狠狠操网,91中文字幕在线观看,精品久久香蕉国产线看观看亚洲,亚洲haose在线观看

初中數(shù)學公式定律大全

初中數(shù)學公式定律大全

  數(shù)學公式是人們在研究自然界物與物之間時發(fā)現(xiàn)的一些聯(lián)系,并通過一定的方式表達出來的一種表達方法。以下是小編為大家整理的初中數(shù)學公式定律大全,僅供參考,希望能夠幫助大家。

初中數(shù)學公式定律1

  1過兩點有且只有一條直線

  2 兩點之間線段最短

  3 同角或等角的補角相等

  4 同角或等角的余角相等

  5 過一點有且只有一條直線和已知直線垂直

  6 直線外一點與直線上各點連接的所有線段中,垂線段最短

  7 平行公理 經過直線外一點,有且只有一條直線與這條直線平行

  8 如果兩條直線都和第三條直線平行,這兩條直線也互相平行

  9 同位角相等,兩直線平行

  10 內錯角相等,兩直線平行

  11 同旁內角互補,兩直線平行

  12兩直線平行,同位角相等

  13 兩直線平行,內錯角相等

  14 兩直線平行,同旁內角互補

  15 定理 三角形兩邊的和大于第三邊

  16 推論 三角形兩邊的差小于第三邊

  17 三角形內角和定理 三角形三個內角的和等于180°

  18 推論1 直角三角形的兩個銳角互余

  19 推論2 三角形的一個外角等于和它不相鄰的兩個內角的和

  20 推論3 三角形的一個外角大于任何一個和它不相鄰的內角

  21 全等三角形的對應邊、對應角相等

  22邊角邊公理(SAS) 有兩邊和它們的夾角對應相等的兩個三角形全等

  23 角邊角公理( ASA)有兩角和它們的夾邊對應相等的兩個三角形全等

  24 推論(AAS) 有兩角和其中一角的對邊對應相等的兩個三角形全等

  25 邊邊邊公理(SSS) 有三邊對應相等的兩個三角形全等

  26 斜邊、直角邊公理(HL) 有斜邊和一條直角邊對應相等的兩個直角三角形全等

  27 定理1 在角的平分線上的點到這個角的兩邊的距離相等

  28 定理2 到一個角的兩邊的距離相同的點,在這個角的平分線上

  29 角的平分線是到角的兩邊距離相等的所有點的集合

  30 等腰三角形的性質定理 等腰三角形的兩個底角相等 (即等邊對等角)

  31 推論1 等腰三角形頂角的平分線平分底邊并且垂直于底邊

  32 等腰三角形的頂角平分線、底邊上的中線和底邊上的高互相重合

  33 推論3 等邊三角形的各角都相等,并且每一個角都等于60°

  34 等腰三角形的判定定理 如果一個三角形有兩個角相等,那么這兩個角所對的邊也相等(等角對等邊)

