平行四邊形教案 平行四邊形教案二年級下冊
關(guān)于平行四邊形教案范文集合9篇
作為一名無私奉獻的老師,通常需要準備好一份教案,教案是教學(xué)活動的總的組織綱領(lǐng)和行動方案。那么大家知道正規(guī)的教案是怎么寫的嗎?以下是小編整理的平行四邊形教案9篇,歡迎閱讀,希望大家能夠喜歡。
平行四邊形教案 篇1
教學(xué)目標:
。1)引導(dǎo)學(xué)生在探究、理解的基礎(chǔ)上,掌握面積計算公式,體驗其推導(dǎo)過程。能正確計算平行四邊形面積。
(2)通過對圖形的觀察、比較和動手操作,發(fā)展學(xué)生的空間觀念,滲透轉(zhuǎn)化和平移的思想。
。3)在數(shù)學(xué)活動中,激發(fā)學(xué)生學(xué)習(xí)興趣,培養(yǎng)探究的精神,讓學(xué)生感受數(shù)學(xué)與生活的密切聯(lián)系。
教學(xué)重點:
理解并掌握平行四邊形的面積計算公式,并能用公式解決實際問題。
教學(xué)難點:
理解平行四邊形的面積公式的推導(dǎo)過程。
教具、學(xué)具準備:
課件、長方形和平行四邊形圖片、剪刀、平行四邊形框架等。
教學(xué)過程:
一、創(chuàng)設(shè)情境、導(dǎo)入新課。
大家請看大屏幕(欣賞綏濱農(nóng)場風(fēng)景圖片),我們學(xué)校門口有兩個花壇,小明認為長方形的花壇大,而小剛認為平行四邊形的花壇大,誰說的對呢?你想來幫他們評判一下嗎?(想)
你認為要根據(jù)什么來確定花壇的大小呢?(花壇的面積)長方形的面積我們會求,那平行四邊形的面積我們怎樣求呢?這節(jié)課,我們就共同來探討平行四邊形的面積。(板書課題)
出示長方形和平行四邊形教具,引導(dǎo)學(xué)生觀察后說一說長方形和平行四邊形的各部分名稱。長方形與平行四邊形有什么區(qū)別呢?(引導(dǎo)學(xué)生說出長方形四個角都是直角)(板書各部分名稱,標注直角符號。)請大家回憶一下,我們以前學(xué)長方形面積公式時用過什么方法來求面積,誰來說一說?我們用過數(shù)方格的方式求過長方形和正方形的面積。那我們能不能也用數(shù)方格的方式求平行四邊形的面積呢?(課件演示)
二、自主探究,合作驗證
探究一:用數(shù)方格的的方法探究平行四邊形的面積。
請大家打開你們的百寶箱(學(xué)具袋),里面有老師把兩個花壇按比例縮小成的兩張卡片,自己判斷一下能不能用數(shù)方格的方法來求平行四邊形的面積,認真按提示填表。出示溫馨提示:
、僭趦蓚圖形上數(shù)一數(shù)方格的數(shù)量,然后填寫下表。(一個方格代表1㎡,不滿一格的都按半格計算。)教師強調(diào)半個格的意思。
、 填完表后,同學(xué)們相互議一議,并談一談發(fā)現(xiàn)。
你是怎么數(shù)的?你有什么發(fā)現(xiàn)嗎?能猜測一下平行四邊形的面積公式是什么嗎?(學(xué)生匯報)
探究二:用割補的方法來驗證猜測。
小明和小剛通過數(shù)格子后和我們有了一樣的猜測,但為了證實自己的猜測的正確性,想驗證一下。同時也想總結(jié)出平行四邊形的面積公式。你想?yún)⑴c嗎?學(xué)生小組討論。(鼓勵學(xué)生盡量想辦法,辦法不唯一。)
我們已經(jīng)會求哪幾種圖形的面積了?(預(yù)設(shè):學(xué)生回答會求長方形和正方形的面積),接著小組合作:大家想想辦法,試試能不能把平行四邊形轉(zhuǎn)化成我們學(xué)過的圖形,然后在求它的面積呢?請大家拿起你的小剪刀試試看吧!出示合作探究提綱:(出示教學(xué)課件)
(1)用剪刀將平行四邊形轉(zhuǎn)化成我們學(xué)過的'其他圖形。(剪的次數(shù)越少越好。)
。2)剪完后試一試能拼成什么圖形?
師:你轉(zhuǎn)化成什么圖形了?你能說一說轉(zhuǎn)化過程嗎?轉(zhuǎn)化后的圖形和平行四邊形各部分是什么關(guān)系?下面我們回顧一下我們的發(fā)現(xiàn)過程(大屏幕出示):
回顧發(fā)現(xiàn)過程:
1、把平行四邊形轉(zhuǎn)化成長方形后,( )沒變。因為長方形的長等于平行四邊形的( ),寬等于平行四邊形的( ),所以平行四邊形的面積=( ),用字母表示是( )
2、求平行四邊形的面積必須知道平行四邊形的( ) 和( )。
探究過程小結(jié)(板書)
師:小剛和小明馬上到校門前測量了長方形和平行四邊形。得出:長方形的長是6米,寬是4米,平行四邊形的底是6米,高是4米。
然后他們手拉手找到老師說了一些話。你知道他們說了什么?
生:長方形和平行四邊形的面積一樣大。為什么會一樣大?誰來講解一下。(指名板演)
三、運用新知,練中發(fā)現(xiàn)
1、基本練習(xí)
。1)口算下面各平行四邊形的面積
A、底12米,高3米:
B、高 4米,底9米;
C、底36米,高1米
通過這組練習(xí),你有什么發(fā)現(xiàn)嗎?(教學(xué)課件)
發(fā)現(xiàn)一:發(fā)現(xiàn)面積相等的平行四邊形,不一定等底等高。
。2)畫平行四邊形比賽(大屏幕出示比賽規(guī)則)
比賽規(guī)則:
1、拿出百寶箱中的方格紙。在方格紙上的兩條平行線間,畫底為六個格(底固定),看能畫出多少個平行四邊形。
2、誰在一分鐘之內(nèi)畫的多,誰就獲勝。學(xué)生畫完后(用實物展示臺展示,引導(dǎo)學(xué)生發(fā)現(xiàn))
發(fā)現(xiàn)二:1.發(fā)現(xiàn)只要等底等高,平行四邊形面積就一定相等。
2.等底等高的平行四邊形,形狀不一定完全相同。
四、總結(jié)收獲,拓展延伸
1、通過這節(jié)課的學(xué)習(xí),你知道了什么?
2、小明和小剛學(xué)完這節(jié)課后把他們的收獲寫了下來,你們想知道是什么嗎?
大屏幕出示(教學(xué)課件演示)
平行四邊形,特點記心中。
面積同樣大,形狀可不同。
等底又等高,面積準相同。
要是求面積,底高來相乘。
。R讀) 希望同學(xué)們也要向小明和小剛一樣,經(jīng)常把學(xué)過的知識進行總結(jié),做一個學(xué)習(xí)上的有心人。
拓展延伸
請大家看老師的演示。(用平行四邊形框架演示由長方形拉成平行四邊形)。如果把長方形拉成平行四邊形,周長和面積有沒有變化呢?課后我們可以小組合作,親自動手做實驗進行研究,并把發(fā)現(xiàn)記錄下來,作為今天的作業(yè)。
五、板書設(shè)計:
平行四邊形教案 篇2
一、教學(xué)目標:
1.理解并掌握平行四邊形的概念和平行四邊形對邊、對角相等的性質(zhì)。
2.會用平行四邊形的性質(zhì)解決簡單的平行四邊形的計算問題,并會進行有關(guān)的論證。
3.培養(yǎng)學(xué)生發(fā)現(xiàn)問題、解決問題的能力及邏輯推理能力。
二、重點、難點
1.重點:平行四邊形的定義,平行四邊形對角、對邊相等的性質(zhì),以及性質(zhì)的應(yīng)用。
2.難點:運用平行四邊形的性質(zhì)進行有關(guān)的論證和計算。
3.難點的突破方法:
本節(jié)的主要內(nèi)容是平行四邊形的'定義和平行四邊形對邊相等、對角相等的性質(zhì)。這一節(jié)是全章的重點之一,學(xué)好本節(jié)可為學(xué)好全章打下基礎(chǔ)。
學(xué)習(xí)這一節(jié)的基礎(chǔ)知識是平行線性質(zhì)、全等三角形和四邊形,課堂上可引導(dǎo)學(xué)生回憶有關(guān)知識。
平行四邊形的定義在小學(xué)里學(xué)過,學(xué)生是不生疏的,但對于概念的本質(zhì)屬性的理解并不深刻,所以這里并不是復(fù)習(xí)鞏固的問題,而是要加深理解,要防止學(xué)生把平行四邊形概念當作已知,而不重視對它的本質(zhì)屬性的掌握。
為了有助于學(xué)生對平行四邊形本質(zhì)屬性的理解,在講平行四邊形定義前,要把平行四邊形的對邊、對角讓學(xué)生認清楚。
講定義時要強調(diào)四邊形和兩組對邊分別平行這兩個條件,一個四邊形必須具備有兩組對邊分別平行才是平行四邊形;反之,平行四邊形,就一定是有兩組對邊分別平行的一個四邊形.要指出,定義既是平行四邊形的一個判定方法,又是平行四邊形的一個性質(zhì)。
新教材是先讓學(xué)生用觀察、度量和猜想的方法得到平行四邊形的對邊相等、對角相等這兩條性質(zhì)的,然后用兩個三角形全等,證明了這兩條性質(zhì)。這有利于培養(yǎng)學(xué)生觀察、分析、猜想、歸納知識的自學(xué)能力。
教學(xué)中可以通過大量的生活中的實例:如推拉門、汽車防護鏈、書本等引入新課,使學(xué)生在已有的知識和認知的基礎(chǔ)上去探索數(shù)學(xué)發(fā)展的規(guī)律,達到用問題創(chuàng)設(shè)數(shù)學(xué)情境,提高學(xué)生學(xué)習(xí)興趣。
平行四邊形教案 篇3
教學(xué)目標設(shè)計:
1、激發(fā)主動探索數(shù)學(xué)問題的興趣,經(jīng)歷平行四邊形面積計算公式的推導(dǎo)過程,會運用公式求平行四邊形的面積。
2、體會“等積變形”和“轉(zhuǎn)化”的數(shù)學(xué)思想和方法,發(fā)展空間觀念。
3、培養(yǎng)初步的推理能力和合作意識,以及解決實際問題的能力。
教學(xué)重點:探究平行四邊形的面積公式
教學(xué)難點:理解平行四邊形的面積計算公式的推導(dǎo)過程
教學(xué)過程設(shè)計:
一、創(chuàng)設(shè)情境,激發(fā)矛盾
拿出一個長方形框架,提問:這個框架所圍成圖形的面積你會求嗎?你是怎樣想的?根據(jù)學(xué)生的回答,適時板書:長方形面積=長×寬
教師捏住兩角輕微拉動長方形框架,使它稍微變形成一個平行四邊形。提問:它圍成的圖形面積你會求嗎?你是怎樣想的?根據(jù)學(xué)生的回答,適時板書:平行四邊形面積=底邊長×鄰邊長
學(xué)情預(yù)設(shè):學(xué)生充分發(fā)表自己的看法,大多數(shù)學(xué)生會受以前知識經(jīng)驗和教師剛才設(shè)問的影響,認為平行四邊形的面積等于底邊長×鄰邊長。
教師繼續(xù)拉動平行四邊形框架,使變形后的平行四邊形越來越扁,到最后拉成一個很扁的平行四邊形,提問:這些平行四邊形的面積也等于底
邊長×鄰邊長嗎?
