進(jìn)行計(jì)算。由設(shè)的輔助函數(shù)可以知道:⊿x=loga(1+β)。
所以(a^⊿x-1)/⊿x=β/loga(1+β)=1/loga(1+β)^1/β
顯然,當(dāng)⊿x→0時(shí),β也是趨向于0的。而limβ→0(1+β)^1/β=e,所以limβ→01/loga(1+β)^1/β=1/logae=lna。
把這個(gè)結(jié)果代入lim⊿x→0⊿y/⊿x=lim⊿x→0a^x(a^⊿x-1)/⊿x后得到lim⊿x→0⊿y/⊿x=a^xlna。
可以知道,當(dāng)a=e時(shí)有y=e^x y'=e^x。
4.y=logax
⊿y=loga(x+⊿x)-logax=loga(x+⊿x)/x=loga[(1+⊿x/x)^x]/x
⊿y/⊿x=loga[(1+⊿x/x)^(x/⊿x)]/x
因?yàn)楫?dāng)⊿x→0時(shí),⊿x/x趨向于0而x/⊿x趨向于∞,所以lim⊿x→0loga(1+⊿x/x)^(x/⊿x)=logae,所以有
lim⊿x→0⊿y/⊿x=logae/x。
可以知道,當(dāng)a=e時(shí)有y=lnx y'=1/x。
這時(shí)可以進(jìn)行y=x^n y'=nx^(n-1)的推導(dǎo)了。因?yàn)閥=x^n,所以y=e^ln(x^n)=e^nlnx,
所以y'=e^nlnx(nlnx)'=x^nn/x=nx^(n-1)。
5.y=sinx
⊿y=sin(x+⊿x)-sinx=2cos(x+⊿x/2)sin(⊿x/2)
⊿y/⊿x=2cos(x+⊿x/2)sin(⊿x/2)/⊿x=cos(x+⊿x/2)sin(⊿x/2)/(⊿x/2)
所以lim⊿x→0⊿y/⊿x=lim⊿x→0cos(x+⊿x/2)lim⊿x→0sin(⊿x/2)/(⊿x/2)=cosx
6.類似地,可以導(dǎo)出y=cosx y'=-sinx。
7.y=tanx=sinx/cosx
y'=[(sinx)'cosx-sinx(cos)']/cos^2x=(cos^2x+sin^2x)/cos^2x=1/cos^2x
8.y=cotx=cosx/sinx
y'=[(cosx)'sinx-cosx(sinx)']/sin^2x=-1/sin^2x
9.y=arcsinx
x=siny
x'=cosy
y'=1/x'=1/cosy=1/√1-sin^2y=1/√1-x^2
10.y=arccosx
x=cosy
x'=-siny
y'=1/x'=-1/siny=-1/√1-cos^2y=-1/√1-x^2
11.y=arctanx
x=tany
x'=1/cos^2y
y'=1/x'=cos^2y=1/sec^2y=1/1+tan^2x=1/1+x^2
12.y=arccotx
x=coty
x'=-1/sin^2y
y'=1/x'=-sin^2y=-1/csc^2y=-1/1+cot^2y=-1/1+x^2
另外在對雙曲函數(shù)shx,chx,thx等以及反雙曲函數(shù)arshx,archx,arthx等和其他較復(fù)雜的復(fù)合函數(shù)求導(dǎo)時(shí)通過查閱導(dǎo)數(shù)表和運(yùn)用開頭的公式與
4.y=u土v,y'=u'土v'
5.y=uv,y=u'v+uv'
均能較快捷地求得結(jié)果
版權(quán)聲明:本文內(nèi)容由互聯(lián)網(wǎng)用戶自發(fā)貢獻(xiàn),該文觀點(diǎn)僅代表作者本人。本站僅提供信息存儲(chǔ)空間服務(wù),不擁有所有權(quán),不承擔(dān)相關(guān)法律責(zé)任。如發(fā)現(xiàn)本站有涉嫌抄襲侵權(quán)/違法違規(guī)的內(nèi)容, 請發(fā)送郵件至 yyfangchan@163.com (舉報(bào)時(shí)請帶上具體的網(wǎng)址) 舉報(bào),一經(jīng)查實(shí),本站將立刻刪除