  35 推論1 三個角都相等的三角形是等邊三角形

  36 推論 2 有一個角等于60°的等腰三角形是等邊三角形

  37 在直角三角形中,如果一個銳角等于30°那么它所對的直角邊等于斜邊的一半

  38 直角三角形斜邊上的中線等于斜邊上的一半

  39 定理 線段垂直平分線上的點和這條線段兩個端點的距離相等

  40 逆定理 和一條線段兩個端點距離相等的點,在這條線段的垂直平分線上

  41 線段的垂直平分線可看作和線段兩端點距離相等的所有點的集合

  42 定理1 關于某條直線對稱的兩個圖形是全等形

  43 定理 2 如果兩個圖形關于某直線對稱,那么對稱軸是對應點連線的垂直平分線

  44定理3 兩個圖形關于某直線對稱,如果它們的對應線段或延長線相交,那么交點在對稱軸上

  45逆定理 如果兩個圖形的對應點連線被同一條直線垂直平分,那么這兩個圖形關于這條直線對稱

  46勾股定理 直角三角形兩直角邊a、b的平方和、等于斜邊c的平方,即a^2+b^2=c^2

  47勾股定理的逆定理 如果三角形的三邊長a、b、c有關系a^2+b^2=c^2 ,那么這個三角形是直角三角形

  48定理 四邊形的內角和等于360°

  49四邊形的外角和等于360°

  50多邊形內角和定理 n邊形的內角的和等于(n-2)×180°

  51推論 任意多邊的外角和等于360°

  52平行四邊形性質定理1 平行四邊形的對角相等

  53平行四邊形性質定理2 平行四邊形的對邊相等

  54推論 夾在兩條平行線間的平行線段相等

  55平行四邊形性質定理3 平行四邊形的對角線互相平分

  56平行四邊形判定定理1 兩組對角分別相等的四邊形是平行四邊形

  57平行四邊形判定定理2 兩組對邊分別相等的四邊形是平行四邊形

  58平行四邊形判定定理3 對角線互相平分的四邊形是平行四邊形

  59平行四邊形判定定理4 一組對邊平行相等的四邊形是平行四邊形

  60矩形性質定理1 矩形的四個角都是直角

  61矩形性質定理2 矩形的對角線相等

  62矩形判定定理1 有三個角是直角的四邊形是矩形

  63矩形判定定理2 對角線相等的平行四邊形是矩形

  64菱形性質定理1 菱形的四條邊都相等

  65菱形性質定理2 菱形的對角線互相垂直,并且每一條對角線平分一組對角

  66菱形面積=對角線乘積的一半,即S=(a×b)÷2

  67菱形判定定理1 四邊都相等的四邊形是菱形

  68菱形判定定理2 對角線互相垂直的平行四邊形是菱形

  69正方形性質定理1 正方形的四個角都是直角,四條邊都相等

  70正方形性質定理2正方形的兩條對角線相等,并且互相垂直平分,每條對角線平分一組對角

  71定理1 關于中心對稱的兩個圖形是全等的

  72定理2 關于中心對稱的兩個圖形,對稱點連線都經過對稱中心,并且被對稱中心平分

  73逆定理 如果兩個圖形的對應點連線都經過某一點,并且被這一點平分,那么這兩個圖形關于這一點對稱

  74等腰梯形性質定理 等腰梯形在同一底上的兩個角相等

  75等腰梯形的兩條對角線相等

  76等腰梯形判定定理 在同一底上的兩個角相等的梯形是等腰梯形

  77對角線相等的梯形是等腰梯形

  78平行線等分線段定理 如果一組平行線在一條直線上截得的線段相等,那么在其他直線上截得的線段也相等

  79 推論1 經過梯形一腰的中點與底平行的直線,必平分另一腰

  80 推論2 經過三角形一邊的中點與另一邊平行的直線,必平分第三邊

  81 三角形中位線定理 三角形的中位線平行于第三邊,并且等于它的一半

  82 梯形中位線定理 梯形的中位線平行于兩底,并且等于兩底和的一半 L=(a+b)÷2 S=L×h

  83 (1)比例的基本性質 如果a:b=c:d,那么ad=bc如果ad=bc,那么a:b=c:d

  84 (2)合比性質 如果a/b=c/d,那么(a±b)/b=(c±d)/d

  85 (3)等比性質 如果a/b=c/d=…=m/n(b+d+…+n≠0),那么(a+c+…+m)/(b+d+…+n)=a/b

  86 平行線分線段成比例定理 三條平行線截兩條直線,所得的對應線段成比例

  87 推論 平行于三角形一邊的直線截其他兩邊(或兩邊的延長線),所得的對應線段成比例

  88 定理 如果一條直線截三角形的兩邊(或兩邊的延長線)所得的對應線段成比例,那么這條直線平行于三角形的第三邊

  89 平行于三角形的一邊,并且和其他兩邊相交的直線,所截得的三角形的三邊與原三角形三邊對應成比例

  90 定理 平行于三角形一邊的直線和其他兩邊(或兩邊的延長線)相交,所構成的三角形與原三角形相似

  91 相似三角形判定定理1 兩角對應相等,兩三角形相似(ASA)

  92 直角三角形被斜邊上的高分成的兩個直角三角形和原三角形相似

  93 判定定理2 兩邊對應成比例且夾角相等,兩三角形相似(SAS)

  94 判定定理3 三邊對應成比例,兩三角形相似(SSS)

  95 定理 如果一個直角三角形的斜邊和一條直角邊與另一個直角三角形的斜邊和一條直角邊對應成比例,那么這兩個直角三角形相似

  96 性質定理1 相似三角形對應高的比,對應中線的比與對應角平分線的比都等于相似比

  97 性質定理2 相似三角形周長的比等于相似比

  98 性質定理3 相似三角形面積的比等于相似比的平方

  99 任意銳角的正弦值等于它的.余角的余弦值,任意銳角的余弦值等于它的余角的正弦值

  100任意銳角的正切值等于它的余角的余切值,任意銳角的余切值等于它的余角的正切值

  101圓是定點的距離等于定長的點的集合

  102圓的內部可以看作是圓心的距離小于半徑的點的集合

  103圓的外部可以看作是圓心的距離大于半徑的點的集合

  104同圓或等圓的半徑相等

  105到定點的距離等于定長的點的軌跡,是以定點為圓心,定長為半徑的圓

  106和已知線段兩個端點的距離相等的點的軌跡,是著條線段的垂直平分線

  107到已知角的兩邊距離相等的點的軌跡,是這個角的平分線

  108到兩條平行線距離相等的點的軌跡,是和這兩條平行線平行且距離相等的一條直線

  109定理 不在同一直線上的三點確定一個圓.