今天這節(jié)課我們就來研究“平行四邊形的面積”。教師板書課題。
學(xué)情預(yù)設(shè):隨著教師繼續(xù)拉動的平行四邊形越來越扁的.變化,學(xué)生的原有知識經(jīng)驗體系開始坍塌。這種認知平衡一旦被打破,學(xué)生的思維就想開了閘的洪水一樣一發(fā)不可收拾:為什么用底邊長乘鄰邊長不能解決平行四邊形面積是多少問題?問題出在哪里呢?
二、另辟蹊徑,探究新知
1、尋找根源,另辟蹊徑
教師邊演示長方形漸變平行四邊形的過程,邊引導(dǎo)學(xué)生思考:平行四邊形為什么不能用長方形的長與寬演變而來的底邊長與鄰邊長相乘來求面積呢?
引導(dǎo)學(xué)生思考:原來是平行四邊形的面積變得越來越小了,那平行四邊形的面積到底與什么有關(guān)呢?該怎樣來求平行四邊形的面積呢?
學(xué)情預(yù)設(shè):學(xué)生在教師的引導(dǎo)下發(fā)現(xiàn),在教師的操作過程中,底邊與鄰邊的長沒有發(fā)生變化,也就是說,底邊長與鄰邊長相乘的積應(yīng)該也是不變的,但明顯的事實是學(xué)生看到了平行四邊形在越拉越扁,平行四邊形的面積在越變越小。看來此路不通,那又該在哪里找出路呢?
2、適時引導(dǎo),自主探索
教師結(jié)合剛才的板書引導(dǎo)學(xué)生發(fā)現(xiàn),我們已經(jīng)會計算長方形的面積了,是否能把平行四邊形轉(zhuǎn)化成長方形來求面積呢?
。1)學(xué)生操作
學(xué)生動手實踐,尋求方法。
學(xué)情預(yù)設(shè):學(xué)生可能會有三種方法出現(xiàn)。
第一種是沿著平行四邊形的頂點做的高剪開,通過平移,拼出長方形。 第二種是沿著平行四邊形中間任意一高剪開。
第三種是沿平行四邊形兩端的兩個頂點做的高剪開,把剪下來的兩個小直角三角形拼成一個長方形,再和剪后得出的長方形拼成一個長方形。
(2)觀察比較
剛才同學(xué)們把平行四邊形轉(zhuǎn)化成長方形,在操作時有一個共同點,是什么呢?為什么要這樣呢?
。3)課件演示
是不是任意一個平行四邊形都能轉(zhuǎn)化成一個長方形呢?請同學(xué)們仔細觀察大屏幕,讓我們再來體會一下。
3、公式推導(dǎo),形成模型
既然我們可以把一個平行四邊形轉(zhuǎn)化成一個長方形,那么轉(zhuǎn)化前的平行四邊形究竟和轉(zhuǎn)化后的長方形有怎樣的聯(lián)系呢?怎樣能想出平行四邊形的面積怎么計算呢?
先獨立思考,后小組合作、討論,如小組有困難,可提供“思考提示”。
A、拼成的長方形和原來的平行四邊形比,什么變了?什么沒有改變?
B、拼成的長方形的長和寬與原來的平行四邊形的底和高有什么關(guān)系?
C、你能根據(jù)長方形面積計算公式推導(dǎo)出平行四邊形的面積計算公式嗎?)
學(xué)情預(yù)設(shè):學(xué)生通過討論很快就能得出拼成的長方形和原來的平行四邊形之間的關(guān)系,并據(jù)此推導(dǎo)出平行四邊形的面積計算公式。在此環(huán)節(jié)中,教師要引導(dǎo)學(xué)生盡量用完整、條理的語言表達其推導(dǎo)思路:“把一個平行四邊形轉(zhuǎn)化成為一個長方形,它的面積與原來的平行四邊形的面積相等。這個長方形的長與平行四邊形的底相等,這個長方形的寬與平行四邊形的高相等,因為長方形的面積等于長乘寬,所以平行四邊形的面積等于底乘高!辈⒐桨鍟缦拢
長方形的面積 = 長 × 寬
平行四邊形的面積 = 底 × 高
4、變化對比,加深理解
引導(dǎo)學(xué)生比較前后兩種變化情況,思考:第一次的長方形變成平行四邊形與第二次的平行四邊形變成長方形,這兩種情況有什么不一樣?哪種變化能說明平行四邊形的面積計算方法的來源呢?為什么?
5、自學(xué)字母公式,體會作用
請同學(xué)們打開課本第81頁,告訴老師,如果用字母表示平行四邊形的
面積計算公式,應(yīng)該怎樣表示?你覺得用字母表達式比文字表達式好在哪里?
三、實踐應(yīng)用
1、出示課本第82頁題目,一個平行四邊形的停車位底邊長5m,高2.5m,它的面積是多少?(學(xué)生獨立列式解答,并說出列式的根據(jù))
2、看圖口述平行四邊形的面積。
3分米 2.5厘米
3、這個平行四邊形的面積你會求嗎?你是怎樣想的?
4、分別計算圖中每個平行四邊形的面積,你發(fā)現(xiàn)了什么?(單位:厘米)這樣的平行四邊形還能再畫多少個?
平行四邊形教案 篇4
第五冊平行四邊形、三角形面積公式
教學(xué)過程
師:小朋友們,今天劉老師帶來一個信封,誰來猜猜里面藏著什么?
生1:卡片。
生2:獎品。
……
師:同學(xué)們的想象力真豐富!我請小朋友上來把它揪出來,但你每拿出一件物品得向小朋友們介紹,你打算用它干什么?
。▽W(xué)生逐個上臺從信封中拿出物品)
生1:我拿出的是剪刀,打算用它剪東西。(師:板書:剪)
生2:我拿出的是一格格的東西,打算用它來量。
師: 我們給它一個名字,透明方格紙,用它量什么呢?
生2:我想用它量書本。
師: 書本的 ……(停頓)
生2:書面有幾格?
師: 書的表面有幾格其實就是它的面積,我們用1平方厘米的方格紙數(shù)它的面積 。(板書:數(shù))
生3:我拿出的是平行四邊形(學(xué)具),我想知道它的許多秘密。
師: 平形四邊形的秘密,這詞用得真好!你的寫作水平一定高。待會我們來研究它
這節(jié)課我們就用剛才這些學(xué)具來研究平行四邊形的面積。
教學(xué)反思
這是一個展示學(xué)具的片段。它們都是為學(xué)生研究平形四邊形、三角形的 面積公式服務(wù)的。分別有:剪刀一把、塑料透明方格一張、平行四邊形、三角形模型各二張。何必如此耗費時間呢?直接出示學(xué)具,學(xué)生不也能知道呢?
不!俗話說:磨刀不誤砍柴功。我認為直接出示學(xué)具,不能引起學(xué)生對學(xué)具的重視,對其作用更是模棱兩可,將為小組合作學(xué)習(xí)埋下“隱患”。學(xué)生面對一堆學(xué)具,面對要完成的任務(wù)手足無措,不知該從哪下手。這樣豈不是更浪費時間,或者學(xué)具將失去它的作用,平形四邊形、三角形的面積公式無法推導(dǎo)。
……
教學(xué)過程
師:我們已研究出平行四邊形的面積公式,成為了發(fā)現(xiàn)者。這可是一項了不起的創(chuàng)舉。讓我們再接再厲,發(fā)現(xiàn)更多的數(shù)學(xué)奧秘。如果我只給你一把剪刀、一張平行四邊形的學(xué)具,你還能發(fā)現(xiàn)其他圖形的面積公式嗎?
(學(xué)生動手操作,不久就紛紛舉手)
生1:老師,我把對角一剪就變成了兩個三角形。
生2:老師,我剪出的三角形兩個一樣的。
師: 你們真厲害!對角一剪就變成了兩個完全一樣的`三角形,你能從平行四邊形的
面積公式推導(dǎo)出三角形的面積公式嗎?
(學(xué)生小組討論)
生3:就是除以2。
師: 你能完整的說一說什么除以2嗎?
生3:平行四邊形的面積除以2。用字母表示:S=ab2。
生4:我能把它剪成兩個梯形教后反思
教材編排中平形四邊形、三角形的面積公式推導(dǎo)各安排了二個課時,三角形的面積公式又重新推導(dǎo)一次。而在本堂課上在平行四邊形后學(xué)生僅用了5分鐘就推導(dǎo)并掌握了三角形的面積公式;ㄗ钌俚臅r間掌握一節(jié)課的內(nèi)容,何樂而不為呢?
現(xiàn)在使用的教材存在著許多的弊端,教師如果只是根據(jù)教材按部就班有時就出現(xiàn)事倍功半的現(xiàn)象,而且難以達到預(yù)定的效果。而如果教師能運用教材進行靈活的運用,或是根據(jù)學(xué)生的特點重新組織教材,創(chuàng)設(shè)更有效的更能引起學(xué)生注意的課題導(dǎo)入設(shè)計、問題設(shè)計,讓學(xué)對本節(jié)課產(chǎn)生極高的興趣,讓學(xué)生自己去發(fā)現(xiàn)問題,去解決問題,使教師的教和學(xué)生的學(xué)達到理想的境界,正如肖川教授所說的“使我們的教學(xué)達到完美的教育!
