對(duì)數(shù)函數(shù)教案 (菁選3篇)
對(duì)數(shù)函數(shù)教案1
1.進(jìn)一步理解對(duì)數(shù)函數(shù)的性質(zhì),能運(yùn)用對(duì)數(shù)函數(shù)的相關(guān)性質(zhì)解決對(duì)數(shù)型函數(shù)的常見問題.
2.培養(yǎng)學(xué)生數(shù)形結(jié)合的思想,以及分析推理的能力.
教學(xué)重點(diǎn):
對(duì)數(shù)函數(shù)性質(zhì)的應(yīng)用.
教學(xué)難點(diǎn):
對(duì)數(shù)函數(shù)的性質(zhì)向?qū)?shù)型函數(shù)的演變延伸.
教學(xué)過程:
一、問題情境
1.復(fù)習(xí)對(duì)數(shù)函數(shù)的性質(zhì).
2.回答下列問題.
(1)函數(shù)y=log2x的值域是 ;
(2)函數(shù)y=log2x(x1)的值域是 ;
(3)函數(shù)y=log2x(0
3.情境問題.
函數(shù)y=log2(x2+2x+2)的定義域和值域分別如何求呢?
二、學(xué)生活動(dòng)
探究完成情境問題.
三、數(shù)*用
例1 求函數(shù)y=log2(x2+2x+2)的定義域和值域.
四、練習(xí):
(1)已知函數(shù)y=log2x的值域是[-2,3],則x的范圍是xx.
(2)函數(shù) ,x(0,8]的值域是 .
(3)函數(shù)y=log (x2-6x+17)的值域 .
(4)函數(shù) 的值域是xx.
例2 判斷下列函數(shù)的奇偶性:
(1)f (x)=lg (2)f (x)=ln( -x)
例3 已知loga 0.751,試求實(shí)數(shù)a 取值范圍.
例4 已知函數(shù)y=loga(1-ax)(a0,a1).
(1)求函數(shù)的定義域與值域;
(2)求函數(shù)的單調(diào)區(qū)間.
練習(xí):
1.下列函數(shù)(1) y=x-1;(2) y=log2(x-1);(3) y= ;(4)y=lnx,其中值域?yàn)镽的有 (請(qǐng)寫出所有正確結(jié)論的序號(hào)).
2.函數(shù)y=lg( -1)的圖象關(guān)于 對(duì)稱.
3.已知函數(shù) (a0,a1)的圖象關(guān)于原點(diǎn)對(duì)稱,那么實(shí)數(shù)m= .
4.求函數(shù) ,其中x [ ,9]的值域.
五、要點(diǎn)歸納與方法小結(jié)
(1)借助于對(duì)數(shù)函數(shù)的性質(zhì)研究對(duì)數(shù)型函數(shù)的定義域與值域;
(2)換元法;
(3)能畫出較復(fù)雜函數(shù)的圖象,根據(jù)圖象研究函數(shù)的性質(zhì)(數(shù)形結(jié)合).
六、作業(yè)
課本P70~71-4,5,10,11.
對(duì)數(shù)函數(shù)教案2
一、內(nèi)容與解析
(一)內(nèi)容:對(duì)數(shù)函數(shù)的概念與圖象
(二)解析:本節(jié)課要學(xué)的內(nèi)容是什么是對(duì)數(shù)函數(shù),對(duì)數(shù)函數(shù)的圖象形狀及畫法,其核心是對(duì)數(shù)函數(shù)的圖象畫法,理解它關(guān)鍵就是要理解掌握對(duì)數(shù)函數(shù)的圖象特點(diǎn).學(xué)生已經(jīng)掌握了指數(shù)函數(shù)的圖象畫法及特點(diǎn),函數(shù)圖象的一般畫法,本節(jié)課的內(nèi)容就是在此基礎(chǔ)上的發(fā)展.由于它是研究對(duì)數(shù)函數(shù)性質(zhì)的依據(jù),是本學(xué)科的核心內(nèi)容.教學(xué)的重點(diǎn)是對(duì)數(shù)函數(shù)的圖象特點(diǎn)與畫法,解決重點(diǎn)的關(guān)鍵是利用函數(shù)圖象的一般畫法畫出具體對(duì)數(shù)函數(shù)的圖象,從而歸納出對(duì)數(shù)函數(shù)的圖象特點(diǎn),再根據(jù)圖象特點(diǎn)確定對(duì)數(shù)函數(shù)的一般畫法。
二、教學(xué)目標(biāo)及解析
(一)教學(xué)目標(biāo):
1,理解對(duì)數(shù)函數(shù)的概念;掌握對(duì)數(shù)函數(shù)的圖象的特點(diǎn)及畫法。
2,通過具體實(shí)例,直觀感受對(duì)數(shù)函數(shù)模型所刻畫的數(shù)量關(guān)系;通過具體的函數(shù)圖象的畫法逐步認(rèn)識(shí)對(duì)數(shù)函數(shù)的特征;
3,培養(yǎng)學(xué)生運(yùn)用類比方法探索研究數(shù)學(xué)問題的素養(yǎng),提高學(xué)生分析問題、解決問題的能力。
(二)解析:
1,理解對(duì)數(shù)函數(shù)的概念是來源于實(shí)踐的,能從函數(shù)概念的角度闡述其意義;掌握對(duì)數(shù)函數(shù)的圖象和性質(zhì),做到能畫草圖,能分析圖象,能從圖象觀察得出對(duì)數(shù)函數(shù)的單調(diào)性、值域、定點(diǎn)等;了解同底指數(shù)函數(shù)和對(duì)數(shù)函數(shù)互為反函數(shù),能說出它們的圖象之間的關(guān)系,知道它們的定義域和值域之間的關(guān)系,了解反函數(shù)帶有逆運(yùn)算的意味;
2,通過具體的實(shí)例,歸納得出一般的函數(shù)圖象特征,并能夠通過圖象特征得到相應(yīng)的函數(shù)特征,培養(yǎng)學(xué)生的作圖、識(shí)圖的能力和歸納總結(jié)能力;
3,類比指數(shù)函數(shù)的圖象和性質(zhì)的研究方法,來研究對(duì)數(shù)函數(shù),讓學(xué)生認(rèn)識(shí)到研究問題的方法上的一般性;同時(shí),讓學(xué)生認(rèn)識(shí)到類比這一數(shù)學(xué)思想,即對(duì)相似的問題可以借鑒之前問題的.研究方法來研究,有助于提高學(xué)生分析問題、解決問題的能力。
三、問題診斷分析
本節(jié)課容易出現(xiàn)的問題是:對(duì)數(shù)函數(shù)的圖象特點(diǎn)的探究容易出現(xiàn)圖象不對(duì)、歸納不全、有所偏差等情形。出現(xiàn)這一問題的原因是:學(xué)生作圖能力、識(shí)圖能力、歸納能力不強(qiáng)。要解決這一問題,教師要通過讓學(xué)生類比指數(shù)函數(shù)圖象和性質(zhì)的探究,時(shí)時(shí)回過頭看看之前是怎么做的,考慮了哪些問題,得到了哪些結(jié)論,讓學(xué)生類比自主探究,必要時(shí)給予適當(dāng)引導(dǎo),讓學(xué)生自主的得出結(jié)論,對(duì)于出錯(cuò)的地方要讓學(xué)生討論,教師做出適當(dāng)?shù)脑u(píng)價(jià)并最終給出結(jié)論。
四、教學(xué)**條件分析
在本節(jié)課xx的教學(xué)中,準(zhǔn)備使用xx,因?yàn)槭褂脁x,有利于xx.
五、教學(xué)過程
問題1.前面我們已經(jīng)掌握了指數(shù)函數(shù)的概念、圖象與性質(zhì),知道了指數(shù)函數(shù)是基本初等函數(shù)之一。現(xiàn)在學(xué)習(xí)的對(duì)數(shù),也可以構(gòu)成一種函數(shù),我們稱之為對(duì)數(shù)函數(shù),那么什么樣的函數(shù)稱為對(duì)數(shù)函數(shù)呢?
[設(shè)計(jì)意圖]新課標(biāo)強(qiáng)調(diào)考慮到多數(shù)高中生的認(rèn)知特點(diǎn),為了有助于他們對(duì)函數(shù)概念本質(zhì)的理解,不妨從學(xué)生自己的生活經(jīng)歷和實(shí)際問題入手。因此,新課引入不是按舊教材從反函數(shù)出發(fā),而是選擇從兩個(gè)材料引出對(duì)數(shù)函數(shù)的概念,讓學(xué)生熟悉它的知識(shí)背景,初步感受對(duì)數(shù)函數(shù)是刻畫現(xiàn)實(shí)世界的又一重要數(shù)學(xué)模型。這樣處理,對(duì)數(shù)函數(shù)顯得不抽象,學(xué)生容易接受,降低了新課教學(xué)的起點(diǎn)
小問題串
1.2.2.1的例6,考古學(xué)家是如何估算出土文物或古遺址的年代的?這種對(duì)應(yīng)關(guān)系是否形成函數(shù)關(guān)系?
2. 某種細(xì)胞**時(shí),由1個(gè)**成2個(gè),2個(gè)**成4個(gè) ,如果要求這種細(xì)胞經(jīng)過多少次**,大約可以得到細(xì)胞1萬個(gè),10萬個(gè) 。怎么求?相應(yīng)的對(duì)應(yīng)關(guān)系是否也形成函數(shù)關(guān)系?
3.由上述兩個(gè)實(shí)例,請(qǐng)你類比指數(shù)函數(shù)的概念歸納對(duì)數(shù)函數(shù)的概念
觀察這些函數(shù)的特征:含有對(duì)數(shù)符號(hào),底數(shù)是常數(shù),真數(shù)是變量,從而得出對(duì)數(shù)函數(shù)的定義:函數(shù) ,且 叫做對(duì)數(shù)函數(shù),其中 是自變量,函數(shù)的定義域是(0,+).
注意:○1 對(duì)數(shù)函數(shù)的定義與指數(shù)函數(shù)類似,都是形式定義,注意辨別.如: , 都不是對(duì)數(shù)函數(shù).○2 對(duì)數(shù)函數(shù)對(duì)底數(shù)的限制: ,且 .
4. 根據(jù)對(duì)數(shù)函數(shù)定義填空;
例1 (1)函數(shù) y=logax2的定義域是xx (其中a1)
(2) 函數(shù)y=loga(4-x) 的定義域是xx (其中a1)
說明:本例主要考察對(duì)數(shù)函數(shù)定義中底數(shù)和定義域的限制,加深對(duì)概念的理解,所以把教材中的解答題改為填空題,節(jié)省時(shí)間,點(diǎn)到為止,以避免挖深、拓展、引入復(fù)合函數(shù)的概念。
問題2.對(duì)數(shù)函數(shù)的圖象是什么樣?有什么特點(diǎn)呢?
[設(shè)計(jì)意圖]舊教材是通過對(duì)稱變換直接從指數(shù)函數(shù)的圖象得到對(duì)數(shù)函數(shù)圖象,這樣處理學(xué)生雖然會(huì)接受了這個(gè)事實(shí),但對(duì)圖象的感覺是膚淺的;這樣處理也存在著函數(shù)教學(xué)忽視圖象、性質(zhì)的認(rèn)知過程而注重應(yīng)用的功利思想。因此,本節(jié)課的設(shè)計(jì)注重引導(dǎo)學(xué)生用特殊到一般的方法探究對(duì)數(shù)函數(shù)圖象的形成過程,加深感性認(rèn)識(shí)。同時(shí),幫助學(xué)生確定探究問題、探究方向和探究步驟,確保探究的有效性。這個(gè)環(huán)節(jié),還要借助計(jì)算機(jī)輔助教學(xué)作用,增強(qiáng)學(xué)生的直觀感受
小問題串
1. (1)用描點(diǎn)法在同一坐標(biāo)系中畫出下列對(duì)數(shù)函數(shù)的圖象
(2)用描點(diǎn)法在同一坐標(biāo)系中畫出下列對(duì)數(shù)函數(shù)的圖象
2. 觀察對(duì)數(shù)函數(shù) 、 與 、 的圖象特征 ,看看它們有那些異同點(diǎn)。
3. 利用計(jì)算器或計(jì)算機(jī),選取底數(shù) ,且 的若干個(gè)不同的值,在同一*面直角坐標(biāo)系中作出相應(yīng)對(duì)數(shù)函數(shù)的圖象。觀察圖象,它們有哪些共同特征?
4. 歸納出能體現(xiàn)對(duì)數(shù)函數(shù)的**性圖象,并說明以后如何畫對(duì)數(shù)函數(shù)的簡(jiǎn)圖。
例題
1.課本P75 A組第10題
2. 求函數(shù) 的定義域,并畫出函數(shù)的圖象。
六、目標(biāo)檢測(cè)
求下列函數(shù)的定義域
對(duì)數(shù)函數(shù)教案3
一、說教材
1、教材的地位和作用
函數(shù)是高中數(shù)學(xué)的核心,而對(duì)數(shù)函數(shù)是高中階段所要研究的重要的基本初等函數(shù)之一.本節(jié)內(nèi)容是在學(xué)生已經(jīng)學(xué)過指數(shù)函數(shù)、對(duì)數(shù)及反函數(shù)的基礎(chǔ)上引入的,因此既是對(duì)上述知識(shí)的應(yīng)用,也是對(duì)函數(shù)這一重要數(shù)學(xué)思想的進(jìn)一步認(rèn)識(shí)與理解.對(duì)數(shù)函數(shù)在生產(chǎn)、生活實(shí)踐中都有許多應(yīng)用.本節(jié)課的學(xué)習(xí)使學(xué)生的知識(shí)體系更加完整、系統(tǒng),為學(xué)生今后進(jìn)一步學(xué)習(xí)對(duì)數(shù)方程、對(duì)數(shù)不等式等提供了必要的基礎(chǔ)知識(shí).
2、教學(xué)目標(biāo)的確定及依據(jù)
根據(jù)教學(xué)大綱要求,結(jié)合教材,考慮到學(xué)生已有的認(rèn)知結(jié)構(gòu)心理特征,我制定了如下的教學(xué)目標(biāo):
(1) 知識(shí)目標(biāo):理解對(duì)數(shù)函數(shù)的意義;掌握對(duì)數(shù)函數(shù)的圖像與性質(zhì);初步學(xué)會(huì)用
對(duì)數(shù)函數(shù)的性質(zhì)解決簡(jiǎn)單的問題.
(2) 能力目標(biāo):滲透類比、數(shù)形結(jié)合、分類討論等數(shù)學(xué)思想方法,培養(yǎng)學(xué)生觀察、
分析、歸納等邏輯思維能力.