  110垂徑定理 垂直于弦的直徑平分這條弦并且平分弦所對的兩條弧

  111推論1 ①平分弦(不是直徑)的直徑垂直于弦,并且平分弦所對的兩條弧

 、谙业拇怪逼椒志經過圓心,并且平分弦所對的兩條弧

  ③平分弦所對的一條弧的直徑,垂直平分弦,并且平分弦所對的另一條弧

  112推論2 圓的兩條平行弦所夾的弧相等

  113圓是以圓心為對稱中心的中心對稱圖形

  114定理 在同圓或等圓中,相等的圓心角所對的弧相等,所對的弦相等,所對的弦的弦心距相等

  115推論 在同圓或等圓中,如果兩個圓心角、兩條弧、兩條弦或兩弦的弦心距中有一組量相等那么它們所對應的其余各組量都相等

  116定理 一條弧所對的圓周角等于它所對的圓心角的一半

  117推論1 同弧或等弧所對的圓周角相等;同圓或等圓中,相等的圓周角所對的弧也相等

  118推論2 半圓(或直徑)所對的圓周角是直角;90°的圓周角所對的弦是直徑

  119推論3 如果三角形一邊上的中線等于這邊的一半,那么這個三角形是直角三角形

  120定理 圓的內接四邊形的對角互補,并且任何一個外角都等于它的內對角

  121①直線L和⊙O相交 d<r

 、谥本L和⊙O相切 d=r

 、壑本L和⊙O相離 d>r

  122切線的判定定理 經過半徑的外端并且垂直于這條半徑的直線是圓的切線

  123切線的性質定理 圓的切線垂直于經過切點的半徑

  124推論1 經過圓心且垂直于切線的直線必經過切點

  125推論2 經過切點且垂直于切線的直線必經過圓心

  126切線長定理 從圓外一點引圓的兩條切線,它們的切線長相等,圓心和這一點的連線平分兩條切線的夾角

  127圓的外切四邊形的兩組對邊的和相等

  128弦切角定理 弦切角等于它所夾的弧對的圓周角

  129推論 如果兩個弦切角所夾的弧相等,那么這兩個弦切角也相等

  130相交弦定理 圓內的兩條相交弦,被交點分成的兩條線段長的積相等

  131推論 如果弦與直徑垂直相交,那么弦的一半是它分直徑所成的兩條線段的比例中項

  132切割線定理 從圓外一點引圓的切線和割線,切線長是這點到割線與圓交點的兩條線段長的比例中項

  133推論 從圓外一點引圓的兩條割線,這一點到每條割線與圓的交點的兩條線段長的積相等

  134如果兩個圓相切,那么切點一定在連心線上

  135①兩圓外離 d>R+r ②兩圓外切 d=R+r

 、蹆蓤A相交 R-r<d<R+r(R>r)

 、軆蓤A內切 d=R-r(R>r) ⑤兩圓內含d<R-r(R>r)

  136定理 相交兩圓的連心線垂直平分兩圓的公共弦

  137定理 把圓分成n(n≥3):

 、乓来芜B結各分點所得的多邊形是這個圓的內接正n邊形

 、平涍^各分點作圓的切線,以相鄰切線的交點為頂點的多邊形是這個圓的外切正n邊形

  138定理 任何正多邊形都有一個外接圓和一個內切圓,這兩個圓是同心圓

  139正n邊形的每個內角都等于(n-2)×180°/n

  140定理 正n邊形的半徑和邊心距把正n邊形分成2n個全等的直角三角形

  141正n邊形的面積Sn=pnrn/2 p表示正n邊形的周長

  142正三角形面積√3a/4 a表示邊長

  143如果在一個頂點周圍有k個正n邊形的角,由于這些角的和應為360°,因此k×(n-2)180°/n=360°化為(n-2)(k-2)=4

  144弧長計算公式:L=n兀R/180

  145扇形面積公式:S扇形=n兀R^2/360=LR/2

  146內公切線長= d-(R-r) 外公切線長= d-(R+r)