平行四邊形教案 篇5
教學(xué)內(nèi)容:國標蘇教版數(shù)學(xué)第八冊P43-45。
教學(xué)目標:
1、學(xué)生在聯(lián)系生活實際和動手操作的過程中認識平行四邊形,發(fā)現(xiàn)平行四邊形的基本特征,認識平行四邊形的高。
2、學(xué)生在活動中進一步積累認識圖形的學(xué)習(xí)經(jīng)驗,學(xué)會用不同方法做出一個平行四邊形,會在方格紙上畫平行四邊形,能正確判斷一個平面圖形是不是平行四邊形,能測量或畫出平行四邊形的高。
3、學(xué)生感受圖形與生活的聯(lián)系,感受平面圖形的學(xué)習(xí)價值,進一步發(fā)展對“空間與圖形”的學(xué)習(xí)興趣。
教學(xué)重點:進一步認識平行四邊形,發(fā)現(xiàn)平行四邊形的基本特征,會畫高。
教學(xué)難點:引導(dǎo)學(xué)生發(fā)現(xiàn)平行四邊形的特征。
教學(xué)準備:配套多媒體課件。
教學(xué)過程: 一、生活導(dǎo)入。
1、(課件出示學(xué)校大門關(guān)閉和打開的錄象,最后定格成放大的圖片)教師談話:同學(xué)們每天都要經(jīng)過校門進入校園,但是你們注意觀察我們的校門了嗎?從圖片中你們能找到一些平面圖形嗎?根據(jù)回答,教師板書:平行四邊形。
2、你們還能找出我們生活中見過的一些平行四邊形嗎?學(xué)生回答后,教師課件出示一些生活中的平行四邊形:如活動衣架、風(fēng)箏、樓梯欄桿等。
3、今天這節(jié)課我們一起來進一步研究平行四邊形,相信通過研究,我們將有新的收獲。板書完整課題:認識平行四邊形。
。墼u:《數(shù)學(xué)課程標準》指出:“學(xué)生的數(shù)學(xué)學(xué)習(xí)內(nèi)容應(yīng)當是現(xiàn)實的、有意義的、富有挑戰(zhàn)性的!边x擇學(xué)生熟悉和感興趣的素材,吸引學(xué)生的注意力,激發(fā)學(xué)生主動參與學(xué)習(xí)活動的熱情,讓學(xué)生初步感知平行四邊形。]
二、探究特點。
1、剛才同學(xué)們已經(jīng)能找出生活中的一些平行四邊形了,那我們能不能利用身邊的一些物品,自己來想辦法來制作一個平行四邊形呢?你們可以先看一看材料袋中有哪些材料,再獨立思考一下準備怎么做;如果有困難的可以先看看學(xué)具袋中的平行四邊形再操作。
2、大家已經(jīng)完成了自己的創(chuàng)作,現(xiàn)在請你們和小組的同學(xué)交流一下,說說自己的做法和為什么這樣做,然后派代表上來交流。
學(xué)生小組交流,教師巡視,并進行一定的輔導(dǎo)。
3、哪個小組派代表上來交流?注意把你的方法展示在投影儀上,然后說說這么做的理由,其他小組等他們說完后可以進行補充。
(1)方法一:用小棒擺。請你說說你為什么這么做?要注意些什么呢?
(2)方法二:在釘子板上面圍一個平行四邊形。你介紹一下,在圍的時候要注意些什么?怎樣才能做一個平行四邊形?
(3)方法三:在方格紙上畫一個平行四邊形。你能提醒一下大家嗎?應(yīng)該怎樣才能得到一個平行四邊形?
(4)用直尺畫一個平行四邊形。
……
(評:這個個環(huán)節(jié)的設(shè)計,本著學(xué)生為主體的思想,敢于放手,讓學(xué)生的多種感官參與學(xué)習(xí)活動,讓學(xué)生在操作中體驗平行四邊形的一些特點;既實現(xiàn)了探究過程開放性,也突出了師生之間、學(xué)生之間的多向交流,體現(xiàn)那了學(xué)生為本的理念。)
4、剛才我們已經(jīng)能用多種方法來制作平行四邊形,現(xiàn)在請大家在方格紙上獨立在方格紙上畫一個平行四邊形,想想應(yīng)該怎么畫?注意些什么?
(評:本環(huán)節(jié)的設(shè)計,通過在方格紙上畫,讓學(xué)生再次感知平行四邊形的一些特點,為下面的猜想、驗證和畫高作了鋪墊。)
5、我們已經(jīng)能夠用不同的方法制作平行四邊形,并且能夠在方格紙上話一個平行四邊形。那么這些大小不同的平行四邊形到底有什么共同特點呢?下面我們一起來研究。
根據(jù)你們在制作平行四邊形的時候的體會,你們可以猜想一下:平行四邊形有哪些特點?(友情提示:課件中出示提示:我們可以從平行四邊形的那些方面來猜想它的特征呢?邊?角?)
6、學(xué)生小組討論后提問并板書猜想:
對邊可能平行;
對邊可能相等;
對角相等;
……
7、你們真行,有了這么多的猜想,那我們能夠自己想辦法來證明這些猜想是否正確呢?請每個小組先認領(lǐng)一條,時間有多余可以再研究其他的猜想。
學(xué)生每小組上臺認領(lǐng)一條猜想,學(xué)生分組驗證猜想。
8、經(jīng)過同學(xué)們的努力,我們已經(jīng)自己驗證了其中一條猜想,現(xiàn)在我們舊來交流一下,其他小組認真聽好,他們的回答是否正確,你覺得怎樣?
9、小組派代表上來交流自己小組的.驗證方法,其他小組在其完成后進行評價。
(1) 兩組對邊分別相等:學(xué)生介紹可以用對折或用直尺量的方法來驗證對邊相等后,教師用課件直觀展示。
(2) 兩組對邊分別平行:學(xué)生匯報的時候如果不一定很完整,教師用課件展示:兩條對邊分別延伸,然后顯示不相交。
(3) 對角相等:學(xué)生說出方法后,教師讓學(xué)生再自己量一量。
……
最后,教師板書出經(jīng)過驗證特點:
兩組對邊分別平行并且相等;
對角相等;
內(nèi)角和是360°
(評:這個環(huán)節(jié)的設(shè)計蘊涵了“猜想-驗證-結(jié)論”這樣一個科學(xué)的探究方法。給學(xué)生提供了充分的自制探索的空間,引導(dǎo)學(xué)生先猜測特點,再放手讓學(xué)生自己去驗證和交流,使學(xué)生在碰撞和交流中最后的出結(jié)論。在這個過程中,學(xué)生充分展示了自己的思維過程,在交流中與傾聽中把自己的方法與別人的想法進行了比較。)
10、完成“想想做做1”。學(xué)生獨立完成后說說理由。
三、認識高、底。
1、出示一張平行四邊形的圖,介紹:這是一個平行四邊形,你能量出平行四邊形兩條紅線間的距離嗎?應(yīng)該怎么量?把你量的線段畫出來。
學(xué)生自己嘗試后交流。
2、老師剛才發(fā)現(xiàn),大家畫的高位置都不一樣,你們想想這是為什么呢?這樣的線段到底有多少條呢?(一組平行線之間的距離處處相等,有無數(shù)條。)
說明:從平行四邊形一條邊上的一點到它對邊的垂直線段是平行四邊形的高,這條對邊是平行四邊形的底。
3、你能畫出另一組對邊上的高,并量一量嗎?學(xué)生繼續(xù)嘗試。
完成后,讓學(xué)生指一指:兩次畫的高分別垂直于哪一組對邊。板書:高和一組對邊對應(yīng)。
4、完成“試一試”:(1)先指一指高垂直于哪條邊;(2)量出每個平行四邊形的底和高各是多少厘米。
5、想想做做5,先指一指平行四邊形的底,再畫出這條底邊上的高,注意畫上直角標記。如果有錯誤,讓學(xué)生說說錯在哪里。
(這個環(huán)節(jié)的設(shè)計,通過學(xué)生自己去量、去畫,從而很方便得到了平行四邊形的高和底的概念,在的出高和底對應(yīng)的時候比較巧妙,學(xué)生學(xué)得輕松、明了。設(shè)計的練習(xí)也遵循循序漸進的原則,很好地讓學(xué)生領(lǐng)悟了高的知識。)
四、練習(xí)提高。
1、想想做做1,哪些圖形是平行四邊形,為什么。
2、想想做做2,用2塊、4塊完全一樣的三角尺分別拼成一個平行四邊形,在小組里交流是怎樣拼的。
3、想想做做3,用七巧板中的3塊拼成一個平行四邊形。
出示,你能移動其中的一塊將它改拼成長方形嗎?
4、想想做做4,想把一塊平行四邊形的木板鋸開做成一張盡可能的的長方形桌面,該從哪里鋸開呢?找一張平行四邊形紙試一試。
5、想想做做6,用飲料管作成一個長方形,再拉成平行四邊形,比一比長方形和平行四邊形的相同點和不同點。
(評:在鞏固練習(xí)中,注意通過學(xué)生動手、動腦來進一步掌握平行四邊形的特點。來年系的層次清楚、逐步提高,學(xué)生容易接受,并且注意了引導(dǎo)學(xué)生去自主探索、合作交流。)
五、閱讀調(diào)查
自主閱讀“你知道嗎?”,說說有什么收獲,再到生活中去找找類似的例子。
六、全課小結(jié)
今天我們重點研究了哪種平面圖形?它有什么特點?回想一下,我們通過哪些活動進行研究?
平行四邊形教案 篇6
教學(xué)目標:
1.使學(xué)生在理解的基礎(chǔ)上掌握平行四邊形面積的計算公式,并會運用公式正確地計算平行四邊形的面積.
2.通過操作、觀察、比較,發(fā)展學(xué)生的空間觀念,培養(yǎng)學(xué)生運用轉(zhuǎn)化的思考方法解決問題的能力和邏輯思維能力.
3.對學(xué)生進行辯詐唯物主義觀點的啟蒙教育.
教學(xué)重點:理解公式并正確計算平行四邊形的面積.
教學(xué)難點:理解平行四邊形面積公式的推導(dǎo)過程.
學(xué)具準備:每個學(xué)生準備一個平行四邊形。
教學(xué)過程: 一、導(dǎo)入新課
1、什么是面積?
2、請同學(xué)翻書到80頁,請觀察這兩個花壇,哪一個大呢?假如這塊長方形花壇的長是3米,寬是2米,怎樣計算它的面積呢?根據(jù)長方形的面積=長寬(板書),得出長方形花壇的面積是6平方米,平行四邊形面積我們還沒有學(xué)過,所以不能計算出平行四邊形花壇的面積,這節(jié)課我們就學(xué)習(xí)平行四邊形面積計算。
二、民主導(dǎo)學(xué)
。ㄒ唬、數(shù)方格法
用展示臺出示方格圖
1、這是什么圖形?(長方形)如果每個小方格代表1平方厘米,這個長方形的面積是多少?(18平方厘米)
2、這是什么圖形?(平行四邊形)每一個方格表示1平方厘米,自己數(shù)一數(shù)是多少平方厘米?
請同學(xué)認真觀察一下,平行四邊形在方格紙上出現(xiàn)了不滿一格的,怎么數(shù)呢?可以都按半格計算。然后指名說出數(shù)得的結(jié)果,并說一說是怎樣數(shù)的。
2、請同學(xué)看方格圖填80頁最下方的表,填完后請學(xué)生回答發(fā)現(xiàn)了什么?
小結(jié):如果長方形的長和寬分別等于平行四邊形的底和高,則它們的面積相等。
。ǘ┮敫钛a法
以后我們遇到平行四邊形的地、平行四邊形的零件等等平行四邊形的`東西,都像這樣數(shù)方格的方法來計算平行四邊形的面積方不方便?那么我們就要找到一種方便、又有規(guī)律的計算平行四邊形面積的方法。
(三)割補法
1、這是一個平行四邊形,請同學(xué)們把自己準備的平行四邊形沿著所作的高剪下來,自己拼一下,看可以拼成我們以前學(xué)過的什么圖形?