(3) 情感目標(biāo):通過指數(shù)函數(shù)和對(duì)數(shù)函數(shù)在圖像與性質(zhì)上的對(duì)比,使學(xué)生欣賞數(shù)
學(xué)的精確和美妙之處,調(diào)動(dòng)學(xué)生學(xué)習(xí)數(shù)學(xué)的積極性.
3、教學(xué)重點(diǎn)與難點(diǎn)
重點(diǎn):對(duì)數(shù)函數(shù)的意義、圖像與性質(zhì).
難點(diǎn):對(duì)數(shù)函數(shù)性質(zhì)中對(duì)于在a1與01兩種情況函數(shù)值的不同變化.
二、說教法
學(xué)生在整個(gè)教學(xué)過程中始終是認(rèn)知的主體和發(fā)展的主體,教師作為學(xué)生學(xué)習(xí)的指導(dǎo)者,應(yīng)充分地調(diào)動(dòng)學(xué)生學(xué)習(xí)的積極性和主動(dòng)性,有效地滲透數(shù)學(xué)思想方法.根據(jù)這樣的原則和所要完成的教學(xué)目標(biāo),對(duì)于本節(jié)課我主要考慮了以下兩個(gè)方面:
1、教學(xué)方法:
(1)啟發(fā)引導(dǎo)學(xué)生實(shí)驗(yàn)、觀察、聯(lián)想、思考、分析、歸納;
(2)采用“從特殊到一般”、“從具體到抽象”的方法;
(3)滲透類比、數(shù)形結(jié)合、分類討論等數(shù)學(xué)思想方法.
2、教學(xué)**:
計(jì)算機(jī)多**輔助教學(xué).
三、說學(xué)法
“授之以魚,不如授之以漁”,方法的掌握,思想的形成,才能使學(xué)生受益終身.本節(jié)課注重調(diào)動(dòng)學(xué)生積極思考、主動(dòng)探索,盡可能地增加學(xué)生參與教學(xué)活動(dòng)的時(shí)間和空間,我進(jìn)行了以下學(xué)法指導(dǎo):
(1)類比學(xué)習(xí):與指數(shù)函數(shù)類比學(xué)習(xí)對(duì)數(shù)函數(shù)的圖像與性質(zhì).
(2)探究定向性學(xué)習(xí):學(xué)生在教師建立的情境下,通過思考、分析、操作、探索,
歸納得出對(duì)數(shù)函數(shù)的圖像與性質(zhì).
(3)主動(dòng)合作式學(xué)習(xí):學(xué)生在歸納得出對(duì)數(shù)函數(shù)的圖像與性質(zhì)時(shí),通過小組討論,
使問題得以圓滿解決.
四、說教程
1、溫故知新
我通過復(fù)習(xí)細(xì)胞**問題,由指數(shù)函數(shù) 引導(dǎo)學(xué)生逐步得到對(duì)數(shù)函數(shù)的意義及對(duì)數(shù)函數(shù)與指數(shù)函數(shù)的關(guān)系:互為反函數(shù).
設(shè)計(jì)意圖:既復(fù)習(xí)了指數(shù)函數(shù)和反函數(shù)的有關(guān)知識(shí),又與本節(jié)內(nèi)容有密切關(guān)系,
有利于引出新課.為學(xué)生理解新知**了障礙,有意識(shí)地培養(yǎng)學(xué)生
分析問題的能力.
2、探求新知
對(duì)數(shù)函數(shù)教案 (菁選3篇)擴(kuò)展閱讀
對(duì)數(shù)函數(shù)教案 (菁選3篇)(擴(kuò)展1)
——《對(duì)數(shù)函數(shù)》教學(xué)設(shè)計(jì)3篇
《對(duì)數(shù)函數(shù)》教學(xué)設(shè)計(jì)1
一、內(nèi)容與解析
(一)內(nèi)容:對(duì)數(shù)函數(shù)的性質(zhì)
。ǘ┙馕觯罕竟(jié)課要學(xué)的內(nèi)容是對(duì)數(shù)函數(shù)的性質(zhì)及簡(jiǎn)單應(yīng)用,其核心(或關(guān)鍵)是對(duì)數(shù)函數(shù)的性質(zhì),理解它關(guān)鍵就是要利用對(duì)數(shù)函數(shù)的圖象.學(xué)生已經(jīng)掌握了對(duì)數(shù)函數(shù)的圖象特點(diǎn),本節(jié)課的內(nèi)容就是在此基礎(chǔ)上的發(fā)展.由于它是構(gòu)造復(fù)雜函數(shù)的基本元素之一,所以對(duì)數(shù)函數(shù)的性質(zhì)是本單元的重要內(nèi)容之一.的重點(diǎn)是掌握對(duì)數(shù)函數(shù)的性質(zhì),解決重點(diǎn)的關(guān)鍵是利用對(duì)數(shù)函數(shù)的圖象,通過數(shù)形結(jié)合的思想進(jìn)行歸納總結(jié)。
二、目標(biāo)及解析
(一)教學(xué)目標(biāo):
1.掌握對(duì)數(shù)函數(shù)的性質(zhì)并能簡(jiǎn)單應(yīng)用
(二)解析:
(1)就是指根據(jù)對(duì)數(shù)函數(shù)的兩類圖象總結(jié)并理解對(duì)數(shù)函數(shù)的定義域、值域、單調(diào)性、奇偶性、函數(shù)值的分布特征等性質(zhì),并能將這些性質(zhì)應(yīng)用到簡(jiǎn)單的問題中。
三、問題診斷分析
在本節(jié)課的教學(xué)中,學(xué)生可能遇到的問題是底數(shù)a對(duì)對(duì)數(shù)函數(shù)圖象和性質(zhì)的影響,產(chǎn)生這一問題的原因是學(xué)生對(duì)參量認(rèn)識(shí)不到位,往往將參量等同于自變量.要解決這一問題,就是要將參量的取值多元化,最好應(yīng)用幾何畫板的快捷性處理這類問題,其中關(guān)鍵是應(yīng)用好幾何畫板.
四、教學(xué)**條件分析
在本節(jié)課()的教學(xué)中,準(zhǔn)備使用(),因?yàn)槭褂?),有利于().
五、教學(xué)過程
問題1.先畫出下列函數(shù)的簡(jiǎn)圖,再根據(jù)圖象歸納總結(jié)對(duì)數(shù)函數(shù) 的相關(guān)性質(zhì)。
設(shè)計(jì)意圖:
師生活動(dòng)(小問題):
1.這些對(duì)數(shù)函數(shù)的解析式有什么共同特征?
2.通過這些函數(shù)的圖象請(qǐng)從值域、單調(diào)性、奇偶性方面進(jìn)行總結(jié)函數(shù)的性質(zhì)。
3.通過這些函數(shù)圖象請(qǐng)從函數(shù)值的分布角度總結(jié)相關(guān)性質(zhì)
4.通過這些函數(shù)圖象請(qǐng)總結(jié):當(dāng)自變量取一個(gè)值時(shí),函數(shù)值隨底數(shù)有什么樣的變化規(guī)律?
問題2.先畫出下列函數(shù)的簡(jiǎn)圖,根據(jù)圖象歸納總結(jié)對(duì)數(shù)函數(shù) 的相關(guān)性質(zhì)。
問題3.根據(jù)問題1、2填寫下表
圖象特征函數(shù)性質(zhì)
a>10<a<1a>10<a<1
向y軸**方向無限延伸函數(shù)的值域?yàn)镽+
圖象關(guān)于原點(diǎn)和y軸不對(duì)稱非奇非偶函數(shù)
函數(shù)圖象都在y軸右側(cè)函數(shù)的定義域?yàn)镽
函數(shù)圖象都過定點(diǎn)(1,0)
自左向右,圖象逐漸上升自左向右,圖象逐漸下降增函數(shù)減函數(shù)
在第一象限內(nèi)的圖象縱坐標(biāo)都大于0,橫坐標(biāo)大于1在第一象限內(nèi)的圖象縱坐標(biāo)都大于0,橫標(biāo)大于0小于1
在第四象限內(nèi)的圖象縱坐標(biāo)都小于0,橫標(biāo)大于0小于1在第四象限內(nèi)的圖象縱坐標(biāo)都小于0,橫標(biāo)大于1
[設(shè)計(jì)意圖]發(fā)現(xiàn)性質(zhì)、弄清性質(zhì)的來龍去脈,是為了更好揭示對(duì)數(shù)函數(shù)的本質(zhì)屬性,傳統(tǒng)教學(xué)往往讓學(xué)生在解題中領(lǐng)悟。為了扭轉(zhuǎn)這種方式,我先引導(dǎo)學(xué)生回顧指數(shù)函數(shù)的性質(zhì),再利用類比的思想,小組合作的形式通過圖象主動(dòng)探索出對(duì)數(shù)函數(shù)的性質(zhì)。教學(xué)實(shí)踐表明:當(dāng)學(xué)生對(duì)對(duì)數(shù)函數(shù)的圖象已有感性認(rèn)識(shí)后,得到這些性質(zhì)必然水到渠成
例1.比較下列各組數(shù)中兩個(gè)值的大。
(1) log 23.4 , log 28.5 (2)log 0.31.8 , log 0.32.7
。3)log a5.1 , log a5.9 ( a>0 , 且a≠1 )
變式訓(xùn)練:1. 比較下列各題中兩個(gè)值的大小:
、 log106 log108 ⑵ log0.56 log0.54
、 log0.10.5 log0.10. 6 ⑷ log1.50.6 log1.50.4
2.已知下列不等式,比較正數(shù)m,n 的大。
(1) log 3 m < log 3 n (2) log 0.3 m > log 0.3 n
(3) log a m < loga n (0 log a n (a>1)
例2.(1)若 且 ,求 的取值范圍
。2)已知 ,求 的取值范圍;
六、目標(biāo)檢測(cè)
1.比較 xx和xx 的大。
2.求下列各式中的x的值
。1)
演繹推理導(dǎo)學(xué)案
2.1.2 演繹推理
學(xué)習(xí)目標(biāo)
1.結(jié)合已學(xué)過的數(shù)學(xué)實(shí)例和生活中的實(shí)例,體會(huì)演繹推理的重要性;
2.掌握演繹推理的基本方法,并能運(yùn)用它們進(jìn)行一些簡(jiǎn)單的推理.
學(xué)習(xí)過程
一、前準(zhǔn)備
復(fù)習(xí)1:歸納推理是由 到 的推理.
類比推理是由 到 的推理.
復(fù)習(xí)2:合情推理的結(jié)論 .
二、新導(dǎo)學(xué)
※ 學(xué)習(xí)探究
探究任務(wù)一:演繹推理的概念
問題:觀察下列例子有什么特點(diǎn)?
。1)所有的金屬都能夠?qū)щ,銅是金屬,所以 ;
。2)一切奇數(shù)都不能被2整除,2007是奇數(shù),所以 ;
。3)三角函數(shù)都是周期函數(shù), 是三角函數(shù),所以 ;
(4)兩條直線*行,同旁內(nèi)角互補(bǔ).如果A與B是兩條*行直線的同旁內(nèi)角,那么 .
新知:演繹推理是
的推理.簡(jiǎn)言之,演繹推理是由 到 的推理.
探究任務(wù)二:觀察上述例子,它們都由幾部分組成,各部分有什么特點(diǎn)?
所有的金屬都導(dǎo)電 銅是金屬 銅能導(dǎo)電
已知的一般原理 特殊情況 根據(jù)原理,對(duì)特殊情況做出的判斷
大前提 小前提 結(jié)論
新知:“三段論”是演繹推理的一般模式:
大前提—— ;
小前提—— ;
結(jié)論—— .
新知:用集合知識(shí)說明“三段論”:
大前提:
小前提:
結(jié) 論:
試試:請(qǐng)把探究任務(wù)一中的演繹推理(2)至(4)寫成“三段論”的形式.
※ 典型例題
例1 命題:等腰三角形的兩底角相等
已知:
求證:
證明:
把上面推理寫成三段論形式:
變式:已知空間四邊形ABCD中,點(diǎn)E,F分別是AB,AD的中點(diǎn), 求證:EF *面BCD
例2求證:當(dāng)a>1時(shí),有
動(dòng)手試試:1證明函數(shù) 的值恒為正數(shù)。
2 下面的推理形式正確嗎?推理的結(jié)論正確嗎?為什么?
所有邊長(zhǎng)相等的凸多邊形是正多邊形,(大前提)
菱形是所有邊長(zhǎng)都相等的凸多邊形, (小前提)
菱形是正多邊形. (結(jié) 論)
小結(jié):在演繹推理中,只要前提和推理形式是正確的,結(jié)論必定正確.
三、總結(jié)提升
※ 學(xué)習(xí)小結(jié)
1. 合情推理 ;結(jié)論不一定正確.
2. 演繹推理:由一般到特殊.前提和推理形式正確結(jié)論一定正確.
3應(yīng)用“三段論”解決問題時(shí),首先應(yīng)該明確什么是大前提和小前提,但為了敘述簡(jiǎn)潔,如果大前提是顯然的,則可以省略.
※ 當(dāng)堂檢測(cè)(時(shí)量:5分鐘 滿分:10分)計(jì)分:
1. 因?yàn)橹笖?shù)函數(shù) 是增函數(shù), 是指數(shù)函數(shù),則 是增函數(shù).這個(gè)結(jié)論是錯(cuò)誤的,這是因?yàn)?/p>
A.大前提錯(cuò)誤 B.小前提錯(cuò)誤 C.推理形式錯(cuò)誤 D.非以上錯(cuò)誤
2. 有這樣一段演繹推理是這樣的“有些有理數(shù)是真分?jǐn)?shù),整數(shù)是有理數(shù),則整數(shù)是真分?jǐn)?shù)”
結(jié)論顯然是錯(cuò)誤的,是因?yàn)?/p>
A.大前提錯(cuò)誤 B.小前提錯(cuò)誤 C.推理形式錯(cuò)誤 D.非以上錯(cuò)誤
3. 有一段演繹推理是這樣的:“直線*行于*面,則*行于*面內(nèi)所有直線;已知直線 *面 ,直線 *面 ,直線 ∥*面 ,則直線 ∥直線 ”的結(jié)論顯然是錯(cuò)誤的,這是因?yàn)?/p>
A.大前提錯(cuò)誤 B.小前提錯(cuò)誤 C.推理形式錯(cuò)誤 D.非以上錯(cuò)誤
4.歸納推理是由 到 的推理;
類比推理是由 到 的推理;
演繹推理是由 到 的推理.
后作業(yè)
1. 運(yùn)用完全歸納推理證明:函數(shù) 的值恒為正數(shù)。
直觀圖
總 課 題空間幾何體總課時(shí)第4課時(shí)
分 課 題直觀圖畫法分課時(shí)第4課時(shí)
目標(biāo)掌握斜二側(cè)畫法的畫圖規(guī)則.會(huì)用斜二側(cè)畫法畫出立體圖形的直觀圖.