初中數(shù)學公式定律2

  某些數(shù)列前n項和

  1+2+3+4+5+6+7+8+9+…+n=n(n+1)/21+3+5+7+9+11+13+15+…+(2n-1)=n2

  2+4+6+8+10+12+14+…+(2n)=n(n+1)12+22+32+42+52+62+72+82+…+n2=n(n+1)(2n+1)/6

  13+23+33+43+53+63+…n3=n2(n+1)2/41*2+2*3+3*4+4*5+5*6+6*7+…+n(n+1)=n(n+1)(n+2)/3

  兩角和公式

  sin(A+B)=sinAcosB+cosAsinB

  sin(A-B)=sinAcosB-sinBcosA

  cos(A+B)=cosAcosB-sinAsinB

  cos(A-B)=cosAcosB+sinAsinB

  tan(A+B)=(tanA+tanB)/(1-tanAtanB)

  tan(A-B)=(tanA-tanB)/(1+tanAtanB)

  ctg(A+B)=(ctgActgB-1)/(ctgB+ctgA)

  ctg(A-B)=(ctgActgB+1)/(ctgB-ctgA)

  和差化積

  2sinAcosB=sin(A+B)+sin(A-B)2cosAsinB=sin(A+B)-sin(A-B)

  2cosAcosB=cos(A+B)-sin(A-B)-2sinAsinB=cos(A+B)-cos(A-B)

  sinA+sinB=2sin((A+B)/2)cos((A-B)/2cosA+cosB=2cos((A+B)/2)sin((A-B)/2)

  tanA+tanB=sin(A+B)/cosAcosBtanA-tanB=sin(A-B)/cosAcosB

  ctgA+ctgBsin(A+B)/sinAsinB-ctgA+ctgBsin(A+B)/sinAsinB

  公式:a^3+b^3+c^3-3abc=(a+b+c)(a^2+b^2+c^2-ab-bc-ca)

  平方差公式:a平方-b平方=(a+b)(a-b)

  完全平方和公式:(a+b)平方=a平方+2ab+b平方

  完全平方差公式:(a-b)平方=a平方-2ab+b平方

  兩根式:ax^2+bx+c=a[x-(-b+√(b^2-4ac))/2a][x-(-b-√(b^2-4ac))/2a]兩根式

  立方和公式:a^3+b^3=(a+b)(a^2-ab+b^2)

  立方差公式:a^3-b^3=(a-b)(a^2+ab+b^2)

  完全立方公式:a^3±3a^2b+3ab^2±b^3=(a±b)^3.

  倍角公式

  tan2A=2tanA/(1-tan2A)

  ctg2A=(ctg2A-1)/2ctga

  cos2a=cos2a-sin2a=2cos2a-1=1-2sin2a

初中數(shù)學公式定律3

  二次函數(shù)拋物線,圖象對稱是關鍵;

  開口、頂點和交點,它們確定圖象現(xiàn);

  開口、大小由a斷,c與y軸來相見,

  b的符號較特別,符號與a相關聯(lián);

  頂點位置先找見,y軸作為參考線,

  左同右異中為0,牢記心中莫混亂;

  頂點坐標最重要,一般 式配方它就現(xiàn),

  橫標即為對稱軸,縱標函數(shù)最值見。

  若求對稱軸位置,符號反,

  一般、頂點、交點式,不同表達能互換。

初中數(shù)學公式定律4

  坐標平面點(x,y),橫在前來縱在后;

 。ǎ,+),(-,+),(-,-)和(+,-),四個象限分前后;

  x軸上y為0,x為0在y軸。

  象限角的平分線

  象限角的平分線,

  坐標特征有特點,

  一、三橫縱都相等,

  二、四橫縱確相反。

  自變量的取值范圍

  分式分母不為零,

  偶次根下負不行;

  零次冪底數(shù)不為零,

  整式、奇次根全能行。

  最簡根式的條件

  最簡根式三條件,

  號內不把分母含,

  冪指(數(shù))根指(數(shù))要互質,

  冪指比根指小一點。

  平行某軸的直線

  平行某軸的直線,

  點的坐標有講究,

  直線平行x軸,縱坐標相等橫不同;

  直線平行于y軸,點的橫坐標仍照舊。

版權聲明:本文內容由互聯(lián)網(wǎng)用戶自發(fā)貢獻,該文觀點僅代表作者本人。本站僅提供信息存儲空間服務,不擁有所有權,不承擔相關法律責任。如發(fā)現(xiàn)本站有涉嫌抄襲侵權/違法違規(guī)的內容, 請發(fā)送郵件至 yyfangchan@163.com (舉報時請帶上具體的網(wǎng)址) 舉報,一經查實,本站將立刻刪除