2、然后指名到前邊演示。
3、教師示范平行四邊形轉(zhuǎn)化成長方形的過程。
剛才發(fā)現(xiàn)同學(xué)們把平行四邊形轉(zhuǎn)化成長方形時,就把從平行四邊形左邊剪下的直角三角形直接放在剩下的梯形的右邊,拼成長方形。在變換圖形的位置時,怎樣按照一定的規(guī)律做呢?現(xiàn)在看老師在黑板上演示。
、傧妊刂叫兴倪呅蔚母呒粝伦筮叺闹苯侨切巍
、谧笫职醋∈O碌奶菪蔚挠也,右手拿著剪下的直角三角形沿著底邊慢慢向右移動。
、垡苿右欢魏螅笫指陌刺菪蔚淖蟛。右手再拿著直角三角形繼續(xù)沿著底邊慢慢向右移動,到兩個斜邊重合為止。
請同學(xué)們把自己剪下來的直角三角形放回原處,再沿著平行四邊形的底邊向右慢慢移動,直到兩個斜邊重合。(教師巡視指導(dǎo)。)
4、觀察(黑板上在剪拼成的長方形左面放一個原來的平行四邊形,便于比較。)
您現(xiàn)在正在閱讀的五年級上冊《平行四邊形的面積》教學(xué)設(shè)計文章內(nèi)容由收集!本站將為您提供更多的精品教學(xué)資源!五年級上冊《平行四邊形的面積》教學(xué)設(shè)計①這個由平行四邊形轉(zhuǎn)化成的長方形的面積與原來的平行四邊形的面積比較,有沒有變化?為什么?
、谶@個長方形的長與平行四邊形的底有什么樣的關(guān)系?
、圻@個長方形的寬與平行四邊形的高有什么樣的關(guān)系?
教師歸納整理:任意一個平行四邊形都可以轉(zhuǎn)化成一個長方形,它的面積和原來的平行四邊形的面積相等,它的長、寬分別和原來的平行四邊形的底、高相等。
5、引導(dǎo)學(xué)生總結(jié)平行四邊形面積計算公式。
這個長方形的面積怎么求?(指名回答后,在長方形右面板書:長方形的面積=長寬)
那么,平行四邊形的面積怎么求?(指名回答后,在平行四邊形右面板書:平行四邊形的面積=底高。)
6、教學(xué)用字母表示平行四邊形的面積公式。
板書:S=ah
說明在含有字母的式子里,字母和字母中間的乘號可以記作,寫成ah,也可以省略不寫,所以平行四邊形面積的計算公式可以寫成S=ah,或者S=ah。
。6)完成第81頁中間的填空。
7、驗證公式
學(xué)生利用所學(xué)的公式計算出方格圖中平行四邊形的面積和用數(shù)方格的方法求出的面積相比較相等 ,加以驗證。
條件強化:求平行四邊形的面積必須知道哪兩個條件?(底和高)
三、檢測導(dǎo)結(jié)
1、學(xué)生自學(xué)例1后,教師根據(jù)學(xué)生提出的問題講解。
2、判斷,并說明理由。
(1)兩個平行四邊形的高相等,它們的面積就相等()
(2)平行四邊形底越長,它的面積就越大()
3、做書上82頁2題。
4、小結(jié)
今天,你學(xué)會了什么?怎樣求平行四邊形的面積?平行四邊形的面積計算公式是怎樣推導(dǎo)的?
5、作業(yè)
練習(xí)十五第1題。
附:板書設(shè)計
平行四邊形面積的計算
長方形的面積=長寬 平行四邊形的面積=底高
S=ah S=ah或S=ah
平行四邊形教案 篇7
一、學(xué)習(xí)目標
1、經(jīng)歷探索多項式與多項式相乘的運算法則的過程,發(fā)展有條理的思考及語言表達能力。
2、 會進行簡單的多項式與多項式的乘法運算
二、學(xué)習(xí)過程
。ㄒ唬┳詫W(xué)導(dǎo)航
1、創(chuàng)設(shè)情境
某地區(qū)在退耕還林期間,將一塊長m米、寬a米的長方形林區(qū)的長、寬分別增加n米和b米,用兩種方法表示這塊林區(qū)現(xiàn)在的面積。
這塊林區(qū)現(xiàn)在的長為 米,寬為 米。因而面積為________米2。
還可以把這塊林地分為四小塊,它們的面積分別為 米2, 米2,_______米2, 米2。故這塊地的面積為 。
由于這兩個算式表示的都是同一塊地的面積,則有 =
如果把(m+n)看作一個整體,你還能用別的方法得到這個等式嗎?
2、概括:
多項式乘以多項式的法則:
3、計算
(1) (2)
4、練一練
。1)
。ǘ┖献鞴リP(guān)
1、某酒店的廚房進行改造,在廚房的中間設(shè)計一個準備臺,要求四面的過道寬都為x米,已知廚房的長寬分別為8米和5米,用代數(shù)式表示該廚房過道的總面積。
2、解方程
。ㄈ┻_標訓(xùn)練
1、填空題:
。1) = =
(2) = 。
2、計算
。1) (2)
(3) (4)
。ㄋ模┨嵘
1、怎樣進行多項式與多項式的乘法運算?
2、若 的乘積中不含 和 項,則a= b=
應(yīng)用題
第三十五講 應(yīng)用題
在本講中將介紹各類應(yīng)用題的解法與技巧.
當今數(shù)學(xué)已經(jīng)滲入到整個社會的各個領(lǐng)域,因此,應(yīng)用數(shù)學(xué)去觀察、分析日常生活現(xiàn)象,去解決日常生活問題,成為各類數(shù)學(xué)競賽的一個熱點.
應(yīng)用性問題能引導(dǎo)學(xué)生關(guān)心生活、關(guān)心社會,使學(xué)生充分到數(shù)學(xué)與自然和人類社會的密切聯(lián)系,增強對數(shù)學(xué)的理解和應(yīng)用數(shù)學(xué)的信心.
解答應(yīng)用性問題,關(guān)鍵是要學(xué)會運用數(shù)學(xué)知識去觀察、分析、概括所給的實際問題,揭示其數(shù)學(xué)本質(zhì),將其轉(zhuǎn)化為數(shù)學(xué)模型.其求解程序如下:
在初中范圍內(nèi)常見的數(shù)學(xué)模型有:數(shù)式模型、方程模型、不等式模型、函數(shù)模型、平面幾何模型、圖表模型等.
例題求解
一、用數(shù)式模型解決應(yīng)用題
數(shù)與式是最基本的數(shù)學(xué)語言,由于它能夠有效、簡捷、準確地揭示數(shù)學(xué)的本質(zhì),富有通用性和啟發(fā)性,因而成為描述和表達數(shù)學(xué)問題的重要方法.
(20xx年安徽中考題)某風(fēng)景區(qū)對5個旅游景點的門票價格進行了調(diào)整,據(jù)統(tǒng)計,調(diào)價前后各景點的游客人數(shù)基本不變。有關(guān)數(shù)據(jù)如下表所示:
景點ABCDE
原價(元)1010152025
現(xiàn)價(元)55152530
平均日人數(shù)(千人)11232
。1)該風(fēng)景區(qū)稱調(diào)整前后這5個景點門票的平均收費不變,平均日總收入持平。問風(fēng)景區(qū)是怎樣計算的?
。2)另一方面,游客認為調(diào)整收費后風(fēng)景區(qū)的平均日總收入相對于調(diào)價前,實際上增加了約9.4%。問游客是 怎樣計算的?
。3)你認為風(fēng)景區(qū)和游客哪一個的說法較能反映整體實際?
思路點撥 (1)風(fēng)景區(qū)是這樣計算的:
調(diào)整前的平均價格: ,設(shè)整后的平均價格:
∵調(diào)整前后的平均價格不變,平均日人數(shù)不變.
∴平均日總收入持平.
。 2)游客是這樣計算的:
原平均日總收入:10×1+10×1+15×2+20×3+25×2=160(千元)
現(xiàn)平均日總收入:5×1+5×1+15×2+25×3+30×2=175(千元)
∴平均日總收入增加了
。3)游客的說法較能反映整體實際.
二、用方程模型解應(yīng)用題
研究和解決生產(chǎn)實際和現(xiàn)實生恬中有關(guān)問題常常要用到方程<組)的知識,它可以幫助人們從數(shù)量關(guān)系和相等關(guān)系的角度去認識和理解現(xiàn)實世界.
(重慶中考題)某中學(xué)新建了一棟4層的教學(xué)大樓,每層樓有8間教室,進出這棟大樓共有4道門,其中兩道正門大小相同,兩道側(cè)門大小也相同.安全檢查中,對4道門進行了測試:當同時開啟一道正門和兩道側(cè)門時,2min內(nèi)可以通過560名學(xué)生;當同時開啟一道正門和一道側(cè)門時,4mln內(nèi)可以通過800名學(xué)生.
(1)求平均每分鐘一道正門和一道側(cè)門各可以通過多少名學(xué)生?
(2)檢查中發(fā)現(xiàn),緊急情況時因?qū)W生擁擠,出門的效率降低20%.安全檢查規(guī)定:在緊急情況下全大樓的學(xué)生應(yīng)在5min內(nèi)通過這4道門安全撤離.假設(shè)這棟教學(xué)大樓每間教室最多有45名學(xué)生,問:建造的這4道門整否符合安全規(guī)定?請說明理由.
思路點撥 列方程(組)的關(guān)鍵是找到題中等量關(guān)系:兩種測試中通過的學(xué)生數(shù)量.設(shè)未知數(shù)時一般問什么設(shè)什么.“符合安全規(guī)定”之義為最大通過量不小于學(xué)生總數(shù).
(1)設(shè)平均每分鐘一道正門可以通過x名學(xué)生,一道側(cè)門可以通過y名學(xué)生,由題意得:
,解得:
(2)這棟樓最多有學(xué)生4×8×4 5=1440(名).
擁擠時5min4道門能通過.
5×2(120+80)(1-20%)=1600(名),
因1600>1440,故建造的4道門符合安全規(guī)定.
三、用不等式模型解應(yīng)用題
現(xiàn)實世界中的不等關(guān)系是普遍存在的,許多問題有時并不需要研究它們之間的相等關(guān)系,只需要確定某個量的變化范圍,即可對所研究的問題有比較清楚的認識.
(蘇州中考題)我國東南沿海某地的風(fēng)力資源豐富,一年內(nèi)月平均的風(fēng)速不小于3m/s的時間共約160天,其中日平均風(fēng)速不小于6m/s的時間占60天.為了充分利用“風(fēng)能”這種“綠色資源”,該地擬建一個小型風(fēng)力發(fā)電場,決定選用A、B兩種型號的風(fēng)力發(fā)電機,根據(jù)產(chǎn)品說明,這兩種風(fēng)力發(fā)電機在各種風(fēng)速下的日發(fā)電量(即一天的發(fā)電量)如下表:一天的發(fā)電量)如下表:
日平均風(fēng)速v(米/秒)v<33≤v<6v≥6
日發(fā)電量 (千瓦?時)A型發(fā)電機O≥36≥150
B型發(fā)電機O≥24≥90
根據(jù)上面的數(shù)據(jù)回答:
(1)若這個發(fā)電場購x臺A型風(fēng)力發(fā)電機,則預(yù)計這些A型風(fēng)力發(fā)電機一年的發(fā)電總量至少為 千瓦?時;
(2)已知A型風(fēng)力發(fā)電機每臺O.3萬元,B型風(fēng)力發(fā)電機每臺O.2萬元.該發(fā)電場擬購置風(fēng)力發(fā)電機共10臺,希望購機的費用不超過2.6萬元,而建成的風(fēng)力發(fā)電場每年的發(fā)電總量不少于102000千瓦?時,請你提供符合條件的購機方案.