重點(diǎn)難點(diǎn)用斜二側(cè)畫法畫圖.
引入新課
1.*行投影、中心投影、斜投影、正投影的有關(guān)概念.
2.空間圖形的直觀圖的畫法——斜二側(cè)畫法:
規(guī)則:
。1)____________________________________________________________.
。2)____________________________________________________________.
(3)____________________________________________________________.
。4)____________________________________________________________.
例題剖析
例1 畫水*放置的正三角形的直觀圖.
例2 畫棱長(zhǎng)為 的'正方體的直觀圖.
鞏固練習(xí)
1.在下列圖形中,采用中心投影(透視)畫法的是__________.
2.用斜二測(cè)畫法畫出下列水*放置的圖形的直觀圖.
3.根據(jù)下面的三視圖,畫出相應(yīng)的空間圖形的直觀圖.
課堂小結(jié)
通過例題弄清空間圖形的直觀圖的斜二側(cè)畫法方法及步驟.
《對(duì)數(shù)函數(shù)》教學(xué)設(shè)計(jì)2
教學(xué)目標(biāo):
(一)教學(xué)知識(shí)點(diǎn):
1.對(duì)數(shù)函數(shù)的概念;
2.對(duì)數(shù)函數(shù)的圖象和性質(zhì).
(二)能力訓(xùn)練要求:
1.理解對(duì)數(shù)函數(shù)的概念;
2.掌握對(duì)數(shù)函數(shù)的圖象和性質(zhì).
(三)德育滲透目標(biāo):
1.用聯(lián)系的觀點(diǎn)分析問題;
2.認(rèn)識(shí)事物之間的互相轉(zhuǎn)化.
教學(xué)重點(diǎn):
對(duì)數(shù)函數(shù)的圖象和性質(zhì)
教學(xué)難點(diǎn):
對(duì)數(shù)函數(shù)與指數(shù)函數(shù)的關(guān)系
教學(xué)方法:
聯(lián)想、類比、發(fā)現(xiàn)、探索
教學(xué)輔助:
多**
教學(xué)過程:
一、引入對(duì)數(shù)函數(shù)的概念
由學(xué)生的預(yù)習(xí),可以直接回答“對(duì)數(shù)函數(shù)的概念”
由指數(shù)、對(duì)數(shù)的定義及指數(shù)函數(shù)的概念,我們進(jìn)行類比,可否猜想有:
問題:
1.指數(shù)函數(shù)是否存在反函數(shù)?
2.求指數(shù)函數(shù)的反函數(shù).
①;
、;
③指出反函數(shù)的定義域.
3.結(jié)論
所以函數(shù)與指數(shù)函數(shù)互為反函數(shù).
這節(jié)課我們所要研究的便是指數(shù)函數(shù)的反函數(shù)——對(duì)數(shù)函數(shù).
二、講授新課
1.對(duì)數(shù)函數(shù)的定義:
定義域:(0,+∞);值域:(-∞,+∞)
2.對(duì)數(shù)函數(shù)的圖象和性質(zhì):
因?yàn)閷?duì)數(shù)函數(shù)與指數(shù)函數(shù)互為反函數(shù).所以與圖象關(guān)于直線對(duì)稱.
因此,我們只要畫出和圖象關(guān)于直線對(duì)稱的曲線,就可以得到的圖象.
研究指數(shù)函數(shù)時(shí),我們分別研究了底數(shù)和兩種情形.
那么我們可以畫出與圖象關(guān)于直線對(duì)稱的曲線得到的圖象.
還可以畫出與圖象關(guān)于直線對(duì)稱的曲線得到的圖象.
請(qǐng)同學(xué)們作出與的草圖,并觀察它們具有一些什么特征?
對(duì)數(shù)函數(shù)的圖象與性質(zhì):
圖象
性質(zhì)
(1)定義域:
。2)值域:
。3)過定點(diǎn),即當(dāng)時(shí),
。4)上的增函數(shù)
(4)上的減函數(shù)
3.圖象的加深理解:
下面我們來研究這樣幾個(gè)函數(shù):
我們發(fā)現(xiàn):
與圖象關(guān)于X軸對(duì)稱;與圖象關(guān)于X軸對(duì)稱.
一般地,與圖象關(guān)于X軸對(duì)稱.
再通過圖象的變化(變化的值),我們發(fā)現(xiàn):
。1)時(shí),函數(shù)為增函數(shù),
。2)時(shí),函數(shù)為減函數(shù),
4.練習(xí):
(1)如圖:曲線分別為函數(shù),,,,的圖像,試問的大小關(guān)系如何?
(2)比較下列各組數(shù)中兩個(gè)值的大。
(3)解關(guān)于x的不等式:
思考:(1)比較大。
(2)解關(guān)于x的不等式:
三、小結(jié)
這節(jié)課我們主要介紹了指數(shù)函數(shù)的反函數(shù)——對(duì)數(shù)函數(shù).并且研究了對(duì)數(shù)函數(shù)的圖象和性質(zhì).
四、課后作業(yè)
課本P85,習(xí)題2.8,1、3
《對(duì)數(shù)函數(shù)》教學(xué)設(shè)計(jì)3
教學(xué)目標(biāo):
、僬莆諏(duì)數(shù)函數(shù)的性質(zhì)。
、趹(yīng)用對(duì)數(shù)函數(shù)的性質(zhì)可以解決:對(duì)數(shù)的大小比較,求復(fù)合函數(shù)的定義域、值 域及單調(diào)性。
、 注重函數(shù)思想、等價(jià)轉(zhuǎn)化、分類討論等思想的滲透,提高解題能力。
教學(xué)重點(diǎn)與難點(diǎn):
對(duì)數(shù)函數(shù)的性質(zhì)的應(yīng)用。
教學(xué)過程設(shè)計(jì):
⒈復(fù)習(xí)**:
對(duì)數(shù)函數(shù)的概念及性質(zhì)。
、查_始正課:
1 比較數(shù)的大小
例 1 比較下列各組數(shù)的大小。
、舕oga5.1 ,loga5.9 (a>0,a≠1)
⑵log0.50.6 ,logл0.5 ,lnл
師:請(qǐng)同學(xué)們觀察一下⑴中這兩個(gè)對(duì)數(shù)有何特征?
生:這兩個(gè)對(duì)數(shù)底相等。
師:那么對(duì)于兩個(gè)底相等的對(duì)數(shù)如何比大。
生:可構(gòu)造一個(gè)以a為底的對(duì)數(shù)函數(shù),用對(duì)數(shù)函數(shù)的單調(diào)性比大小。
師:對(duì),請(qǐng)敘述一下這道題的解題過程。
生:對(duì)數(shù)函數(shù)的單調(diào)性取決于底的大。寒(dāng)0
調(diào)遞減,所以loga5.1>loga5.9 ;當(dāng)a>1時(shí),函數(shù)y=logax單調(diào)遞
增,所以loga5.1
板書:
解:ⅰ)當(dāng)0
∵5.1<5.9 loga5.1="">loga5.9
、ⅲ┊(dāng)a>1時(shí),函數(shù)y=logax在(0,+∞)上是增函數(shù),
∵5.1<5.9 ∴l(xiāng)oga5.1
師:請(qǐng)同學(xué)們觀察一下⑵中這三個(gè)對(duì)數(shù)有何特征?
生:這三個(gè)對(duì)數(shù)底、真數(shù)都不相等。
師:那么對(duì)于這三個(gè)對(duì)數(shù)如何比大。
生:找“中間量”, log0.50.6>0,lnл>0,logл0.5<0;lnл>1,
log0.50.6<1,所以logл0.5< log0.50.6< lnл。
板書:略。
師:比較對(duì)數(shù)值的大小常用方法:
、贅(gòu)造對(duì)數(shù)函數(shù),直接利用對(duì)數(shù)函數(shù) 的單調(diào)性比大小
、诮栌谩爸虚g量”間接比大小
③利用對(duì)數(shù)函數(shù)圖象的位置關(guān)系來比大小
2 函數(shù)的定義域, 值 域及單調(diào)性。
例 2
⑴求函數(shù)y=的定義域。
、平獠坏仁絣og0.2(x2+2x-3)>log0.2(3x+3)
師:如何來求
、胖泻瘮(shù)的定義域?(提示:求函數(shù)的定義域,就是要使函數(shù)有意義。若函數(shù)中含有分母,分母不為零;有偶次根式,被開方式大于或等于零;若函數(shù)中有對(duì)數(shù)的形式,則真數(shù)大于零,如果函數(shù)中同時(shí)出現(xiàn)以上幾種情況,就要全部考慮進(jìn)去,求它們共同作用的結(jié)果。)
生:分母2x-1≠0且偶次根式的被開方式log0.8x-1≥0,且真數(shù)x>0。
板書:
解:∵ 2x-1≠0 x≠0.5
log0.8x-1≥0 , x≤0.8
x>0 x>0
∴x(0,0.5)∪(0.5,0.8〕
師:接下來我們一起來解這個(gè)不等式。
分析:要解這個(gè)不等式,首先要使這個(gè)不等式有意義,即真數(shù)大于零,
再根據(jù)對(duì)數(shù)函數(shù)的單調(diào)性求解。
師:請(qǐng)你寫一下這道題的解題過程。
生:<板書>
解: x2+2x-3>0 x<-3 x="">1
(3x+3)>0 , x>-1
x2+2x-3<(3x+3) -2
不等式的解為:1
例 3 求下列函數(shù)的值域和單調(diào)區(qū)間。
、舮=log0.5(x- x2)
⑵y=loga(x2+2x-3)(a>0,a≠1)
師:求例3中函數(shù)的的值域和單調(diào)區(qū)間要用及復(fù)合函數(shù)的思想方法。
下面請(qǐng)同學(xué)們來解⑴。
生:此函數(shù)可看作是由y= log0.5u, u= x- x2復(fù)合而成。
對(duì)數(shù)函數(shù)教案 (菁選3篇)(擴(kuò)展2)
——《對(duì)數(shù)函數(shù)》說課稿3篇
《對(duì)數(shù)函數(shù)》說課稿1
我今天說課的內(nèi)容是《對(duì)數(shù)函數(shù)》,現(xiàn)就教材、教法、學(xué)法、教學(xué)程序、板書五個(gè)方面進(jìn)行說明。懇請(qǐng)?jiān)谧母魑焕蠋熍u(píng)指正。
一、說教材
1、教材的地位、作用及編寫意圖
《對(duì)數(shù)函數(shù)》出現(xiàn)在職業(yè)高中數(shù)學(xué)第一冊(cè)第四章第四節(jié)。函數(shù)是高中數(shù)學(xué)的核心,對(duì)數(shù)函數(shù)是函數(shù)的重要分支,對(duì)數(shù)函數(shù)的知識(shí)在數(shù)學(xué)和其他許多學(xué)科中有著廣泛的應(yīng)用;學(xué)生已經(jīng)學(xué)習(xí)了對(duì)數(shù)、反函數(shù)以及指數(shù)函數(shù)等內(nèi)容,這為過渡到本節(jié)的學(xué)習(xí)起著鋪墊作用;"對(duì)數(shù)函數(shù)"這節(jié)教材,指出對(duì)數(shù)函數(shù)和指數(shù)函數(shù)互為反函數(shù),反映了兩個(gè)變量的相互關(guān)系,蘊(yùn)含了函數(shù)與方程的數(shù)學(xué)思想與數(shù)學(xué)方法,是以后數(shù)學(xué)學(xué)習(xí)中不可缺少的部分,也是高考的必考內(nèi)容。
2、教學(xué)目標(biāo)的確定及依據(jù)。
依據(jù)教學(xué)大綱和學(xué)生獲得知識(shí)、培養(yǎng)能力及思想教育等方面的要求:我制定了如下教育教學(xué)目標(biāo):
。1) 知識(shí)目標(biāo):理解對(duì)數(shù)函數(shù)的概念、掌握對(duì)數(shù)函數(shù)的圖象和性質(zhì)。
。2) 能力目標(biāo):培養(yǎng)學(xué)生自主學(xué)習(xí)、綜合歸納、數(shù)形結(jié)合的能力。
。3) 德育目標(biāo):培養(yǎng)學(xué)生對(duì)待知識(shí)的科學(xué)態(tài)度、勇于探索和創(chuàng)新的精神。
。4) 情感目標(biāo):在**、**的教學(xué)氣氛中,促進(jìn)師生的情感交流。
3、教學(xué)重點(diǎn)、難點(diǎn)及關(guān)鍵
重點(diǎn):對(duì)數(shù)函數(shù)的概念、圖象和性質(zhì);
難點(diǎn):利用指數(shù)函數(shù)的圖象和性質(zhì)得到對(duì)數(shù)函數(shù)的圖象和性質(zhì);
關(guān)鍵:抓住對(duì)數(shù)函數(shù)是指數(shù)函數(shù)的反函數(shù)這一要領(lǐng)。
二、說教法
大部分學(xué)生數(shù)學(xué)基礎(chǔ)較差,理解能力,運(yùn)算能力,思維能力等方面參差不齊;同時(shí)學(xué)生學(xué)好數(shù)學(xué)的自信心不強(qiáng),學(xué)習(xí)積極性不高。針對(duì)這種情況,在教學(xué)中,我引導(dǎo)學(xué)生從實(shí)例出發(fā)啟發(fā)指數(shù)函數(shù)的定義,在概念理解上,用步步設(shè)問、課堂討論來加深理解。在對(duì)數(shù)函數(shù)圖像的畫法上,我借助多**,演示作圖過程及圖像變化的動(dòng)畫過程,從而使學(xué)生直接地接受并提高學(xué)生的學(xué)習(xí)興趣和積極性,很好地突破難點(diǎn)和提高教學(xué)效率。
三、說學(xué)法
教給學(xué)生方法比教給學(xué)生知識(shí)更重要,本節(jié)課注重調(diào)動(dòng)學(xué)生積極思考、主動(dòng)探索,盡可能地增加學(xué)生參與教學(xué)活動(dòng)的時(shí)間和空間,我進(jìn)行了以下學(xué)法指導(dǎo):
。1)對(duì)照比較學(xué)習(xí)法:學(xué)習(xí)對(duì)數(shù)函數(shù),處處與指數(shù)函數(shù)相對(duì)照。
。2)探究式學(xué)習(xí)法:學(xué)生通過分析、探索、得出對(duì)數(shù)函數(shù)的定義。
(3)自主性學(xué)習(xí)法:通過實(shí)驗(yàn)畫出函數(shù)圖象、觀察圖象自得其性質(zhì)。
。4)反饋練習(xí)法:檢驗(yàn)知識(shí)的應(yīng)用情況,找出未掌握的內(nèi)容及其差距。
這樣可發(fā)揮學(xué)生的主觀能動(dòng)性,有利于提高學(xué)生的各種能力。
四、說教學(xué)程序
1、復(fù)習(xí)導(dǎo)入
。1)復(fù)習(xí)**:什么是對(duì)數(shù)?如何求反函數(shù)?指數(shù)函數(shù)的圖象和性質(zhì)如何?學(xué)生回答,并利用課件展示一下指數(shù)函數(shù)的圖象和性質(zhì)。
設(shè)計(jì)意圖:設(shè)計(jì)的**既與本節(jié)內(nèi)容有密切關(guān)系,又有利于引入新課,為學(xué)生理解新知識(shí)**了障礙,有意識(shí)地培養(yǎng)學(xué)生分析問題的能力。
2)導(dǎo)言:指數(shù)函數(shù)有沒有反函數(shù)?如果有,如何求指數(shù)函數(shù)的反函數(shù)?它的反函數(shù)是什么?
設(shè)計(jì)意圖:這樣的導(dǎo)言可激發(fā)學(xué)生求知欲,使學(xué)生渴望知道問題的答案。
2、認(rèn)定目標(biāo)(出示教學(xué)目標(biāo))
3、導(dǎo)學(xué)達(dá)標(biāo)
按"教師為主導(dǎo),學(xué)生為主體,訓(xùn)練為主線"的原則,安排師生互動(dòng)活動(dòng)。
。1)對(duì)數(shù)函數(shù)的概念
引導(dǎo)學(xué)生從對(duì)數(shù)式與指數(shù)式的關(guān)系及反函數(shù)的概念進(jìn)行分析并推導(dǎo)出,指數(shù)函數(shù)有反函數(shù),并且y=ax(a>0且a≠1)的反函數(shù)是 y=logax,見課件。把函數(shù)y=logax叫做對(duì)數(shù)函數(shù),其中a>0且a≠1、從而引出對(duì)數(shù)函數(shù)的概念,展示課件。
設(shè)計(jì)意圖:對(duì)數(shù)函數(shù)的概念比較抽象,利用已經(jīng)學(xué)過的知識(shí)逐步分析,這樣引出對(duì)數(shù)函數(shù)的概念過渡自然,學(xué)生易于接受。因?yàn)閷?duì)數(shù)函數(shù)是指數(shù)函數(shù)的反函數(shù),讓學(xué)生比較它們的定義域、值域、對(duì)應(yīng)法則及圖象間的關(guān)系,培養(yǎng)學(xué)生參與意識(shí),通過比較充分體現(xiàn)指數(shù)函數(shù)及對(duì)數(shù)函數(shù)的內(nèi)在聯(lián)系。
。2)對(duì)數(shù)函數(shù)的圖象
**:同指數(shù)函數(shù)一樣,在學(xué)習(xí)了函數(shù)的定義之后,我們要畫函數(shù)的圖象,應(yīng)如何畫對(duì)數(shù)函數(shù)的圖象呢?讓學(xué)生思考并回答,用描點(diǎn)法畫圖。教師肯定,我們每學(xué)習(xí)一種新的函數(shù)都可以根據(jù)函數(shù)的解析式,列表、描點(diǎn)畫圖。再考慮一下,我們還可以用什么方法畫出對(duì)數(shù)函數(shù)的圖象呢?
讓學(xué)生回答,畫出指數(shù)函數(shù)關(guān)于直線y=x對(duì)稱的圖象,就是對(duì)數(shù)函數(shù)的圖象。
教師總結(jié):我們畫對(duì)數(shù)函數(shù)的圖象,既可用描點(diǎn)法,也可用圖象變換法,下邊我們利用兩種方法畫對(duì)數(shù)函數(shù)的圖象。
方法一(描點(diǎn)法)首先列出x,y(y=log2x,y=log x)值的對(duì)應(yīng)表,因?yàn)閷?duì)數(shù)函數(shù)的定義域?yàn)閤>0,因此可取x=··· , , ,1,2,4,8···,請(qǐng)計(jì)算對(duì)應(yīng)的y值,然后在坐標(biāo)系內(nèi)描點(diǎn)、畫出它們的圖象。
方法二(圖象變換法)因?yàn)閷?duì)數(shù)函數(shù)和指數(shù)函數(shù)互為反函數(shù), 圖象關(guān)于直線y=x對(duì)稱,所以只要畫出y=ax的圖象關(guān)于直線y=x對(duì)稱的曲線,就可以得到y(tǒng)=logax、的圖象。學(xué)生動(dòng)手做實(shí)驗(yàn),先描出y=2x的圖象,畫出它關(guān)于直線y=x對(duì)稱的曲線,它就是y=log2x的圖象;類似的從y=( )x 的圖象畫出y=log x的圖象,再出示課件,教師加以解釋。
設(shè)計(jì)意圖:用這種對(duì)稱變換的方法畫函數(shù)的圖象,可以加深和鞏固學(xué)生對(duì)互為反函數(shù)的兩個(gè)函數(shù)之間的認(rèn)識(shí),便于將對(duì)數(shù)函數(shù)的圖象和性質(zhì)與指數(shù)函數(shù)的圖象和性質(zhì)對(duì)照,但使用描點(diǎn)法畫函數(shù)圖象更為方便,兩種方法可同時(shí)進(jìn)行,分析畫法之后,可讓學(xué)生**選擇畫法。這樣可以充分調(diào)動(dòng)學(xué)生自主學(xué)習(xí)的積極性。
(3)對(duì)數(shù)函數(shù)的性質(zhì)
在理解對(duì)數(shù)函數(shù)定義的基礎(chǔ)上,掌握對(duì)數(shù)函數(shù)的圖象和性質(zhì)是本節(jié)的重點(diǎn),關(guān)鍵在于抓住對(duì)數(shù)函數(shù)是指數(shù)函數(shù)的反函數(shù)這一要領(lǐng),講對(duì)數(shù)函數(shù)的性質(zhì),可先在同一坐標(biāo)系內(nèi)畫出上述兩個(gè)對(duì)數(shù)函數(shù)的圖象,根據(jù)圖象讓學(xué)生列表分析它們的圖象特征和性質(zhì),然后出示課件,教師補(bǔ)充。作了以上分析之后,再分a>1與0
設(shè)計(jì)意圖:這種講法既嚴(yán)謹(jǐn)又直觀易懂,還能讓學(xué)生主動(dòng)參與教學(xué)過程,對(duì)培養(yǎng)學(xué)生的創(chuàng)新能力有幫助,學(xué)生易于接受易于掌握,而且利用表格,可以突破難點(diǎn)。
由于對(duì)數(shù)函數(shù)和指數(shù)函數(shù)互為反函數(shù),它們的定義域與值域正好互換,為了揭示這兩種函數(shù)之間的內(nèi)在聯(lián)系,列出指數(shù)函數(shù)與對(duì)數(shù)函數(shù)對(duì)照表(見課件)
設(shè)計(jì)意圖:通過比較對(duì)照的方法,學(xué)生更好地掌握兩個(gè)函數(shù)的定義、圖象和性質(zhì),認(rèn)識(shí)兩個(gè)函數(shù)的內(nèi)在聯(lián)系,提高學(xué)生對(duì)函數(shù)思想方法的認(rèn)識(shí)和應(yīng)用意識(shí)。
4、鞏固達(dá)標(biāo)(見課件)
這一訓(xùn)練是為了培養(yǎng)學(xué)生利用所學(xué)知識(shí)解決實(shí)際問題的能力,通過這個(gè)環(huán)節(jié)學(xué)生可以加深對(duì)本節(jié)知識(shí)的理解和運(yùn)用,并從講解過程中找出所涉及的知識(shí)點(diǎn),予以總結(jié)。充分體現(xiàn)"數(shù)形結(jié)合"和"分類討論"的思想。
5、反饋練習(xí)(見課件)
習(xí)題是對(duì)學(xué)生所學(xué)知識(shí)的反饋過程,教師可以了解學(xué)生對(duì)知識(shí)掌握的情況。
6、歸納總結(jié)(見課件)
引導(dǎo)學(xué)生對(duì)主要知識(shí)進(jìn)行回顧,使學(xué)生對(duì)本節(jié)有一個(gè)整體的把握,因此,從三方面進(jìn)行總結(jié):對(duì)數(shù)函數(shù)的概念、對(duì)數(shù)函數(shù)的圖象和性質(zhì)、比較對(duì)數(shù)值大小的方法。
7、課外作業(yè) :
。1)完成P78 2、3題
。2)當(dāng)?shù)讛?shù)a>1與0
《對(duì)數(shù)函數(shù)》說課稿2
我校是一所農(nóng)村高中學(xué)校,學(xué)生的基礎(chǔ)比較薄弱,發(fā)散性思維還未能得到充分的開發(fā)、因此,一直以來,我的數(shù)學(xué)課堂教學(xué)的側(cè)重點(diǎn)是:運(yùn)用探究式教學(xué)方式,積極調(diào)動(dòng)學(xué)生學(xué)習(xí)的主動(dòng)性,大力培養(yǎng)學(xué)生的開放性思維。
我本次授課的內(nèi)容是《對(duì)數(shù)函數(shù)及其性質(zhì)》,整個(gè)課題按照新課程標(biāo)準(zhǔn)的要求大概需要3個(gè)課時(shí)來完成,我提交的是第一個(gè)課時(shí)的教案、
函數(shù)是高中數(shù)學(xué)的核心,對(duì)數(shù)函數(shù)是函數(shù)的重要分支,對(duì)數(shù)函數(shù)的知識(shí)在實(shí)際生活中有著廣泛的應(yīng)用、對(duì)數(shù)函數(shù)這部分教學(xué)內(nèi)容,蘊(yùn)含了函數(shù)與方程及轉(zhuǎn)化的數(shù)學(xué)思想和方法,是后續(xù)學(xué)習(xí)中不可缺少的部分,也是高考的必考內(nèi)容、因此在第一課時(shí)的教學(xué)中,如何有效地激發(fā)學(xué)生學(xué)習(xí)對(duì)數(shù)函數(shù)的興趣是這節(jié)課的首要任務(wù)、為了降低學(xué)生學(xué)習(xí)的難度,我按照新課程標(biāo)準(zhǔn)的要求制定了適合學(xué)生實(shí)際水*的教學(xué)目標(biāo),并在教學(xué)過程中把重點(diǎn)放在如何準(zhǔn)確把握對(duì)數(shù)函數(shù)的圖象與特征上、下面從三個(gè)方面來說明我的教案設(shè)計(jì)、
一、教學(xué)把握得當(dāng)
(一)概念引入自然、我首先和學(xué)生一起回顧了考古學(xué)家是如何估算古遺址的年代,然后讓學(xué)生動(dòng)手計(jì)算當(dāng)碳14的含量P取不同數(shù)值時(shí)相對(duì)應(yīng)的生物**年數(shù)t,最后再引導(dǎo)學(xué)生共同觀察t與p之間的關(guān)系,從而自然而然的引入概念、
。ǘ┩笍刂v解定義、在引入對(duì)數(shù)函數(shù)的概念后,許多學(xué)生可能未能及時(shí)地意識(shí)到它只是一個(gè)形式定義,因此我通過材料1來幫助學(xué)生消化與掌握概念、
。ㄈ﹫(jiān)持讓學(xué)生自己動(dòng)手實(shí)驗(yàn)、一方面學(xué)生已經(jīng)掌握了畫圖的一般方法,另一方面通過讓學(xué)生自己畫圖,使得他們對(duì)圖象有豐富的感性認(rèn)識(shí),印象更加深刻、這樣處理,體現(xiàn)了以學(xué)生為主體,教師為主導(dǎo)的教學(xué)方式、
。ㄋ模┣擅畹赝黄齐y點(diǎn)、我采取把學(xué)生分成若干個(gè)小組的形式,由他們進(jìn)行小組合作討論、探究、相互補(bǔ)充的方法得出對(duì)數(shù)函數(shù)的性質(zhì)、這樣不但激發(fā)了學(xué)生學(xué)習(xí)新知識(shí)的興趣,也提高了學(xué)生分析問題的能力以及團(tuán)隊(duì)合作的精神,同時(shí)也加深了他們對(duì)圖象的認(rèn)識(shí)、
另外,學(xué)生討論完畢后,我先讓一個(gè)小組選派**上講臺(tái)跟全班同學(xué)交流他們所得到對(duì)數(shù)函數(shù)的一般圖象和性質(zhì),然后再請(qǐng)其它小組選派**提出補(bǔ)充意見,再由老師進(jìn)行歸納、總結(jié)、這樣做不但使學(xué)生愉快地接受了新知識(shí)、活躍了課堂氣氛,而且突出雙邊活動(dòng),開啟了學(xué)生的思維,也符合新課標(biāo)的教學(xué)理念、
。ㄎ澹╈`活處理例題與練習(xí)題、我是通過兩則材料(材料2、4)來加深學(xué)生對(duì)對(duì)數(shù)函數(shù)性質(zhì)的理解與運(yùn)用、材料2是作為例題來體現(xiàn)的,目的是讓學(xué)生利用對(duì)數(shù)函數(shù)的單調(diào)性來解決,使學(xué)生學(xué)會(huì)運(yùn)用數(shù)形結(jié)合的思想來解決問題、其中材料2的第1、2小題是以具體數(shù)字為底數(shù)的對(duì)數(shù)值大小的比較,第3小題則是以字母為底數(shù)的對(duì)數(shù)值大小的比較,這樣子設(shè)計(jì)體現(xiàn)了由具體到抽象、由易到難的原則,符合學(xué)生的認(rèn)知水*、
而材料4是以練習(xí)題的形式出現(xiàn)的,它是材料2的再現(xiàn),以口答的形式解決,目的主要是加深學(xué)生對(duì)新知識(shí)的理解與應(yīng)用;至于材料3是為了提高學(xué)生如何求對(duì)數(shù)型函數(shù)定義域的認(rèn)識(shí)而設(shè)置的、
二、充分發(fā)揮多**輔助教學(xué)的優(yōu)勢(shì)、一方面為學(xué)生展現(xiàn)自己的才華提供了*臺(tái):
(一)鼓勵(lì)學(xué)生在得到具體的對(duì)數(shù)函數(shù)圖象并且經(jīng)過充分的討論后敢于**把觀察得出的結(jié)論與其他同學(xué)交流;
。ǘ閷W(xué)生之間互相點(diǎn)評(píng)各自解答的練習(xí)提供**、
另一方面在講解對(duì)數(shù)函數(shù)的性質(zhì)時(shí),多**演示的直觀性、生動(dòng)性躍然于紙上、這樣不僅激發(fā)了學(xué)生學(xué)習(xí)的興趣,還提高了課堂效率、
三、課堂采取靈活多樣的教學(xué)方法、既有教師的講解,又有小組的合作討論,還有師生的互動(dòng)交流、這樣就充分調(diào)動(dòng)了學(xué)生探索新知識(shí)的積極性,發(fā)揮了學(xué)生的主體作用,營(yíng)造了**的課堂氣氛,做到了寓學(xué)于樂、
小結(jié)側(cè)重于再次講解對(duì)數(shù)函數(shù)的圖象特征及其性質(zhì),以期加深學(xué)生的印象,同時(shí)與教學(xué)目的相呼應(yīng)、
數(shù)學(xué)這門科學(xué)需要觀察和探究,我所設(shè)計(jì)的這節(jié)課就是讓學(xué)生通過動(dòng)手實(shí)驗(yàn),然后觀察、探究新知的過程,但由于缺乏經(jīng)驗(yàn),難免有不足之處,真誠(chéng)地希望得到各位專家學(xué)者的批評(píng)指正,使我能夠不斷地成長(zhǎng)與進(jìn)步、