根據(jù)上面的數(shù)據(jù)回答:
思路點撥 (1) (100×36+60×150)x=12600x;
(2)設(shè)購A型發(fā)電機x臺,則購B型發(fā)電機(10—x)臺,
解法一根據(jù)題意得:
解得5≤x ≤6.
故可購A型發(fā)電機5臺,B型發(fā)電機5臺;或購A型發(fā)電機6臺,B型發(fā)電視4臺.
四、用函數(shù)知識解決的應(yīng)用題
函數(shù)類應(yīng)用問題主要有以下兩種類型:(1)從實際問題出發(fā),引進數(shù)學(xué)符號,建立函數(shù)關(guān)系;(2)由提供的基本模型和初始條件去確定函數(shù)關(guān)系式.
(揚州)楊嫂在再就業(yè)中心的扶持下,創(chuàng)辦了“潤楊”報刊零售點.對經(jīng)營的某種晚報,楊嫂提供丁如下信息:
①買進每份0.20元,賣出每份0.30元;
、谝粋月內(nèi)(以30天計),有20天每天可以賣出200份,其余10天每天只能賣出120份;
、垡粋月內(nèi),每天從報社買進的報紙份數(shù)必須相同.當天賣不掉的報紙,以每份0.10元退回給報社;
(1)填表:
一個月內(nèi)每天買進該種晚報的份數(shù)100150
當月利潤(單位:元)
(2)設(shè)每天從報社買進該種晚報x份,120≤x≤200時,月利潤為y元,試求出y與x的函數(shù)關(guān)系式,并求月利潤的最大值.
思路點撥(1)填表:
一個月內(nèi)每天買進該種晚報的份數(shù)100150
當月利潤(單位:元)300390
(2)由題意可知,一個月內(nèi)的20天可獲利潤:
20×=2x(元);其余10天可獲利潤:
10=240—x(元);
故y=x+240,(120≤x≤200), 當x=200時,月利潤y的最大值為440元.
注 根據(jù)題意,正確列出函數(shù)關(guān)系式,是解決問題的關(guān)鍵,這里特別要注意自變量x的取值范圍.
另外,初三還會提及統(tǒng)計型應(yīng)用題,幾何型應(yīng)用題.
(桂林市)某公司需在一月(31天)內(nèi)完成新建辦公樓的裝修工程.如果由甲、乙兩個工程隊合做,12天可完成;如果由甲、乙兩隊單獨做,甲隊比乙隊少用10天完成.
。1)求甲、乙兩工程隊單獨完成此項工程所需的天數(shù).
(2)如果請甲工程隊施工,公司每日需付費用200 0元;如果請乙工程隊施工,公司每日需付費用1400元.在規(guī)定時間內(nèi):A.請甲隊單獨完成此項工程;B.請乙隊單獨完成此項工 程; C.請甲、乙兩隊合作完成此項工程.以上方案哪一種花錢最少?
思路點撥 這是一道策略優(yōu)選問題.工程問題中:工作量=工作效率×工時.
(1)設(shè)乙工程隊單獨完成此項工程需x天,根據(jù)題意得:
, x=30合題意,
所以,甲工程隊單獨完成此項工程需用20天,乙隊需30天.
(2)各種方案所需的費用分別為:
A.請甲隊需20xx×20=40000元;
B.請乙隊需1400×30=4200元;
C.請甲、乙兩隊合作需(20xx+1400)×12=40800元.
所隊單獨請甲隊完成此項工程花錢最少.
(2全國聯(lián)賽初賽題)一支科學(xué)考察隊前往某條河流的上游去考察一個生態(tài)區(qū),他們以每天17km的速度出發(fā),沿河岸向上游行進若干天后到達目的地,然后在生態(tài)區(qū)考察了若干天,完成任務(wù)后以每天25km的速度返回,在出發(fā)后的第60天,考察隊行進了24km后回到出發(fā)點,試問:科學(xué)考察隊的生態(tài)區(qū)考察了多少天?
思路點撥 挖掘題目中隱藏條件是關(guān)鍵!
設(shè)考察隊到 生態(tài)區(qū)去用了x天,返回用了y天,考察用了z天,則x+y+z=60,
17x-25y=-1,即25y-17x=1. ①
這里x、y是正整數(shù),現(xiàn)設(shè) 法求出①的一組合題意的解,然后計算出z的值.
為此,先求出①的一組特殊解(x0,y0),(這里x0,y0可以是負整數(shù)).用輾轉(zhuǎn)相除法.
25=l ×17+8,17=2×8+1,故1=17—2×8=17-2×(25—17)=3 ×17-2×25.
與①的左端比較可知,x0 =-3,y0=-2.
下面再求出①的合題意的解.
由不定方程的知識可知,①的一切整數(shù)解可表示為x=-3+25t,y=-2+17t,
∴ x+y=42t-5,t為整數(shù).按題意0 ∴z=60—(x+y)=23. 答:考察隊在生態(tài)區(qū)考察的天數(shù)是23天. 注 本題涉及到的未知量多,最終轉(zhuǎn)化為二元一次不定方程來解,希讀者仔細咀嚼所用方法. (江蘇省第17屆初中競賽題)華鑫超市對顧客實行優(yōu)惠購物,規(guī)定如下: (1)若一次購物少于200元,則不予優(yōu)惠; (2)若一次購物滿200元,但不超過500元,按標價給予九折優(yōu)惠; (3)若一次購物超過500元,其中500元部分給予九折優(yōu)惠,超過500元部分給予八折 優(yōu)惠. 小明兩次去該超市購物,分別付款198元與554元.現(xiàn)在小亮決定一次去購 買小明分兩次購買的同樣多的物品,他需付款多少? 思路點撥 應(yīng)付198元購物款討論: 第一次付款198元,可是所購物品的實價,未 享受優(yōu)惠;也可能是按九折優(yōu)惠后所付的款.故應(yīng)分兩種情況加以討論. 情形1 當198元為購物不打折付的錢時,所購物品的原價為198元 . 又554=450+104,其中450元為購物500元打九折付的錢,104元為購物打八折付的錢;104÷0. 8 =130(元). 因此,554元所購物品的原價為130+500=630(元),于是購買小呀花198 +630=828(元)所購的全部物品,小亮一次性購買應(yīng)付500×0.9+(828-500)×0.8=712.4(元). 情形2 當198元為購物打九折付的錢時,所購物品的原價為198 ÷0.9=220(元) .仿情形1的討論,,購220+630=850{元}物品一次性付款應(yīng)為500×0.9+(850-500)×0.8=730(元). 綜上所述,小亮一次去超市購買小明已購的同樣多的物品,應(yīng)付款712.40元或730元 (20xx年全國數(shù)學(xué)競賽題)某項工程,如果由甲、乙兩隊承包,2 天完成,需180000元;由乙、丙兩隊承包,3 天完成,需付150000元;由甲、丙兩隊承包,2 天完成,需付160000元.現(xiàn)在工程由一個隊單獨承包,在保證一周完成的前提下,哪個隊承包費用最少? 思路點撥 關(guān)鍵問題是甲、乙、丙單獨做各需的天數(shù)及獨做時各方日付工資.分兩個層次考慮: 設(shè)甲、乙、丙單獨承包各需x、y、z天完成. 則 ,解得 再設(shè)甲、乙、丙單獨工作一天,各需付u、v、w元, 則 ,解得 于是,由甲隊單獨承包,費用是45500×4=182000 (元). 由乙隊單獨承包,費用是29500×6= 177000 (元). 而丙隊不能在一周內(nèi)完成.所以由乙隊承包費用最少. 學(xué)歷訓(xùn)練 。ˋ級) 1.(河南)在防治“SARS”的戰(zhàn)役中,為防止疫情擴散,某制藥廠接到了生產(chǎn)240箱過氧乙酸消毒液的任務(wù).在生產(chǎn)了60箱后,需要加快生產(chǎn),每天比原來多生產(chǎn)15箱,結(jié)果6天就完成了任務(wù).求加快速度后每天生產(chǎn)多少箱消毒液? 2.(山東省競賽題)某市為鼓勵節(jié)約用水,對自來水妁收費標準作如下規(guī)定:每月每戶用水中不超過10t部分按0.45元/噸收費;超過10t而不超過20t部分按每噸0.8元收費;超過20t部分按每噸1.50元收費,某月甲戶比乙戶多繳水費7.10元,乙戶比丙戶多繳水費3.75元,問甲、乙、丙該月各繳水費多少?(自來水按整噸收費) 3.(江蘇省競賽題)甲、乙、丙三人共解出100道數(shù)學(xué)題,每人都解出了其中的60道題,將其中只有1人解出的題叫做難題,3人都解出的題叫做容易題.試問:難題多還是容易題多?多的比少的多幾道題? 4.某人從A地到B地乘坐出租車有兩種方案,一種出租車收費標準是起步價10元,每千米1.2元;另一種出租車收費標準是起步價8元,每千米1.4元,問選擇哪一種出租車比較合適? (提示:根據(jù)目前出租車管理條例,車型不同,起步價可以不同,但起步價的最大行駛里程是相同的,且此里程內(nèi)只收起步價而不管其行駛里程是多少) 。˙級) 1.(全國初中數(shù)學(xué)競賽題)江堤邊一洼地發(fā)生了管涌,江水不斷地涌出,假定每分鐘涌出的水量相等,如果用兩臺抽水機抽水,40min可抽完;如果用4臺抽水機抽,16min可抽完.如果要在10min抽完水,那么至少需要抽水機 臺. 2.(希望杯)有一批影碟機(VCD)原售價:800元/臺.甲商場用如下辦法促銷: 購買臺數(shù)1~5臺6~10臺11~15臺16~20臺20臺以上 每臺價格760元720元680元640元600元 乙商場用如下辦法促銷:每次購買1~8臺,每臺打九折;每次購買9~16臺,每臺打八五折; 每次購買17~24臺,每臺打八折;每次購買24臺以上,每臺打七五折. 。1)請仿照甲商場的促銷列表,列出到乙商場購買VCD的購買臺數(shù)與每臺價格的對照表; (2)現(xiàn)在有A、B、C三個單位,且單位要買10臺VCD,B單位要買16臺VCD,C單位要買20臺VCD,問他們到哪家商場購買花費較少? 3.(河北創(chuàng)新與知識應(yīng)用競賽題)某錢幣收藏愛好者想把3.50元紙幣兌換成1分、2分、5分的硬幣,他要求硬幣總數(shù)為150枚,且每種硬幣不少于20枚,5分的硬幣要多于2分的硬幣.請你據(jù)此設(shè)計兌換方案. 4.