《對(duì)數(shù)函數(shù)》說課稿3
一、教學(xué)背景
1、教材分析
《對(duì)數(shù)函數(shù)及其性質(zhì)》是人教版普通高中課程數(shù)學(xué)必修1第二章第二節(jié)第二部分內(nèi)容,對(duì)數(shù)函數(shù)是一類特殊的函數(shù),在實(shí)際生產(chǎn)過程中運(yùn)用很廣泛。同時(shí),通過對(duì)對(duì)數(shù)函數(shù)及其圖象和性質(zhì)的研究,既可以從具體的感性認(rèn)識(shí)上來對(duì)函數(shù)的圖象和性質(zhì)更好的理解,也可為以后研究?jī)绾瘮?shù)、三角函數(shù)等其它函數(shù)的圖象和性質(zhì)起示范和鋪墊作用。
2、學(xué)情分析
剛?cè)敫咭坏膶W(xué)生,仍保留著初中生許多學(xué)**點(diǎn),能力發(fā)展正處于形象思維向抽象思維轉(zhuǎn)折階段,但更注重形象思維。由于函數(shù)概念十分抽象,對(duì)數(shù)函數(shù)又以對(duì)數(shù)運(yùn)算為基礎(chǔ),同時(shí),初中函數(shù)教學(xué)要求降低,導(dǎo)致初中生運(yùn)算能力有所下降,這雙重問題增加了對(duì)數(shù)函數(shù)教學(xué)的難度。但在此之前,學(xué)生已經(jīng)學(xué)習(xí)了指數(shù)函數(shù)及其性質(zhì),學(xué)生已經(jīng)初步對(duì)新函數(shù)的研究方法有所了解,為本節(jié)的學(xué)習(xí)奠定了基礎(chǔ)。
基于以上分析,我制定如下教學(xué)目標(biāo)及重、難點(diǎn):
3、教學(xué)目標(biāo)
知識(shí)與技能:
初步掌握對(duì)數(shù)函數(shù)的概念、圖象及性質(zhì),并應(yīng)用性質(zhì)解決簡(jiǎn)單數(shù)學(xué)問題。
過程與方法:
經(jīng)歷對(duì)數(shù)函數(shù)性質(zhì)的探索過程,體會(huì)函數(shù)思想、分類討論思想和轉(zhuǎn)化思想在解決具體問題中的應(yīng)用。
情感態(tài)度與價(jià)值觀:
培養(yǎng)勇于探索的精神,培養(yǎng)學(xué)生的成功意識(shí),合作交流的學(xué)習(xí)方式,激發(fā)學(xué)生學(xué)習(xí)數(shù)學(xué)、應(yīng)用數(shù)學(xué)的興趣。
4、教學(xué)重、難點(diǎn)
重點(diǎn):理解對(duì)數(shù)函數(shù)的概念,掌握對(duì)數(shù)函數(shù)的圖象及性質(zhì)。
難點(diǎn):由圖象探究函數(shù)性質(zhì),應(yīng)用性質(zhì)解決具體問題。
二、教學(xué)方法及**
1、教法
根據(jù)建構(gòu)**的學(xué)習(xí)理論和新課程標(biāo)準(zhǔn)理念,本節(jié)課以自主探究法和講解法為主,以練習(xí)法為輔,引導(dǎo)學(xué)生自己觀察、歸納、分析,培養(yǎng)學(xué)生采用自主探究的方法進(jìn)行學(xué)習(xí),使學(xué)生體會(huì)學(xué)習(xí)的樂趣。
2、學(xué)法
(1)類比學(xué)習(xí):通過指數(shù)函數(shù)類比學(xué)習(xí)對(duì)數(shù)函數(shù)。
(2)小組合作學(xué)習(xí):將學(xué)生分成7個(gè)小組,通過小組內(nèi)討論交流,歸納得出對(duì)數(shù)函數(shù)的圖象和性質(zhì)。
3、教學(xué)**
采用多**輔助教學(xué)。
三、教學(xué)教程
1、情境引入
通過銀行的復(fù)利計(jì)算問題,逐步引出對(duì)數(shù)函數(shù)。
設(shè)計(jì)意圖:情景來源于生活,通過生活中的實(shí)例來反應(yīng)對(duì)數(shù)函數(shù)的重要性,目的在于激發(fā)學(xué)生學(xué)習(xí)的興趣,讓每一個(gè)學(xué)生都主動(dòng)融入到學(xué)習(xí)中。
2、新知探索
通過上述模型,讓學(xué)生給對(duì)數(shù)函數(shù)下定義。
學(xué)生用描點(diǎn)法畫和的圖象,教師再借助于計(jì)算機(jī)再畫幾個(gè)對(duì)數(shù)函數(shù)的圖象,讓學(xué)生觀察并總結(jié)出一般情況。
以“你們能根據(jù)圖象歸納出對(duì)數(shù)函數(shù)的性質(zhì)嗎?”設(shè)問,引導(dǎo)學(xué)生能過圖象的特征得出對(duì)應(yīng)的性質(zhì)。
例比較下列各組數(shù)中兩個(gè)值的大。
(1)log23.4和log28.5;
(2) log0.33.4和log0.38.5;
(3) loga3.4和loga8.5(a>0,且a≠1);
(4) log23.4和log3.42;
(5) log3.42和log0.38.5。
3、鞏固練習(xí)
(1)比較大。
lg6________lg8;ln1.3________
(2)比較正數(shù)m,n的大。
若,則m_____n;若,則m_____n.
4、總結(jié)提煉
(1)自主探究新知識(shí)的方法;
(2)本節(jié)課應(yīng)用了哪些數(shù)學(xué)思想。
5、布置作業(yè)
(1)閱讀教材P70~P72,梳理對(duì)數(shù)函數(shù)的概念、圖象、性質(zhì)等知識(shí)點(diǎn);
(2)教材P74—7、8
四、板書設(shè)計(jì)
2.2.2對(duì)數(shù)函數(shù)及其性質(zhì)
一、概念例題
二、圖象
三、性質(zhì)
四、教學(xué)反思
對(duì)數(shù)函數(shù)教案 (菁選3篇)(擴(kuò)展3)
——對(duì)數(shù)函數(shù)教學(xué)反思菁選
對(duì)數(shù)函數(shù)教學(xué)反思
身為一名人民老師,我們要有很強(qiáng)的課堂教學(xué)能力,寫教學(xué)反思可以快速提升我們的教學(xué)能力,那么大家知道正規(guī)的教學(xué)反思怎么寫嗎?以下是小編整理的對(duì)數(shù)函數(shù)教學(xué)反思,歡迎大家借鑒與參考,希望對(duì)大家有所幫助。
對(duì)數(shù)函數(shù)教學(xué)反思1
這節(jié)課講的課題是對(duì)數(shù)函數(shù)及其性質(zhì)。對(duì)數(shù)函數(shù)及其性質(zhì)是人教版A版數(shù)學(xué)必修一的內(nèi)容。
通過這節(jié)課的教學(xué),我主要有以下三點(diǎn)收獲:
授課的致用性:
大家往往固有的潛意識(shí)是數(shù)學(xué)枯燥無味,如果將來不搞科學(xué)研究,學(xué)之無用。本人要利用一切可以利用的數(shù)學(xué)課告訴大家,基礎(chǔ)數(shù)學(xué)是提高國(guó)民基本科學(xué)常識(shí)的必備武器。那么,對(duì)數(shù)函數(shù)的學(xué)習(xí)則是對(duì)歷史文物研究的基礎(chǔ)知識(shí)。當(dāng)下的國(guó)民,生活質(zhì)量穩(wěn)步提高,假日旅游已經(jīng)成為常態(tài),我們將來的國(guó)民不能再是只是游玩,而是懂道的欣賞。
碳14的對(duì)數(shù)公式
則是今天導(dǎo)課的重要興趣吸引點(diǎn)。
信息技術(shù)的應(yīng)用
多**教學(xué)已經(jīng)成為常態(tài)教學(xué)**,幾何畫板的動(dòng)態(tài)展示已經(jīng)為學(xué)生展示了直觀的對(duì)數(shù)函數(shù)底數(shù)真數(shù)改變的圖像變化。當(dāng)然輔助教學(xué)**是在學(xué)生的導(dǎo)學(xué)案上有習(xí)題和繪圖兩種手動(dòng)跟進(jìn)。
作業(yè)布置的探索性嘗試
。1)上百度,知乎查閱考古年代的推斷方法及碳14的相關(guān)應(yīng)用.
。2)周末看一部考古相關(guān)的電影或紀(jì)錄片。通過這種作業(yè)布置方式的嘗試,讓學(xué)生體會(huì)教改絕對(duì)不是一句空話,普通教師已經(jīng)在行動(dòng)。
當(dāng)然,本節(jié)課還是有很多沒有想到。也有三點(diǎn)。
1、內(nèi)容的繁多性
總是認(rèn)為本節(jié)課內(nèi)容簡(jiǎn)單,要多講一點(diǎn),把可能的`題型都要講到,犯了大多數(shù)教齡多年的通病———經(jīng)驗(yàn)式授課。導(dǎo)致本節(jié)課結(jié)束時(shí)有些許的時(shí)間緊張。
2、師生互動(dòng)的簡(jiǎn)單重復(fù)
發(fā)揮學(xué)生的主觀能動(dòng)性一直是我們追求的,所以師生互動(dòng)是很重要的一個(gè)展示環(huán)節(jié)。但是我們還只是簡(jiǎn)單的小組交流,板書展示。還是得開動(dòng)腦筋,多些互動(dòng)樣式。
3、授課中的德育環(huán)節(jié)
其實(shí)本節(jié)課教學(xué)中我還是在導(dǎo)課過程,以及作業(yè)布置中體現(xiàn)出了德育的部分情節(jié)。但是還是遠(yuǎn)遠(yuǎn)不夠,不能因?yàn)閿?shù)學(xué)課的特殊性就可以忽略德育。潤(rùn)物細(xì)無聲,潛移默化的影響才是為人師應(yīng)該具備的素養(yǎng)。培養(yǎng)品德高尚的****新人是目標(biāo),我輩仍需努力。
對(duì)數(shù)函數(shù)教學(xué)反思2
一、教材分析。
本節(jié)課是《普通高中課程標(biāo)準(zhǔn)實(shí)驗(yàn)教科書?數(shù)學(xué)1(必修)》(人教A版)第二章第2節(jié)第二課《對(duì)數(shù)函數(shù)及其性質(zhì)》。本節(jié)課的內(nèi)容在教材中起到了承上啟下的關(guān)鍵作用。一方面,對(duì)數(shù)函數(shù)是在學(xué)生系統(tǒng)學(xué)習(xí)了函數(shù)概念,基本掌握了函數(shù)性質(zhì)的基礎(chǔ)上,進(jìn)行研究的第一個(gè)重要的基本初等函數(shù)。作為基本初等函數(shù),它是繼指數(shù)函數(shù)之后對(duì)高中函數(shù)概念及性質(zhì)的又一次應(yīng)用;另一方面,對(duì)數(shù)函數(shù)是后續(xù)學(xué)習(xí)冪函數(shù)的基礎(chǔ),對(duì)于研究?jī)绾瘮?shù)及其他基本初等函數(shù),在研究方法上起到示范作用。
二、學(xué)生分析。
從學(xué)生的知識(shí)上看,學(xué)生已經(jīng)學(xué)習(xí)了函數(shù)的定義、圖像、性質(zhì),對(duì)函數(shù)的性質(zhì)和圖像的關(guān)系已經(jīng)有了一定的認(rèn)識(shí)。學(xué)生已經(jīng)熟悉研究函數(shù)的一般過程和方法,會(huì)用此來研究對(duì)數(shù)函數(shù)。
從學(xué)生現(xiàn)有的學(xué)習(xí)能力看,通過初中對(duì)函數(shù)的認(rèn)識(shí)與理解,學(xué)生已具備了一定的觀察事物的能力,積累了一些研究問題的經(jīng)驗(yàn),初步具備了抽象、概括的能力。通過教師啟發(fā)式引導(dǎo),學(xué)生能自主探究完成本節(jié)課的學(xué)習(xí),會(huì)進(jìn)行多**的基本操作。
三、教學(xué)目標(biāo)。
1、知識(shí)與技能目標(biāo):
、偻ㄟ^具體實(shí)例了解對(duì)數(shù)函數(shù)模型的實(shí)際背景。
、诔醪嚼斫鈱(duì)數(shù)函數(shù)的.概念、圖像和性質(zhì)。
2、過程與方法目標(biāo):
、俳柚n件繪制對(duì)數(shù)函數(shù)圖像,加深對(duì)定義的認(rèn)識(shí),增強(qiáng)對(duì)對(duì)數(shù)函數(shù)圖像的直觀感知。
、趯W(xué)生觀察對(duì)數(shù)函數(shù)圖像,通過**發(fā)言等活動(dòng),探究對(duì)數(shù)函數(shù)性質(zhì)。
、弁ㄟ^對(duì)對(duì)數(shù)函數(shù)的研究,體會(huì)數(shù)形結(jié)合、由具體到一般及類比思想。
3、情感態(tài)度與價(jià)值觀目標(biāo):通過小組討論、**發(fā)言活動(dòng),培養(yǎng)合作交流意識(shí)。
四、教學(xué)環(huán)境與準(zhǔn)備。
多**網(wǎng)絡(luò)教室、課件。
五、教學(xué)過程。
1、探究新知。
。1)歸納定義。
設(shè)計(jì)意圖:通過對(duì)函數(shù)解析式的分析,突出對(duì)底數(shù)取值的認(rèn)識(shí),引導(dǎo)學(xué)生把解析式概括為的形式,為形成對(duì)數(shù)函數(shù)定義作鋪墊。
對(duì)數(shù)函數(shù)的定義:一般地,形如(且)的函數(shù)叫做對(duì)數(shù)函數(shù),其中是自變量,函數(shù)的定義域?yàn)?。
師生共同分析定義要點(diǎn):
、俣x域?yàn)椤?/p>
、趯(duì)數(shù)函數(shù)是形式化的定義。
、矍。教師引導(dǎo)學(xué)生將指數(shù)函數(shù)定義與對(duì)數(shù)函數(shù)定義作對(duì)比。
(2)作圖探究。
問題2:我們研究函數(shù)的一般過程是什么?
、俳處焼l(fā)學(xué)生思考:歸納定義,畫出圖像,觀察圖像,總結(jié)性質(zhì),繼而進(jìn)行性質(zhì)應(yīng)用。
。ㄔO(shè)計(jì)意圖:對(duì)數(shù)函數(shù)作為基本初等函數(shù),是繼指數(shù)函數(shù)后對(duì)高中函數(shù)概念及性質(zhì)的再次應(yīng)用,學(xué)生已經(jīng)熟悉研究函數(shù)的一般過程和方法,會(huì)用此來研究對(duì)數(shù)函數(shù)。)
②作圖1:畫出函數(shù)的圖像。
學(xué)生**在坐標(biāo)紙上作圖,教師巡視個(gè)別輔導(dǎo),正投對(duì)比展示學(xué)生作圖結(jié)果,總結(jié)作圖要點(diǎn),規(guī)范列表、描點(diǎn)、連線的每一步。
。ㄔO(shè)計(jì)意圖:描點(diǎn)法作圖是畫函數(shù)圖像的基本方法,用正投呈現(xiàn)學(xué)生作圖結(jié)果,培養(yǎng)學(xué)生畫圖基本功。)
、圩鲌D2:自主選擇底數(shù)繪制對(duì)數(shù)函數(shù)的圖像。
、茉O(shè)組確定的對(duì)數(shù)函數(shù)圖像。
(設(shè)計(jì)意圖:學(xué)生通過在同一坐標(biāo)系中,繪制多個(gè)對(duì)數(shù)函數(shù)圖像,在繪制過程中,可以更加直觀地感知底數(shù)對(duì)對(duì)數(shù)函數(shù)圖像的影響,能更好地觀察圖像特征,總結(jié)圖像性質(zhì)。)
、輰W(xué)生自主選擇底數(shù),繪制對(duì)數(shù)函數(shù)圖像,”,各小組根據(jù)所繪制的對(duì)數(shù)函數(shù)圖像,觀察圖像特征,總結(jié)性質(zhì),每組自薦一名**發(fā)言。教師適時(shí)發(fā)問、點(diǎn)撥,引導(dǎo)學(xué)生總結(jié),師生、生生互動(dòng)交流。
觀察圖像,你認(rèn)為如何對(duì)對(duì)數(shù)函數(shù)進(jìn)行分類研究?
各小組學(xué)生共提出兩類標(biāo)準(zhǔn):
a、按圖像上升和下降分兩類。
b、按底數(shù)分兩類。經(jīng)教師引導(dǎo),學(xué)生發(fā)現(xiàn)這兩類標(biāo)準(zhǔn)可以**:與圖像上升**;與圖像下降**。
、弈隳芙Y(jié)合屏幕上所呈現(xiàn)的對(duì)數(shù)函數(shù)圖像,觀察它們的圖像特征,并總結(jié)其性質(zhì)嗎?
各組學(xué)生從圖像位置、特殊點(diǎn)、圖像變化趨勢(shì)等方面總結(jié)圖像特征。(設(shè)計(jì)意圖:學(xué)生通過觀察具體對(duì)數(shù)函數(shù)圖像,應(yīng)用數(shù)形結(jié)合思想,歸納概括性質(zhì)。)
。ㄔO(shè)計(jì)意圖:通過幾何畫板課件的動(dòng)態(tài)演示,學(xué)生更直觀地觀察到對(duì)數(shù)函數(shù)圖像隨底數(shù)的變化情況,以及為什么要把底數(shù)分為和兩類,有利于學(xué)生由圖像歸納性質(zhì),從而突破本節(jié)課的難點(diǎn)。)
。3)歸納性質(zhì)。
學(xué)生觀察圖像,討論總結(jié)性質(zhì)。
。ㄔO(shè)計(jì)意圖:學(xué)生總結(jié)性質(zhì),培養(yǎng)學(xué)生歸納概括能力。)
師生共同對(duì)學(xué)習(xí)內(nèi)容進(jìn)行總結(jié):
、傺芯亢瘮(shù)的一般過程是:定義→圖像→性質(zhì)→應(yīng)用。
、诮柚鷪D像研究性質(zhì),應(yīng)用了數(shù)形結(jié)合思想;由具體對(duì)數(shù)函數(shù)入手,到一般對(duì)數(shù)函數(shù)總結(jié)性質(zhì),應(yīng)用由特殊到一般思想方法;對(duì)數(shù)函數(shù)對(duì)底數(shù)分類進(jìn)行研究性質(zhì),應(yīng)用了分類討論思想,類比指數(shù)函數(shù)研究對(duì)數(shù)函數(shù),應(yīng)用了類比思想。
3、例題講解。
師:剛才我們共同探究得出性質(zhì),下邊看性質(zhì)應(yīng)用。
例1:比較下列各組中兩個(gè)值的大。孩 ;② ;③ 。
。ㄔO(shè)計(jì)意圖:通過例題使學(xué)生體會(huì)對(duì)數(shù)函數(shù)單調(diào)性應(yīng)用,設(shè)計(jì)三題,使學(xué)生體會(huì)分類討論思想。)
第一題教師引導(dǎo)講解,示范解答過程,第二題、第三題學(xué)生正投講解。
設(shè)計(jì)意圖:通過學(xué)生正投講解題目做法,培養(yǎng)學(xué)生學(xué)習(xí)數(shù)學(xué)的信心和勇氣,同時(shí),對(duì)于出現(xiàn)的錯(cuò)誤及時(shí)糾錯(cuò),起到示范作用。
4、歸納總結(jié)。
。1)這節(jié)課你學(xué)到哪些知識(shí)?
。2)這節(jié)課你體會(huì)到哪些數(shù)學(xué)思想方法?
5、分層作業(yè)。
(1)必做題:P73,2、3;
。2)選作題:函數(shù)和的圖像間有何關(guān)系?
六、教學(xué)反思。
1、 設(shè)計(jì)問題系列,驅(qū)動(dòng)教學(xué)。
問題是數(shù)學(xué)的心臟,本節(jié)課以6個(gè)問題為主線貫穿始終,以問題解決為教學(xué)線索,在教師的主導(dǎo)與計(jì)算機(jī)的輔助下,學(xué)生思維由問題開始,由問題深化。
2、借助信息技術(shù)突出重點(diǎn)、突破難點(diǎn)。
本節(jié)課的學(xué)習(xí)重點(diǎn)是對(duì)數(shù)函數(shù)的概念、圖像和性質(zhì);學(xué)習(xí)難點(diǎn)是用數(shù)形結(jié)合方法從具體到一般地探索概括對(duì)數(shù)函數(shù)性質(zhì),為突出重點(diǎn)、突破難點(diǎn),使用了以下信息技術(shù):
。1)探究對(duì)數(shù)函數(shù)概念:課上播放PPT課件,學(xué)生總結(jié)三個(gè)“觀察事例”中函數(shù)解析式的共同特征,概括到的形式,從而形成概念,突出學(xué)習(xí)重點(diǎn)。
。2)繪制對(duì)數(shù)函數(shù)圖像:作圖1,學(xué)生動(dòng)手畫圖,初步感知對(duì)數(shù)函數(shù)圖像,教師個(gè)別輔導(dǎo),正投展示,對(duì)比分析作圖結(jié)果,糾正作圖錯(cuò)誤,總結(jié)作圖要點(diǎn),培養(yǎng)學(xué)生作圖基本功;作圖2,設(shè)計(jì)課件,全體學(xué)生參與,自選底數(shù)繪制對(duì)數(shù)函數(shù)圖像,從而加深了學(xué)生對(duì)定義的認(rèn)識(shí),增強(qiáng)了對(duì)圖像的直觀感知,突出學(xué)習(xí)重點(diǎn)。
。3)探究對(duì)數(shù)函數(shù)性質(zhì):對(duì)數(shù)函數(shù)性質(zhì)的獲得,需要借助對(duì)數(shù)函數(shù)圖像。設(shè)計(jì)“動(dòng)手實(shí)踐2”,教師運(yùn)用課件的動(dòng)態(tài)演示功能,驗(yàn)證底數(shù)取定義范圍內(nèi)所有值時(shí),對(duì)數(shù)函數(shù)的性質(zhì),學(xué)生操作課件“動(dòng)手實(shí)踐2”,通過拖動(dòng)點(diǎn)“”,改變底數(shù)的值,觀察對(duì)數(shù)函數(shù)圖像隨底數(shù)的變化情況,學(xué)生的親身體驗(yàn),提高了對(duì)研究過程的參與程度,有效突破學(xué)習(xí)難點(diǎn)。
(4)運(yùn)用課件“演示””功能,使得大量圖像共享成為可能,使得學(xué)生小組**發(fā)言活動(dòng)得以實(shí)施,提高了學(xué)生對(duì)研究過程的參與程度,使得學(xué)習(xí)效率明顯提高,更為有效地突破學(xué)習(xí)難點(diǎn)。
對(duì)數(shù)函數(shù)教學(xué)反思3
本節(jié)課在學(xué)習(xí)了指數(shù)函數(shù)及其性質(zhì)以后,學(xué)生通過類比學(xué)習(xí)的方法很容易進(jìn)入學(xué)習(xí)探究的狀態(tài),因此我采用了知識(shí)遷移及類比的學(xué)習(xí)方法進(jìn)行本節(jié)課的設(shè)計(jì)。
首先,復(fù)習(xí)有關(guān)指數(shù)函數(shù)知識(shí)及簡(jiǎn)單運(yùn)算,通過創(chuàng)設(shè)文物考古的情境,估算出出土文物或古遺址的年代,引入對(duì)數(shù)函數(shù)的概念。一方面體現(xiàn)了“數(shù)學(xué)源于現(xiàn)實(shí),寓于現(xiàn)實(shí),用于現(xiàn)實(shí)”,另一方面使學(xué)生產(chǎn)生強(qiáng)烈的探索欲望。然后,讓學(xué)生親自動(dòng)手畫兩個(gè)圖象,我借助電腦**,通過描點(diǎn)作圖,引導(dǎo)學(xué)生說出圖像特征及變化規(guī)律,并從而得出對(duì)數(shù)函數(shù)的性質(zhì),提高學(xué)生的形數(shù)結(jié)合的能力。在性質(zhì)的分析環(huán)節(jié)中,給予簡(jiǎn)單的提示(如,從圖形觀察特征,并用數(shù)學(xué)符號(hào)語言描述等),學(xué)生基本上能夠運(yùn)用類比指數(shù)函數(shù)的性質(zhì),說出對(duì)數(shù)函數(shù)的定義域、值域、單調(diào)性、過定點(diǎn)、函數(shù)值的變化情況等。性質(zhì)的應(yīng)用的設(shè)計(jì)我采用了求定義域及比較大小兩個(gè)例題及練習(xí),學(xué)生完成得還不錯(cuò)。最后用了幾分鐘總結(jié)本堂課所學(xué)知識(shí)點(diǎn)。
本堂課有兩個(gè)亮點(diǎn)。第一,借助電腦,演示作圖過程及圖像變化的動(dòng)畫過程,從而使學(xué)生直接地接受并提高了學(xué)生的學(xué)習(xí)興趣和積極性,很好地突破難點(diǎn)和提高教學(xué)效率,從而增大教學(xué)的容量和直觀性、準(zhǔn)確性,增強(qiáng)教學(xué)內(nèi)容的表現(xiàn)形式,在貫徹教學(xué)的直觀性原則上發(fā)揮其獨(dú)特的優(yōu)勢(shì)。第二,由圖形變化特征引導(dǎo)學(xué)生自己總結(jié)出對(duì)數(shù)函數(shù)的性質(zhì)。使學(xué)生積極思維、主動(dòng)獲取知識(shí),從而養(yǎng)成良好的學(xué)習(xí)方法。
并逐步學(xué)會(huì)**提出問題、解決問題?傊{(diào)動(dòng)學(xué)生的非智力因素來促進(jìn)智力因素的發(fā)展,引導(dǎo)學(xué)生積極開動(dòng)腦筋,思考問題和解決問題,從而發(fā)揚(yáng)鉆研精神、勇于探索創(chuàng)新。從課堂效果和學(xué)生的作業(yè)看來,我認(rèn)為本堂課還存在著以下兩個(gè)**論文參考文獻(xiàn)不足之處。第一,內(nèi)容多,講得太快,由于大部分學(xué)生數(shù)學(xué)基礎(chǔ)較差,理解能力,運(yùn)算能力,思維能力不高,課堂上應(yīng)多給學(xué)生緩沖的時(shí)間。
比如,在例題講解的環(huán)節(jié),時(shí)間上還應(yīng)多給予學(xué)生**思考的時(shí)間。本堂課不應(yīng)該一節(jié)課講完,應(yīng)分為兩節(jié)課來講,這樣才能使課堂簡(jiǎn)潔。教學(xué)語言要更簡(jiǎn)練著實(shí),教學(xué)中應(yīng)充分挖掘教材內(nèi)在的魅力,通過生動(dòng)的比喻,夸張等方法打動(dòng)學(xué)生。有句廣告詞說:“簡(jiǎn)約而不簡(jiǎn)單!焙(jiǎn)簡(jiǎn)單單教數(shù)學(xué),實(shí)實(shí)在在學(xué)數(shù)學(xué)是新課程,新時(shí)代對(duì)數(shù)學(xué)課堂教學(xué)本質(zhì)回歸的熱切期盼。努力讓課堂化繁為簡(jiǎn),以小見大,以少勝多,充分發(fā)揮學(xué)生的'主體性,促進(jìn)師生**流暢的交流。第二,教學(xué)中手勢(shì)動(dòng)作不夠豐富。如果一堂課教師只僅僅靠單一的語言交流而沒有其他輔助的交流,學(xué)生聽課就一定會(huì)象聽講座,聽理論培訓(xùn)一樣感覺,課堂的氣氛就顯得死板而毫無生氣,更不能很好地調(diào)動(dòng)學(xué)生的主觀能動(dòng)性。據(jù)有關(guān)資料顯示:在信息傳遞中,一句話只表明了說話者要表達(dá)的內(nèi)容的百分之七,聲音則占所要表達(dá)內(nèi)容的百分之***,而剩下的百分之五十多的內(nèi)容卻來自于說話者的姿態(tài),動(dòng)作,表情等。由此可見,教師課堂上手勢(shì)動(dòng)作的運(yùn)用對(duì)于學(xué)生獲取信息就非常重要。因而,合理的運(yùn)用有效的手勢(shì)動(dòng)作,用于教師的輔助教學(xué),一定會(huì)收到事半功倍的效果。既讓教師的語言表達(dá)更加完美準(zhǔn)確,又能易于學(xué)生理解并接受,達(dá)到意想不到的效果。
通過認(rèn)真的反思,同時(shí)參考學(xué)生提出的意見,針對(duì)學(xué)生存在的共性問題,決定舉出一些例題講解,加強(qiáng)學(xué)生練習(xí)力度,從練習(xí)中發(fā)現(xiàn)問題,利用晚自習(xí)補(bǔ)充講解,直到大部分學(xué)生理解掌握為止。
對(duì)數(shù)函數(shù)教學(xué)反思4
1.本設(shè)計(jì)適于學(xué)習(xí)程度一般的學(xué)生,堅(jiān)持面向全體學(xué)生,引導(dǎo)學(xué)生積極主動(dòng)地參與獲取知識(shí)的全部過程,體現(xiàn)以學(xué)生為中心的教育教學(xué)理念。由于學(xué)生已了解研究函數(shù)的具體方法及步驟,有了研究指數(shù)函數(shù)的經(jīng)驗(yàn),為研究對(duì)數(shù)函數(shù)提供了知識(shí)上的積累。因此,通過我們高一數(shù)學(xué)備課組的共同研究、多次討論、反復(fù)修改,本教學(xué)設(shè)計(jì)從特殊到一般,運(yùn)用類比的思想,類比指數(shù)函數(shù)的研究方法及模式,通過畫出對(duì)數(shù)函數(shù)的圖像,從中直觀地歸納出其性質(zhì)。