從自動扶梯上走到二樓(扶梯本身也在行駛),如果男孩和女孩都做勻速運動且男孩每分鐘走動的級數(shù)是女孩的兩倍,已知男孩走了27級到達扶梯頂部,而女孩走了18級到達扶梯頂部(設(shè)男孩、女孩每次只踏—級).問: (1)扶梯露在外面的'部分有多少級? (2)如果扶梯附近有一從二樓到一樓的樓梯,樓梯的級數(shù)和扶梯的級數(shù)相等,兩孩子各自到扶梯頂部后按原速度再下樓梯,到樓梯底部再乘扶梯(不考慮扶梯與樓梯間距離)則男孩第一次追上女孩時走了多少級臺階? 5.某化肥廠庫存三種不同的混合肥,第一種 含磷60%,鉀40%,第二種含鉀10%,氮90%;第三種含鉀50%,磷20%,氮30%,現(xiàn)將三種肥混合成含氮45%的混合肥100?(每種肥都必須取),試問在這三種不同混合肥的不同取量中,新混合肥含鉀的取值范圍. 6.(黃岡競賽題)有麥田5塊A、B、C、D、E,它們的產(chǎn)量,(單位:噸)、交通狀況和每相鄰兩塊麥田的距離如圖21-2所示,要建一座永久性打麥場,這5塊麥田生產(chǎn)的麥子都在此打場.問建在哪快麥田上(不允許建在除麥田以外的其他地方)才能使總運輸量最小?圖中圓圈內(nèi)的數(shù)字為產(chǎn)量,直線段上的字母a、b、d表示距離,且b < a 多邊形的邊角與對角線 M 第十四講 多邊形的邊角與對角線 邊、角、對角線是多邊形中最基本的概念,求多邊形的邊數(shù) 、內(nèi)外角度數(shù)、對角線條數(shù)是解與多邊形相關(guān)的基本問題,常用到三角形內(nèi)角和、多邊形內(nèi)、外角和定理、不等式、方程等知識. 多邊形 的內(nèi)角和定理反映出一定的規(guī)律性:(n-2)×180°隨n的變化而變化;而多邊形的外角和定理反映出更本質(zhì)的規(guī)律;360°是一個常數(shù),把內(nèi)角問題轉(zhuǎn)化為外角問題,以靜制動是解多邊形有關(guān)問題的常用技巧. 將多邊形問題轉(zhuǎn)化為三角形問題來處理是解多邊形問題的基本策略,連對角線或向外補形、對內(nèi)分割是轉(zhuǎn)化的常用方法,從凸 邊形的一個頂點引出的對角線把 凸 邊形分成 個多角形,凸n邊形一共可引出 對角線. 例題求解 在一個多邊形中,除了兩個內(nèi)角外,其余內(nèi)角之和為20xx°,則這個多邊形的邊數(shù)是 . (江蘇省競賽題) 思路點撥 設(shè)除去的角為°,y°,多邊形的邊數(shù) 為 ,可建立關(guān)于x、y的不定方程;又0° 鏈接 世界上的萬事萬物是一個不斷地聚合和分裂的過程,點是幾何學(xué)最原始的概念,點生線、線生面、面生體,幾何元素的聚合不斷產(chǎn)生新的圖形,另一方面,不斷地分割已有的圖形可得到新的幾何圖形,發(fā)現(xiàn)新的幾何性質(zhì),多邊形可分成三角形,三角形可以合成其他 一些幾何圖形. 在凸10邊形的所有內(nèi)角中,銳角的個數(shù)最多是( ) A.0 B.1 C.3 D.5 (全國初中數(shù)學(xué)競賽題) 思路點撥 多邊形的內(nèi)角和是隨著多邊形的邊數(shù)變化而變化的,而外角和卻總是不變的,因此,可把內(nèi)角為銳角的個數(shù)討論轉(zhuǎn)化為 外角為鈍角的個數(shù)的探討. 如圖,已知在△ABC中,AB=AC,AD⊥BC于D,且AD=BC=4,若將此三角形沿AD剪開成為兩個三角形,在平面上把這兩個三角形拼成一個四邊形,你能拼出所有的不同形狀的四邊形嗎?畫出所拼四邊形的示意圖(標出圖中直角),并分別寫出所拼四邊形的對角線的長. (烏魯木齊市中考題) 思路點撥 把動手操作與合情想象相結(jié)合 ,解題的關(guān)鍵是能注意到重合的邊作為四邊形對角線有不同情形. 注 教學(xué)建模是當今教學(xué)教育、考試改革最熱門的一個話題,簡單地說,“數(shù)學(xué)建!本褪峭ㄟ^數(shù)學(xué)化(引元、畫圖等)把實際問題特化為一個數(shù)學(xué)問題,再運用相應(yīng)的數(shù)學(xué)知識方法(模型)解決問題. 本例通過設(shè)元,把“沒有重疊、沒有空隙”轉(zhuǎn)譯成等式,通過不定方程求解. 在日常生活中,觀察各種建筑物的地板,就能發(fā)現(xiàn)地板常用各種正多邊形地磚鋪砌成美麗的圖案.也就是說,使用給定的某些正多邊形,能夠拼成一個平面圖形,既不留下一絲空白,又不互相重疊(在幾何里叫做平面鑲嵌),這顯然與正多邊形的內(nèi)角大小有關(guān),當圍繞一點拼在一起的幾個多邊形的內(nèi)角加在一起恰好組成一個周角(360°)時,就拼成了一個平面圖形. (1)請根據(jù)下列圖形,填寫表中空格: (2)如果限于用一種正多邊形鑲嵌,哪幾種正多邊形能鑲嵌成一個平面圖形? (3)從正三角形、正四邊形,正六邊形中選一種,再在其他正多邊形中選一種,請畫出用這兩種不同的正多邊形鑲嵌成的一個平面圖形(草圖);并探索這兩種正多邊形共能鑲嵌成幾種不同的平面 圖形?說明你的理由. (陜西省中考題) 思路點撥 本例主要研究兩個問題:①如果限用一種正多邊形鑲嵌,可選哪些正多邊形;②選用兩種正多邊形鑲嵌,既具有開放性,又具有探索性.假定正n邊形滿足鋪砌要求,那么在它的頂點接合的地方,n個內(nèi)角的和為360°,這樣,將問題的討論轉(zhuǎn)化為求不定方程的正整數(shù)解. 如圖,五邊形ABCDE的每條邊所在直線沿該邊垂直方向向外平移4個單位,得到新的五邊形A'B'C'D'E'. (1)圖中5塊陰影部分即四邊形AHA'G、BFB'P、COC'N、DMD'L、EKE'I能拼成一個五邊形嗎?說明理由. (2)證明五邊形A'B'C'D'E'的周長比五邊形ABCD正的周長至少增加25個單位. (江蘇省競賽題) 思路點撥 (1)5塊陰影部分要能拼成一個五邊形須滿足條件:,A'GB'; B'PC'; C'ND';D'LE';E'IA'三點分別共線;∠1+∠2+∠3+∠4+∠5=360°;(2)增加的周長等于A'H+A'G+B'F+B'P+C'O+C'N+D'M+D'L+E'K+E'I,用圓的周長逼近估算. 1.如圖,用硬紙片剪一個長為16cm、寬為12cm的長方形,再沿對角線把它分成兩個三角形,用這兩個三角形可拼出各種三角形和四邊形來,其中周長最大的是 ?,周長最小的是 cm. (選6《莢國中小學(xué)數(shù)學(xué)課程標準》) 2.如圖,∠1+∠2+∠3+∠4+∠5+∠6= . 3.如圖,ABCD是凸四邊形,AB=2,BC=4,CD=7,則線段AD的取值范圍是 . 4.用黑白兩種顏色的正六邊形地面磚按如下所示的規(guī)律,拼成若干個圖案: (1)第4個圖案中有白色地面磚 塊; (2)第n個圖案中有白色地面磚 塊. (江西省中考題) 5.凸n邊形中有且僅有兩個內(nèi)角為鈍角,則n的最大值是( ) A.4 B.5 C. 6 D.7 ( “希望杯”邀請賽試題) 6.一個凸多邊 形的每一內(nèi)角都等于140°,那么,從這個多邊形的一個頂點出發(fā)的對角線的條數(shù)是( ) A.9條 B.8條 C.7條 D. 6條 7.有一個邊長為4m的正六邊形客廳,用邊長為50cm的正三角形瓷磚鋪滿,則需要這種瓷磚( ) A.216塊 B.288塊 C.384塊 D.512塊 ( “希望杯”邀請賽試題) 8.已知△ABC是邊長為2的等邊三角形,△ACD是一個含有30°角的直角三角形,現(xiàn)將△ABC和△ACD拼成一個凸四邊形ABCD. (1))畫出四邊形ABCD; (2)求出四邊形ABCD的對角線BD的長. (上海市閔行區(qū)中考題) 9.如圖,四邊形ABCD中,AB=BC=CD,∠ABC=90°,∠BCD=150°,求∠BAD的度數(shù). (北京市競賽題) 10.如圖,在五邊形A1A2A3A4A5中,Bl是A1的對邊A3A4的中點,連結(jié)A1B1,我們稱A1B1是這個五邊形的一條中對線,如果五邊形的每條中對線都將五邊形的面積分成相等的兩部分,求證:五邊形的每條邊都有一條對角線和它平行. (安徽省中考題) 11.如圖,凸四邊形有 個;∠A+∠B+∠C+∠D+∠E+∠F+∠G= . (重慶市競賽題) 12.如圖,延長凸五邊形A1A2A3A4A5的各邊相交得到5個角,∠B1,∠B2,∠B3,∠B4,∠B5,它們的和等于 ;若延長凸n邊形(n≥5)的各邊相交,則得到的n個角的和等于 . ( “希望杯”邀請賽試題) 13.設(shè)有一個邊長為1的正三角形,記作A1(圖a),將每條邊三等分,在中間的線段上向外作正三角形,去掉中間的線段后所得到的圖形記作A 2(圖b),再將每條邊三等分,并重復(fù)上述過程,所得到的圖形記作A3(圖c);再將每條邊三 等分,并重復(fù)上述過程,所得到的圖形記作A4,那么,A4的周長是 ;A4這個多邊形的面積是原三角形面積的 倍. (全國初中數(shù)學(xué)聯(lián)賽題) 14.如圖,六邊形ABCDEF中,∠A=∠B=∠C=∠D=∠E=∠F,且AB+BC=11,F(xiàn)A—CD=3,則BC+DC= . (北京市競賽題) 15.在一個n邊形中,除了一個內(nèi)角外,其余(n一1)個內(nèi)角的和為2750°,則這個內(nèi)角的度數(shù)為( ) A.130° D.140° C .105° D.120° 16.如圖,四邊形ABCD中,∠BAD=90°,AB=BC=2 ,AC=6,AD=3,則CD的長為( ) A.4 B.4 C.3 D. 3 (江蘇省競賽題) 注 按題中的方法'不斷地做下去,就會成為下圖那樣的圖形,它的邊界有一個美麗的名稱——雪花曲線或 科克曲線(瑞典數(shù)學(xué)家),這類圖形稱為“分形”,大量的物理、生物與數(shù)學(xué)現(xiàn)象都導(dǎo)致分形,分形是新興學(xué)科“混沌”的重要分支. 17.如圖,設(shè)∠CGE=α,則∠A+∠B+∠C+∠D+∠C+∠F=( ) A.360°一α B.270°一αC.180°+α D.2α (山東省競賽題) 18.平面上有A、B,C、D四點,其中任何三點都不在一直線上,求證:在△ABC、△ABD、△ACD、△BDC中至少有一個三角形的內(nèi)角不超過45°. 19.一塊地能被n塊相同的正方形地磚所覆蓋,如果用較小的相同正方形地磚,那么需n+76塊這樣的地磚才能覆蓋該塊地,已知n及地磚的邊長都是整數(shù),求n. (上海市競賽題) 20.如圖,凸八邊形ABCDEFGH的8 個內(nèi)角都相等,邊AB、BC、CD、DE、EF、FG的長分別為7,4,2,5,6,2,求該八邊形的周長. 21.如圖l是一張可折疊的鋼絲床的示意圖,這是展開后支撐起來放在地面上的情況,如果折疊起來,床頭部分被折到了床面之下(這里的A、B、C、D各點都是活動的),活動床頭是根據(jù)三角形的穩(wěn)定性和四邊形的不穩(wěn)定性設(shè)計而成的,其折疊過程可由圖2的變換反映出來. 如果已知四邊形ABCD中,AB=6,CD=15,那么BC、AD取多長時,才能實現(xiàn)上述的折疊變化? (淄博市中考題) 22.一個凸n邊形由若干個邊長為1的正方形或正三角形無重疊、無間隙地拼成,求此凸n邊形各個內(nèi)角的大小,并畫出這樣的 凸n邊形的草圖. 圖形的平移與旋轉(zhuǎn) 前蘇聯(lián)數(shù)學(xué)家亞格龍將幾何學(xué)定義為:幾何學(xué)是研究幾何圖形在運動中不變的那些性質(zhì)的學(xué)科. 幾何變換是指把一個幾何圖形Fl變換成另一個幾何圖形F2的方法,若僅改變圖形的位置,而不改變圖形的形狀和大小,這種變換稱為合同變換,平移、旋轉(zhuǎn)是常見的合同變換. 如圖1,若把平面圖形Fl上的各點按一定方向移動一定距離得到圖形F2后,則由的變換叫平移變換. 平移前后的圖形全等,對應(yīng)線段平行且相等,對應(yīng)角相等. 如圖2,若把平面圖Fl繞一定點旋轉(zhuǎn)一個角度得到圖形F2,則由Fl到F2的變換叫旋轉(zhuǎn)變換,其中定點叫旋轉(zhuǎn)中心,定角叫旋轉(zhuǎn)角. 旋轉(zhuǎn)前后的圖形全等,對應(yīng)線段相等,對應(yīng)角相等,對應(yīng)點到旋轉(zhuǎn)中心的距離相等. 通過平移或旋轉(zhuǎn),把部分圖形搬到新的位置,使問題的條件相對集中,從而使條件與待求結(jié)論之間的關(guān)系明朗化,促使問題的解決. 注 合同變換、等積變換、相似變換是基本的幾何變換.等積變換,只是圖形在保持面積不變情況下的形變'而相似變換,只保留線段間的比例關(guān)系,而線段本身的大小要改變. 例題求解 如圖,P為正方形ABCD內(nèi)一點,PA:PB:PC=1:2:3,則∠APD= . 思路點撥 通過旋轉(zhuǎn),把PA、PB、PC或關(guān)聯(lián)的線段集中到同一個三角形. 如圖,在等腰Rt△ABC的斜邊AB上取兩點M,N,使∠MCN=45°,記AM=m,MN= x,DN=n,則以線 段x、m、n為邊長的三角形的形狀是( ) A.銳角三角形 B.直角三角形 C.鈍角三角形 D.隨x、m、n的變化而改變 思路點撥 把△ACN繞C點順時針旋轉(zhuǎn)45°,得△CBD,這樣∠ACM+∠BCN=45°就集中成一個與∠MCN相等的角,在一條直線上的m、 x、n 集中為△DNB,只需判定△DNB的形狀即可. 注 下列情形,常實施旋轉(zhuǎn)變換: (1)圖形中出現(xiàn)等邊三角形或正方形,把旋轉(zhuǎn)角分別定為60°、90°; (2)圖形中有線段的中點,將圖形繞中點旋轉(zhuǎn)180°,構(gòu)造中心對稱全等三角形; (3)圖形中出現(xiàn)有公共端點的線段,將含有相等線段的圖形繞公共端點,旋轉(zhuǎn)兩相等線段的夾角后與另一相等線段重合. 如圖,六邊形ADCDEF中,AN∥DE,BC∥EF,CD∥AF,對邊之差BC-EF=ED?AB=AF?CD>0,求證:該六邊形的各角相等. (全俄數(shù)學(xué)奧林匹克競賽題) 思路點撥 設(shè)法將復(fù)雜的條件BC?FF=ED?AB=AF?CD>0用一個基本圖形表示,題設(shè)中有平行條件,可考慮實施平移變換. 注 平移變換常與平行線相關(guān),往往要用到平行四邊形的性質(zhì),平移變換可將角,線段移到適當?shù)奈恢,使分散的條件相對集中,促使問題的解決. 如圖,在等腰△ABC的兩腰AB、AC上分別取點E和F,使AE=CF.已知BC=2,求證:EF≥1. (西安市競賽題) 思路點撥 本例實際上就是證明2EF≥BC,不便直接證明,通過平移把BC與EF集中到同一個三角形中. 注 三角形中的不等關(guān)系,涉及到以下基本知識: (1)兩點間線段最短,垂線段最短; (2)三角形兩邊之和大于第三邊,兩邊之差小于第三邊; (3)同一個三角形中大邊對大角(大角對大邊),三角形的一個外角大于任何一個和它不相鄰的內(nèi)角. 如圖,等邊△ABC的邊長為 ,點P是△ABC內(nèi)的一點,且PA2+PB2=PC2,若PC=5,求PA、PB的長. (“希望杯”邀請賽試題) 思路點撥 題設(shè)條件滿足勾股關(guān)系PA2+PB2=PC2的三邊PA、PB、PC不構(gòu)成三角形,不能直接應(yīng)用,通過旋轉(zhuǎn)變換使其集中到一個三角形中,這是解本例的關(guān) 鍵. 學(xué)歷訓(xùn)練 1.如圖,P是正方形ABCD內(nèi)一點,現(xiàn)將△ABP繞點B顧時針方向旋轉(zhuǎn)能與△CBP′重合,若PB=3,則PP′= . 2.如圖,P是等邊△ABC內(nèi)一點,PA=6,PB=8,PC=10,則∠APB . 3.如圖,四邊形ABC D中,AB∥CD,∠D=2∠B,若AD=a,AB=b,則CD的長為 . 4.如圖,把△ABC沿AB邊平移到△A'B'C'的位置,它們的重疊部分(即圖中陰影部分)的面積是△ABC的面積的一半,若AB= ,則此三角形移動的距離AA'是( ) A. B. C.l D. (20xx年荊州市中考題) 5.如圖,已知△ABC中,AB=AC,∠BAC=90°,直角EPF的頂點P是BC中點,兩邊PE、PF分別交AB、AC于點C、F,給出以下四個結(jié)論:①AE=CF;②△EPF是等腰直角三角形;③S四邊形AEPF= S△ABC;④EF=AP. 當∠EPF在△ABC內(nèi)繞頂點P旋轉(zhuǎn)時(點E不與A、B重合),上述結(jié)論中始終正確的有( ) A.1個 B.2個 C .3個 D.4個 (20xx年江蘇省蘇州市中考題) 6.如圖,在四邊形 ABCD中,AB=BC,∠ABC=∠CDA=90°,BE⊥AD于E, S四邊形ABCD d=8,則BE的長為( ) A.2 B.3 C . D. (20xx年武漢市選拔賽試題) 7.如圖,正方形ABCD和正方形EFGH的邊長分別為 和 ,對角線BD、FH都在直線 上,O1、O2分別為正方形的中心,線段O1O2的長叫做兩個正方形的中心距,當中心O2在直線 上平移時,正方形EFGH也隨之平移,在平移時正方形EFGH的形狀、大小沒有變化. (1)計算:O1D= ,O2F= ; (2)當中心O2在直線 上平移到兩個正方形只有一個公共點時,中心距O1O2= ; (3)隨著中心O2在直線 上平移,兩個正方形的公共點的個數(shù)還有哪些變化?并求出相對應(yīng)的中心距的值或取值范圍(不必寫出計算過程). (徐州市中考題) 8.圖形的操做過程(本題中四個矩形的水平方向的邊長均為a,豎直 方向的邊長均為b): 在圖a中,將線段A1A2向右平移1個單位到B1B2,得到封閉圖形A1A2B1B2(即陰影部分); 在圖b中, 將折線A1A2A3向右平移1個單位到B1B2B3,得到封閉圖形A1A2A3B1B2B3(即陰影部分); 。1)在圖c中,請你類似地畫一條有兩個折點的折線,同樣向右平移1個單位,從而得到一個封閉圖形,并用斜線畫出陰影; (2)請你分別寫出上述三個圖形中除去陰影部分后剩余部分的面積:S1= ,,S2= ,S3= ; 。3)聯(lián)想與探索: 如圖d,在一塊矩形草地上,有一條彎曲的柏油小路(小路任何地方的水平寬度都是1個單位),請你猜想空白部分表示的草地面積是多少?并說明你的猜想是正確的. (20xx年河北省中考題) 9.如圖,已知點C為線段AB上一點,△ACM、△CBN是等邊三角形,求證:AN=BM. 說明及要求:本題是《幾何》第二冊幾15中第13題,現(xiàn)要求: (1)將△ACM繞C點按逆時針方向旋轉(zhuǎn)180°,使A點落在CB上,請對照原題圖在圖中畫出符合要求的圖形(不寫作法,保留作圖痕跡). (2)在①所得的圖形中,結(jié)論“AN=BM”是否還成立?若成立,請證明;若不成立,請說明理由. (3)在①得到的圖形中,設(shè)MA的延長線與BN相交于D點,請你判斷△ABD與四邊形MDNC的形狀,并證明你的結(jié)論. 10.如圖,在Rt△ABC中,∠A=90°,AB=3cm,AC=4cm,以斜邊BC上距離B點3cm的點P為中心,把這個三角形按逆時針方向旋轉(zhuǎn)90°至△DEF,則旋轉(zhuǎn)前后兩個直角三角形重疊部分的面積是 cm2. 11.如圖,在梯形ABCD中,AD∥BC,∠D=90°,BC=CD=12,∠ABE=45°,點E在DC上,AE、BC的延長線交于點F,若AE=10,則S△ADE+S△CEF的值是 . (紹興市中考題) 12.如圖,在△ABC中,∠BAC=120°,P是△ABC內(nèi)一點,則PA+PB+PC與AB+AC的大小關(guān)系是( ) A.PA+PB+PC>AB+AC B.PA+PB+PCC. PA+PB+PC=AB+AC D.無法確定 13.如圖,設(shè)P到等邊三角形ABC兩頂點A、B的距離分別為2、3,則PC所能達到的最大值為( ) A. B. C .5 D.6 (20xx年武漢市選拔賽試題) 14.如圖,已知△ABC中,AB=AC,D為AB上一點,E為AC 延長線上一點,BD=CE,連DE,求證:DE>DC. 15.