2. 從課堂具體實(shí)施情況來看,讓學(xué)生自己動(dòng)手,親身體驗(yàn)方面做得比較欠缺,比如對(duì)數(shù)函數(shù)圖像的畫法,考慮到時(shí)間問題,沒有讓學(xué)生自己動(dòng)手體驗(yàn),而是老師代替了。其次學(xué)生之間的交流、討論,師生之間的互動(dòng)還需加強(qiáng),課堂氣氛還不夠活躍。
3. 總之,通過本次數(shù)學(xué)組的'集體備課活動(dòng),使我們真正體會(huì)到了集體的力量是無窮的,在集體備課中,依據(jù)主備人的預(yù)案,大家根據(jù)自己的研究心得和教學(xué)實(shí)際經(jīng)驗(yàn)討論補(bǔ)充,集思廣益,達(dá)成共識(shí),以期達(dá)到教師參加集體備課,帶著經(jīng)驗(yàn)和問題而來,攜著感悟和啟發(fā)而歸的目的。
對(duì)數(shù)函數(shù)教學(xué)反思5
《對(duì)數(shù)函數(shù)及其性質(zhì)》是人教版數(shù)學(xué)必修一的內(nèi)容。有人說“課堂教學(xué)是學(xué)術(shù)研究的實(shí)踐活動(dòng),既像科學(xué)家進(jìn)入科學(xué)實(shí)驗(yàn)室,又像藝術(shù)家登上藝術(shù)表演的舞臺(tái),教學(xué)是一種創(chuàng)造的藝術(shù),一種遺憾的藝術(shù)!被仡欉@節(jié)課有成功之處,也有遺憾之處。
成功之處:
1、通過盲生摸讀理解函數(shù)圖象,讓學(xué)生更直觀地歸納出對(duì)數(shù)函數(shù)的性質(zhì),對(duì)突破本節(jié)課的重、難點(diǎn)起了很大的幫助。
2、在引入新課時(shí),根據(jù)我校學(xué)生的實(shí)際情況我重新設(shè)計(jì)了教學(xué)情境,從“細(xì)胞**”問題導(dǎo)入新課。由于問題具有開放性,又簡(jiǎn)單易行,學(xué)生表現(xiàn)得都很積極,課堂開始讓學(xué)生動(dòng)起來了。這樣引入新課就自然了許多,學(xué)生接受起來也容易些。一堂成功的數(shù)學(xué)課,往往給人以自然、**、舒服的享受。所以設(shè)計(jì)恰當(dāng)?shù)那榫骋胄抡n是很重要的。
3、通過選取不同的底數(shù)a的對(duì)數(shù)圖象,讓學(xué)生類比研究指數(shù)函數(shù)圖象及其性質(zhì)分組探究對(duì)數(shù)函數(shù)的圖象和性質(zhì)。這個(gè)環(huán)節(jié)讓學(xué)生合作學(xué)習(xí),合作學(xué)習(xí)讓學(xué)生感受到學(xué)習(xí)過程中的互助,還能讓學(xué)生自己建構(gòu)知識(shí)體系。不同數(shù)學(xué)內(nèi)容之間的聯(lián)系和類比,有助于學(xué)生了解與中學(xué)數(shù)學(xué)知識(shí)有關(guān)的擴(kuò)展知識(shí)及內(nèi)在的數(shù)學(xué)思想,促使學(xué)生認(rèn)真思考其中的一些問題,加深對(duì)其理解。
遺憾之處:
1、在分組討論如何畫對(duì)數(shù)函數(shù)圖象時(shí),由于擔(dān)心教學(xué)任務(wù)不能準(zhǔn)確完成,我就直接找?guī)孜粚W(xué)生說出特殊點(diǎn)的坐標(biāo)來列表,然后“描點(diǎn)、連線”一句話帶過,整個(gè)過程太過精簡(jiǎn),沒有讓學(xué)生真正的參與進(jìn)來,對(duì)調(diào)動(dòng)學(xué)生的積極性也沒有起到好的`作用,讓學(xué)生失去一個(gè)展示自己成果的機(jī)會(huì)。
2、在講完例題緊接著給出的練習(xí)題難易不當(dāng),這樣學(xué)生做起來就有點(diǎn)吃力了,甚至有些學(xué)生覺得不知道該怎么做了,最后兩道稍難的練習(xí)題應(yīng)該留到下節(jié)課解決會(huì)更好些。
3、課堂小結(jié)只是帶領(lǐng)學(xué)生復(fù)習(xí)了本節(jié)課所學(xué)的重點(diǎn)內(nèi)容。如果能結(jié)合練習(xí)題提出問題,讓學(xué)生思考解決這些問題的同時(shí)也為下節(jié)課的教學(xué)做準(zhǔn)備,這樣更有助于學(xué)生知識(shí)的擴(kuò)展和延伸。
教育無止境,教育事業(yè)應(yīng)該是一個(gè)常做常新的事業(yè)。為師無止境,教書生涯應(yīng)該是一個(gè)不斷常新不斷前行的充滿新奇的旅途。反思將讓教師的生命變得五彩繽紛,反思將讓我們的教育變成一支抑揚(yáng)頓挫的交響樂。
對(duì)數(shù)函數(shù)教學(xué)反思6
“對(duì)數(shù)函數(shù)”的教學(xué)共分兩個(gè)部分完成。第一部分為對(duì)數(shù)函數(shù)的定義,圖像及性質(zhì);第二部分為對(duì)數(shù)函數(shù)的應(yīng)用!皩(duì)數(shù)函數(shù)”第一部分是在學(xué)習(xí)對(duì)數(shù)概念的基礎(chǔ)上學(xué)習(xí)對(duì)數(shù)函數(shù)的概念和性質(zhì),通過學(xué)習(xí)對(duì)數(shù)函數(shù)的定義,圖像及性質(zhì),可以進(jìn)一步深化學(xué)生對(duì)函數(shù)概念的.理解與認(rèn)識(shí),使學(xué)生得到較系統(tǒng)的函數(shù)知識(shí)和研究函數(shù)的方法,并且為學(xué)習(xí)對(duì)數(shù)函數(shù)作好準(zhǔn)備。
在講解對(duì)數(shù)函數(shù)的定義前,復(fù)習(xí)有關(guān)指數(shù)函數(shù)知識(shí)及簡(jiǎn)單運(yùn)算,然后由實(shí)例引入對(duì)數(shù)函數(shù)的概念,然后,讓學(xué)生親自動(dòng)手畫兩個(gè)圖象,我借助電腦**,通過描點(diǎn)作圖,引導(dǎo)學(xué)生說出圖像特征及變化規(guī)律,并從而得出對(duì)數(shù)函數(shù)的性質(zhì),提高學(xué)生的形數(shù)結(jié)合的能力。
大部分學(xué)生數(shù)學(xué)基礎(chǔ)較差,理解能力,運(yùn)算能力,思維能力等方面參差不齊;同時(shí)學(xué)生學(xué)好數(shù)學(xué)的自信心不強(qiáng),學(xué)習(xí)積極性不高。針對(duì)這種情況,在教學(xué)中,我注意面向全體,發(fā)揮學(xué)生的主體性,引導(dǎo)學(xué)生積極地觀察問題,分析問題,激發(fā)學(xué)生的求知欲和學(xué)習(xí)積極性,指導(dǎo)學(xué)生積極思維、主動(dòng)獲取知識(shí),養(yǎng)成良好的學(xué)習(xí)方法。并逐步學(xué)會(huì)**提出問題、解決問題。總之,調(diào)動(dòng)學(xué)生的非智力因素來促進(jìn)智力因素的發(fā)展,引導(dǎo)學(xué)生積極開動(dòng)腦筋,思考問題和解決問題,從而發(fā)揚(yáng)鉆研精神、勇于探索創(chuàng)新。
為了調(diào)動(dòng)學(xué)生學(xué)習(xí)的積極性,使學(xué)生變被動(dòng)學(xué)習(xí)為主動(dòng)愉快的學(xué)習(xí)。教學(xué)中我引導(dǎo)學(xué)生從實(shí)例出發(fā)啟發(fā)出指數(shù)函數(shù)的定義,在概念理解上,用步步設(shè)問、課堂討論來加深理解。在對(duì)數(shù)函數(shù)圖像的畫法上,我借助電腦,演示作圖過程及圖像變化的動(dòng)畫過程,從而使學(xué)生直接地接受并提高學(xué)生的學(xué)習(xí)興趣和積極性,很好地突破難點(diǎn)和提高教學(xué)效率,從而增大教學(xué)的容量和直觀性、準(zhǔn)確性?傊咎谜n充分體現(xiàn)了“教師為主導(dǎo),學(xué)生為主體”的教學(xué)原則。
對(duì)數(shù)函數(shù)教學(xué)反思7
本節(jié)課在備課組全體老師集體備課后,課堂教學(xué)設(shè)計(jì)完成得很好,課件的制作精美實(shí)用,學(xué)案的設(shè)計(jì)適當(dāng)充分。各人再根據(jù)具體班級(jí)的情況去修改某些細(xì)節(jié)。
本節(jié)課在學(xué)習(xí)了指數(shù)函數(shù)及其性質(zhì)以后,學(xué)生通過類比學(xué)習(xí)的方法很容易進(jìn)入學(xué)習(xí)探究的狀態(tài),因此我還是采用了知識(shí)遷移及類比的學(xué)習(xí)方法進(jìn)行本節(jié)課的`設(shè)計(jì)。
回顧了指數(shù)函數(shù)的概念及性質(zhì)以后,通過把指數(shù)式寫成對(duì)數(shù)式的小練習(xí),學(xué)生很輕松的完成把指數(shù)函數(shù)式寫成對(duì)數(shù)函數(shù)式。進(jìn)而引出課題。學(xué)生自主閱讀課本70頁內(nèi)容后完成學(xué)案的第一部分,基本上能夠理解對(duì)數(shù)函數(shù)的概念。并且很自覺的主動(dòng)動(dòng)手畫圖,觀察圖形得出性質(zhì),在性質(zhì)的分析環(huán)節(jié)中,給予簡(jiǎn)單的提示(如,從圖形觀察特征,并用數(shù)學(xué)符號(hào)語言描述等),學(xué)生基本上能夠運(yùn)用類比指數(shù)函數(shù)的性質(zhì),說出對(duì)數(shù)函數(shù)的定義域、值域、單調(diào)性、過定點(diǎn)、函數(shù)值的變化情況等,性質(zhì)的應(yīng)用的設(shè)計(jì)我只采用了比較大小及求定義域兩個(gè)例題及練習(xí)。學(xué)生完成得還不錯(cuò),但在時(shí)間上還應(yīng)多給予學(xué)生**思考的時(shí)間。還需加強(qiáng)習(xí)題的變式能力。
對(duì)數(shù)函數(shù)教學(xué)反思8
在教學(xué)過程中,我類比指數(shù)函數(shù)圖象和性質(zhì)的研究,研究了對(duì)數(shù)函數(shù)圖象和性質(zhì)。同學(xué)們課堂上能積極主動(dòng)參與獲得性質(zhì)的過程。我用了三節(jié)課就對(duì)數(shù)函數(shù)的圖象和性質(zhì),圖象和性質(zhì)的應(yīng)用進(jìn)行講解?蓮淖鳂I(yè)和課堂效果看來。同學(xué)們沒有對(duì)指數(shù)函數(shù)的性質(zhì)和圖象掌握的好,分析有以下原因
1、學(xué)生對(duì) 對(duì)數(shù)函數(shù)概念的理解及對(duì)數(shù)的運(yùn)算不過關(guān)。導(dǎo)致部分題目出現(xiàn)運(yùn)算錯(cuò)誤或不會(huì)。
2、利用對(duì)數(shù)函數(shù)的單調(diào)性比較倆個(gè)對(duì)數(shù)式的大小書寫格式不規(guī)范。說明同學(xué)們用函數(shù)的觀點(diǎn)解決問題的思想方法還沒形成。
3、同學(xué)們對(duì)對(duì)數(shù)與指數(shù)的互化不是很熟練。導(dǎo)致有關(guān)指 對(duì)互化題目出現(xiàn)錯(cuò)誤。尤其是解決有關(guān)對(duì)數(shù)和指數(shù)混合式子的有關(guān)計(jì)算時(shí)困難很大,問題最多。還有在解決有關(guān)對(duì)數(shù)型函數(shù)定義域問題 ,更不會(huì)用對(duì)數(shù)函數(shù)的單調(diào)性去解決。
以上這些原因我通過認(rèn)真的`反思,同時(shí)參考學(xué)生提出的意見,決定講倆節(jié)習(xí)題課,針對(duì)學(xué)生存在的共性問題解決,找出他們的盲點(diǎn),同時(shí)加強(qiáng)練習(xí)力度。從練習(xí)中發(fā)現(xiàn)問題,再利用晚自習(xí)系統(tǒng)講解,直到絕大部分學(xué)生理解掌握為止。
對(duì)數(shù)函數(shù)教學(xué)反思9
對(duì)數(shù)函數(shù)的教學(xué)共分兩個(gè)部分完成。第一部分為對(duì)數(shù)函數(shù)的定義,圖像及性質(zhì);第二部分為對(duì)數(shù)函數(shù)的應(yīng)用。對(duì)數(shù)函數(shù)是在學(xué)習(xí)對(duì)數(shù)概念的基礎(chǔ)上學(xué)習(xí)對(duì)數(shù)函數(shù)的概念和性質(zhì),通過學(xué)習(xí)對(duì)數(shù)函數(shù)的定義,圖像及性質(zhì),可以進(jìn)一步深化學(xué)生對(duì)函數(shù)概念的理解與認(rèn)識(shí),使學(xué)生得到較系統(tǒng)的函數(shù)知識(shí)和研究函數(shù)的方法,并且為學(xué)習(xí)對(duì)數(shù)函數(shù)以及對(duì)數(shù)函數(shù)的應(yīng)用作好準(zhǔn)備。
在教學(xué)過程中,我類比指數(shù)函數(shù)圖象和性質(zhì)的研究,研究了對(duì)數(shù)函數(shù)圖象和性質(zhì)。同學(xué)們課堂上能積極主動(dòng)參與獲得性質(zhì)的過程。我用了三節(jié)課就對(duì)數(shù)函數(shù)的圖象和性質(zhì),圖象和性質(zhì)的應(yīng)用進(jìn)行講解。但是從作業(yè)和課堂效果看來。同學(xué)們沒有指數(shù)函數(shù)的性質(zhì)和圖象掌握的好。特反思如下:
1、學(xué)生對(duì)對(duì)數(shù)函數(shù)概念的理解及對(duì)數(shù)的運(yùn)算不過關(guān)。學(xué)生在做這些運(yùn)算時(shí)有時(shí)不能靈活運(yùn)用公式例如換底公式,有時(shí)學(xué)生會(huì)想當(dāng)然地自己“發(fā)明”公式。導(dǎo)致部分題目出現(xiàn)運(yùn)算錯(cuò)誤或不會(huì)。
2、在利用對(duì)數(shù)函數(shù)的單調(diào)性比較兩個(gè)對(duì)數(shù)式的大小書寫格式不規(guī)范,因此在解題的'過程中就把真數(shù)和底數(shù)混亂了,這說明同學(xué)們用函數(shù)的觀點(diǎn)解決問題的思想方法還沒形成。
3、在解有關(guān)求定義域的問題時(shí),學(xué)生不能很好的掌握底數(shù)a的取值范圍以及真數(shù)必修大于0.