如圖,P為等邊△ABC內(nèi)一點,PA、PB、PC的長為正整數(shù),且PA2+PB2=PC2,設(shè)PA=m,n為大于5的實數(shù),滿 ,求△ABC的面積. 16.如圖,五羊大學(xué)建立分校,校本部與分校隔著兩條平行的小河, ∥ 表示小河甲, ∥ 表示小河乙,A為校本部大門,B為分校大門,為方便人員來往,要在兩條小河上各建一座橋,橋面垂直于河岸.圖中的尺寸是:甲河寬8米,乙河寬10米,A到甲河垂直距離為40米,B到乙河垂直距離為20米,兩河距離100米,A、B兩點水平距離(與小河平行方向)120米,為使A、B兩點間來往路程最短,兩座橋都按這個目標而建,那么,此時A、D兩點間來往的路程是多少米? (“五羊杯”競賽題) 17.如圖,△ABC是等腰直角三角形,∠C=90°,O是△ABC內(nèi)一點,點O到△ABC各邊的距離都等于1,將△ABC繞 點O順時針旋轉(zhuǎn)45°,得△A1BlC1 ,兩三角形公共部分為多邊形KLMNPQ. (1)證明:△AKL、△BMN、△CPQ都是等腰直角三角形; (2)求△ABC與△A1BlC1公共部分的面積. (山東省競賽題) 18.(1)操作與證明:如圖1,O是邊長為a的正方形ACBD的中心,將一塊半徑足夠長,圓心角為直角的扇形紙板的圓心放在O點處,并將紙板繞O點旋轉(zhuǎn),求證:正方形ABCD的邊被紙板覆蓋部分的總長度為定值. (2)嘗試與思考:如圖2,將一塊半徑足夠長的扇形紙板的圓心放在邊長為a的正三角形或正五邊形的中心O點處,并將紙板繞O點旋轉(zhuǎn), 當扇形紙板的圓心角為 時,正三角形的邊被紙板覆蓋部分的總長度為定值a;當扇形紙板的圓心角為 時,正五邊形的邊被紙板覆蓋部分的總長度也為定值a. (3)探究與引申:一般地,將一塊半徑足夠長的扇形紙板的圓心放在邊長為a的正n邊形的中心O點處,并將紙板繞O點旋轉(zhuǎn).當扇形紙板的圓心角為 時,正n邊形的邊被紙板覆蓋部分 的總長度為定值a;這時正n邊形被紙板覆蓋部分的面積是否也為定值?若為定值,寫出它與正n邊形面積S之間的關(guān)系;若不是定值,請說明理由. 一、教學(xué)目標 經(jīng)歷探索平行四邊形判別條件的過程,培養(yǎng)學(xué)生操作、觀察和說理能力;掌握兩組對邊分別相等的四邊形是平行四邊形這一判別條件。 二、教材分析 本節(jié)課是在學(xué)生學(xué)習(xí)了平行四邊形的兩個判定定理之后即將學(xué)習(xí)的第三個判定定理——兩組對邊分別相等的四邊形是平行四邊形。 三、教學(xué)重難點 重點: 探索并掌握平行四邊形的判別條件。 難點: 對平行四邊形判別條件的理解及說理的基本方法的掌握。 四、教學(xué)準備 兩根長40厘米 和兩根長30厘米的木條 五、教學(xué)設(shè)計 首先復(fù)習(xí)平行四邊形的.定義,然后通過學(xué)生活動發(fā)現(xiàn)平行四邊形的另一判定定理,然后借助各種方法加以驗證。最后依靠課本所設(shè)計的“做一做” ,“議一議” 以及“隨堂練習(xí)”加深對平行四邊形判定定理的理解。 六、教學(xué)過程 1、復(fù)習(xí)平行四邊形的定義。(旨在為證明一個四邊形是平行四邊形做鋪墊) 2、小組活動 用兩根長40厘米和兩根30厘米的木條作為四邊形的四條邊,能否拼成平行四邊形?與同伴進行交流。 (通過小組活動,學(xué)生親自動手操作,得出結(jié)論——當兩組對邊相等時,四邊形是平行四邊形;對邊不相等時,所圍成的四邊形不是平行四邊形)。 平行四邊形的判定定理——兩組對邊相等的四邊形是平行四邊形。 3、課本91頁的“做一做” (其目的是鞏固和應(yīng)用“兩組對邊相等的四邊形是平行四邊形”的判定定理。) 4、“議一議” 問題1、一組對邊平行,另一組對邊相等的四邊形一定是平行四邊形嗎?說說你的想法。 (先鼓勵學(xué)生自主探索,再分組討論,最后全班交流得出正確結(jié)論) 問題2、要判別一個四邊形是平行四邊形,你有哪些方法? 5、通過課本的“隨堂練習(xí)”,使學(xué)生對平行四邊形的判別條件加以應(yīng)用和鞏固 教學(xué)目的: 1、讓學(xué)生知道平行四邊形面積公式的推導(dǎo)過程,掌握平行四邊形面積的計算公式,并能應(yīng)用公式正確地計算平行四邊形面積。 2、通過操作、觀察與比較,發(fā)展學(xué)生的空間觀念,培養(yǎng)學(xué)生運用轉(zhuǎn)化的思考方法解決問題的能力。 3、使學(xué)生初步感受到事物是相互聯(lián)系的,在一定條件下可以相互轉(zhuǎn)化。 4、培養(yǎng)學(xué)生自主學(xué)習(xí)的能力。 教學(xué)重點:掌握平行四邊形面積公式。 教學(xué)難點:平行四邊形面積公式的推導(dǎo)過程。 教具、學(xué)具準備:1、多媒體計算機及課件;2、投影儀;3、硬紙板做成的可拉動的長方形框架;4、每個學(xué)生5張平行四邊形硬紙片及剪刀一把。 教學(xué)過程(): 一、復(fù)習(xí)導(dǎo)入: 1、我們認識的平面幾何圖形有哪些呢?(微機出示,圖形略) 2、在這幾個圖形中你們會求哪幾個的面積呢?(微機出示長方形和正方形的面積公式) 3、大家想不想知道其他幾個圖形的面積怎么求呢?我們這個單元就來學(xué)習(xí)“多邊形面積的計算”。 二、質(zhì)疑引新: 1、老師知道同學(xué)們都很喜歡流氓兔,今天流氓兔遇到了一個難題,我們一起來幫它解決好不好? 2、微機顯示動畫故事:有一天,流氓兔在跑步的時候,遇到了一個長方形框架,它不小心踹了一腳,把長方形變成了平行四邊形,流氓兔很奇怪:形狀改變了,面積改變了嗎? 3、演示教具:將硬紙板做成的長方形框架,拉動其一角,變?yōu)槠叫兴倪呅巍?/p> 4、解決這個問題最好的辦法就是將兩個圖形的面積都求出來進行比較,長方形的面積我們會求了,平行四邊形的面積要怎么求呢?這節(jié)可我們就一起來學(xué)習(xí)平行四邊形面積的計算。(板書課題:平行四邊形面積的計算) 三、引導(dǎo)探求: 。ㄒ唬、復(fù)習(xí)鋪墊: 1、什么圖形是平行四邊形呢? 2、拿出一個準備好的`平行四邊形,找找它的底和高,并把高畫下來,比比看誰畫得多。 3、微機顯示并小結(jié):平行四邊形可以作無數(shù)條高,以不同的邊為底對應(yīng)的高是不同的。 。ǘ⑼茖(dǎo)公式: 1、小小魔術(shù)師:我們現(xiàn)在來做一個變一變的小游戲(微機顯示一個不規(guī)則圖形),我們可以直接用所學(xué)過的求面積公式來求它的面積嗎? 2、能不能把它轉(zhuǎn)化成我們學(xué)過的圖形呢?(用割補法轉(zhuǎn)化為長方形) 3、能不能用同樣的方法把一個平行四邊形轉(zhuǎn)化成長方形呢?請同學(xué)們拿出準備好的多個平行四邊形紙片及剪刀,自己動手,運用所學(xué)過的割補法將平行四邊形轉(zhuǎn)化為長方形。 4、學(xué)生實驗操作,教師巡視指導(dǎo)。 5、學(xué)生交流實驗情況: 、、誰愿意把你的轉(zhuǎn)化方法說給大家聽呢?請上臺來交流!(用投影儀演示剪拼過程) 、、有沒有不同的剪拼方法?(繼續(xù)請同學(xué)演示)。 ⑶、微機演示各種轉(zhuǎn)化方法。 6、歸納總結(jié)規(guī)律: 沿著平行四邊形的任意一條高剪開,都可以通過平移把平行四邊形拼合成一個長方形。并引導(dǎo)學(xué)生形成以下概念: ⑴、平行四邊形剪拼成長方形后,什么變了?什么沒變? ⑵、剪拼成的長方形的長與寬分別與平行四邊形的底和高有什么關(guān)系? ⑶、剪樣成的圖形面積怎樣計算?得出: 因為:平行四邊形的面積=長方形的面積=長×寬=底×高 所以:平行四邊形的面積=底×高 。ò鍟叫兴倪呅蚊娣e推導(dǎo)過程) 7、文字公式不方便,我們一起來學(xué)習(xí)用字母公式表示,如果用S表示平行四邊形的面積,用a表示平行四邊形的底,用h表示平行四邊形的高,那么S=a×h(板書)。同時強調(diào):在含有字母的式子中,字母和字母之間的乘號可以記作".",也可以省略不寫,所以平行四邊形的面積公式還可以記作S=a.h或S=ah(板書)。 8、讓學(xué)生閉上眼睛,在輕柔的音樂中回憶平行四邊形面積計算的推導(dǎo)過程。 四、鞏固練習(xí): 1、剛才我們已經(jīng)推導(dǎo)出了平行四邊形的面積公式,那么,要求平行四邊形的面積,必須要知道哪幾個條件?(底和高,強調(diào)高是底邊上的高) 2、練習(xí): (1)、(微機顯示例一)求平行四邊形的面積 (2)、判斷題(微機顯示,強調(diào)高是底邊上的高) 。3)、比較等底等高的平行四邊形面積的大。ㄓ们竺娣e的公式計算、比較,得出結(jié)論:等底等高的平行四邊形面積相等) 。4)、思考題:用求面積的公式解決流氓兔的難題(微機演示,得出結(jié)論:原長方形與改變后的平行四邊形比較,長方形的長等于平行四邊形的底,長方形的寬不等于平行四邊形的高,所以二者的面積不相等)。 五、問答總結(jié): 1、通過這節(jié)課的學(xué)習(xí),你學(xué)到了哪些知識? 2、平行四邊形面積的計算公式是什么? 3、平行四邊形面積公式是如何推導(dǎo)得出的? 六、課后作業(yè):P67 1、2、3、5 《指導(dǎo)叢書》練習(xí)十六 1平行四邊形教案 篇8
平行四邊形教案 篇9
版權(quán)聲明:本文內(nèi)容由互聯(lián)網(wǎng)用戶自發(fā)貢獻,該文觀點僅代表作者本人。本站僅提供信息存儲空間服務(wù),不擁有所有權(quán),不承擔(dān)相關(guān)法律責(zé)任。如發(fā)現(xiàn)本站有涉嫌抄襲侵權(quán)/違法違規(guī)的內(nèi)容, 請發(fā)送郵件至 yyfangchan@163.com (舉報時請帶上具體的網(wǎng)址) 舉報,一經(jīng)查實,本站將立刻刪除