4、同學(xué)們對(duì)對(duì)數(shù)與指數(shù)的互化不是很熟練。導(dǎo)致有關(guān)指數(shù)與對(duì)數(shù)互化題目出現(xiàn)錯(cuò)誤。尤其是解決有關(guān)對(duì)數(shù)和指數(shù)混合式子的有關(guān)計(jì)算時(shí)困難很大,問題最多。還有在解決有關(guān)對(duì)數(shù)型函數(shù)定義域問題時(shí),更不會(huì)用對(duì)數(shù)函數(shù)的單調(diào)性去解決。
以上這些原因我通過認(rèn)真的反思,同時(shí)參考學(xué)生提出的意見,決定講兩節(jié)習(xí)題課,針對(duì)學(xué)生存在的共性問題解決,找出他們的盲點(diǎn),同時(shí)加強(qiáng)練習(xí)力度。從練習(xí)中發(fā)現(xiàn)問題,再通過系統(tǒng)講解,直到絕大部分學(xué)生理解掌握為止。
對(duì)數(shù)函數(shù)教學(xué)反思10
“對(duì)數(shù)函數(shù)”的教學(xué)共分兩個(gè)部分完成。第一部分為對(duì)數(shù)函數(shù)的定義,圖像及性質(zhì);第二部分為對(duì)數(shù)函數(shù)的應(yīng)用。“對(duì)數(shù)函數(shù)”第一部分是在學(xué)習(xí)對(duì)數(shù)概念的基礎(chǔ)上學(xué)習(xí)對(duì)數(shù)函數(shù)的概念和性質(zhì),通過學(xué)習(xí)對(duì)數(shù)函數(shù)的定義,圖像及性質(zhì),可以進(jìn)一步深化學(xué)生對(duì)函數(shù)概念的理解與認(rèn)識(shí),使學(xué)生得到較系統(tǒng)的函數(shù)知識(shí)和研究函數(shù)的方法,并且為學(xué)習(xí)對(duì)數(shù)函數(shù)作好準(zhǔn)備。
在講解對(duì)數(shù)函數(shù)的定義前,復(fù)習(xí)有關(guān)指數(shù)函數(shù)知識(shí)及簡(jiǎn)單運(yùn)算,然后由實(shí)例引入對(duì)數(shù)函數(shù)的概念,然后,讓學(xué)生親自動(dòng)手畫兩個(gè)圖象,我借助電腦**,通過描點(diǎn)作圖,引導(dǎo)學(xué)生說出圖像特征及變化規(guī)律,并從而得出對(duì)數(shù)函數(shù)的性質(zhì),提高學(xué)生的形數(shù)結(jié)合的能力。作了以上分析之后,再分a>1與0。
大部分學(xué)生數(shù)學(xué)基礎(chǔ)較差,理解能力,運(yùn)算能力,思維能力等方面參差不齊;同時(shí)學(xué)生學(xué)好數(shù)學(xué)的自信心不強(qiáng),學(xué)習(xí)積極性不高。針對(duì)這種情況,在教學(xué)中,我注意面向全體,發(fā)揮學(xué)生的主體性,引導(dǎo)學(xué)生積極地觀察問題,分析問題,激發(fā)學(xué)生的求知欲和學(xué)習(xí)積極性,指導(dǎo)學(xué)生積極思維、主動(dòng)獲取知識(shí),養(yǎng)成良好的學(xué)習(xí)方法。并逐步學(xué)會(huì)**提出問題、解決問題?傊,調(diào)動(dòng)學(xué)生的非智力因素來促進(jìn)智力因素的發(fā)展,引導(dǎo)學(xué)生積極開動(dòng)腦筋,思考問題和解決問題,從而發(fā)揚(yáng)鉆研精神、勇于探索創(chuàng)新。這種講法既嚴(yán)謹(jǐn)又直觀易懂,還能讓學(xué)生主動(dòng)參與教學(xué)過程,對(duì)培養(yǎng)學(xué)生的創(chuàng)新能力有幫助,學(xué)生易于接受易于掌握,而且利用表格,可以突破難點(diǎn)。
然后經(jīng)行鞏固訓(xùn)練,養(yǎng)學(xué)生利用所學(xué)知識(shí)解決實(shí)際問題的能力,通過這個(gè)環(huán)節(jié)學(xué)生可以加深對(duì)本節(jié)知識(shí)的.理解和運(yùn)用,并從講解過程中找出所涉及的知識(shí)點(diǎn),予以總結(jié)。充分體現(xiàn)“數(shù)形結(jié)合”和“分類討論”的思想。通過反饋來看,大部分學(xué)生能夠達(dá)到本節(jié)課的知識(shí)目標(biāo),并在一定程度上培養(yǎng)了學(xué)生主學(xué)習(xí)、綜合歸納、數(shù)形結(jié)合的能力。最后經(jīng)行歸納總結(jié),引導(dǎo)學(xué)生對(duì)主要知識(shí)進(jìn)行回顧,使學(xué)生對(duì)本節(jié)有一個(gè)整體的把握,因此,從三方面進(jìn)行總結(jié):對(duì)數(shù)函數(shù)的概念、對(duì)數(shù)函數(shù)的圖象和性質(zhì)、比較對(duì)數(shù)值大小的方法。
本節(jié)課調(diào)動(dòng)學(xué)生學(xué)習(xí)的積極性,使學(xué)生變被動(dòng)學(xué)習(xí)為主動(dòng)愉快的學(xué)習(xí)。教學(xué)中我引導(dǎo)學(xué)生從實(shí)例出發(fā)啟發(fā)出指數(shù)函數(shù)的定義,在概念理解上,用步步設(shè)問、課堂討論來加深理解。在對(duì)數(shù)函數(shù)圖像的畫法上,我借助電腦,演示作圖過程及圖像變化的動(dòng)畫過程,從而使學(xué)生直接地接受并提高學(xué)生的學(xué)習(xí)興趣和積極性,很好地突破難點(diǎn)和提高教學(xué)效率,從而增大教學(xué)的容量和直觀性、準(zhǔn)確性,充分體現(xiàn)了“教師為主導(dǎo),學(xué)生為主體”的教學(xué)原則取得了較好的教學(xué)效果。
對(duì)數(shù)函數(shù)教案 (菁選3篇)(擴(kuò)展4)
——函數(shù)概念教案10篇
函數(shù)概念教案1
各位**老師大家好,今天我說課的內(nèi)容是函數(shù)的近代定義也就是函數(shù)的第一課時(shí)內(nèi)容。
一、教材分析
1、教材的地位和作用:
函數(shù)是數(shù)學(xué)中最主要的概念之一,而函數(shù)概念貫穿在中學(xué)數(shù)學(xué)的始終,概念是數(shù)學(xué)的基礎(chǔ),概念性強(qiáng)是函數(shù)理論的一個(gè)顯著特點(diǎn),只有對(duì)概念作到深刻理解,才能正確靈活地加以應(yīng)用。本課中學(xué)生對(duì)函數(shù)概念理解的程度會(huì)直接影響數(shù)學(xué)其它知識(shí)的學(xué)習(xí),所以函數(shù)的第一課時(shí)非常的重要。
2、教學(xué)目標(biāo)及確立的依據(jù):
教學(xué)目標(biāo):
。1)教學(xué)知識(shí)目標(biāo):了解對(duì)應(yīng)和映射概念、理解函數(shù)的近代定義、函數(shù)三要素,以及對(duì)函數(shù)抽象符號(hào)的理解。
。2)能力訓(xùn)練目標(biāo):通過教學(xué)培養(yǎng)學(xué)生的抽象概括能力、邏輯思維能力。
。3)德育滲透目標(biāo):使學(xué)生懂得一切事物都是在不斷變化、相互聯(lián)系和相互制約的辯證唯物**觀點(diǎn)。
教學(xué)目標(biāo)確立的依據(jù):
函數(shù)是數(shù)學(xué)中最主要的概念之一,而函數(shù)概念貫穿整個(gè)中學(xué)數(shù)學(xué),如:數(shù)、式、方程、函數(shù)、排列組合、數(shù)列極限等都是以函數(shù)為中心的代數(shù)。加強(qiáng)函數(shù)教學(xué)可幫助學(xué)生學(xué)好其他的數(shù)學(xué)內(nèi)容。而掌握好函數(shù)的概念是學(xué)好函數(shù)的基石。
3、教學(xué)重點(diǎn)難點(diǎn)及確立的依據(jù):
教學(xué)重點(diǎn):映射的概念,函數(shù)的近代概念、函數(shù)的三要素及函數(shù)符號(hào)的理解。
教學(xué)難點(diǎn):映射的概念,函數(shù)近代概念,及函數(shù)符號(hào)的理解。
重點(diǎn)難點(diǎn)確立的依據(jù):
映射的概念和函數(shù)的近代定義抽象性都比較強(qiáng),要求學(xué)生的理性認(rèn)識(shí)的能力也比較高,對(duì)于剛剛升入高中不久的學(xué)生來說不易理解。而且由于函數(shù)在高考中可以以低、中、高擋題出現(xiàn),所以**來高考有一種“函數(shù)熱”的趨勢(shì),所以本節(jié)的重點(diǎn)難點(diǎn)必然落在映射的概念和函數(shù)的近代定義及函數(shù)符號(hào)的理解與運(yùn)用上。
二、教材的處理:
將映射的定義及類比手法的運(yùn)用作為本課突破難點(diǎn)的關(guān)鍵。 函數(shù)的定義,是以集合、映射的觀點(diǎn)給出,這與初中教材變量值與對(duì)應(yīng)觀點(diǎn)給出不一樣了,從而給本身就很抽象的函數(shù)概念的理解帶來更大的困難。為解決這難點(diǎn),主要是從實(shí)際出發(fā)調(diào)動(dòng)學(xué)生的學(xué)習(xí)熱情與參與意識(shí),運(yùn)用引導(dǎo)對(duì)比的手法,啟發(fā)引導(dǎo)學(xué)生進(jìn)行有目的的反復(fù)比較幾個(gè)概念的異同,使學(xué)生真正對(duì)函數(shù)的概念有很準(zhǔn)確的認(rèn)識(shí)。
三、教學(xué)方法和學(xué)法
教學(xué)方法:講授為主,學(xué)生自主預(yù)習(xí)為輔。
依據(jù)是:因?yàn)橐孕碌挠^點(diǎn)認(rèn)識(shí)函數(shù)概念及函數(shù)符號(hào)與運(yùn)用時(shí),更重要的是必須給學(xué)生講清楚概念及注意事項(xiàng),并通過師生的共同討論來幫助學(xué)生深刻理解,這樣才能使函數(shù)的概念及符號(hào)的運(yùn)用在學(xué)生的思想和知識(shí)結(jié)構(gòu)中打上深刻的烙印,為學(xué)生能學(xué)好后面的知識(shí)打下堅(jiān)實(shí)的基礎(chǔ)。
學(xué)法:四、教學(xué)程序
一、課程導(dǎo)入
通過舉以下一個(gè)通俗的例子引出通過某個(gè)對(duì)應(yīng)法則可以將兩個(gè)非空集合聯(lián)系在一起。
例1:把高一(12)班和高一(11)全體同學(xué)分別看成是兩個(gè)集合,問,通過“找好朋友”這個(gè)對(duì)應(yīng)法則是否能將這兩個(gè)集合的某些元素聯(lián)系在一起?
二、 新課講授:
。1) 接著再通過幻燈片給出六組學(xué)生熟悉的數(shù)集的對(duì)應(yīng)關(guān)系引導(dǎo)學(xué)生總結(jié)歸納它們的共同性質(zhì)(一對(duì)一,多對(duì)一),進(jìn)而給出映射的概念,表示符號(hào)f:A→B,及原像和像的定義。強(qiáng)調(diào)指出非空集合A到非空集合B的映射包括三部分即非空集合A、B和A到B的對(duì)應(yīng)法則 f。進(jìn)一步引導(dǎo)學(xué)生總結(jié)判斷一個(gè)從A到B的對(duì)應(yīng)是否為映射的關(guān)鍵是看A中的任意一個(gè)元素通過對(duì)應(yīng)法則f在B中是否有唯一確定的元素與之對(duì)應(yīng)。
。2)鞏固練習(xí)課本52頁第八題。
此練習(xí)能讓學(xué)生更深刻的認(rèn)識(shí)到映射可以“一對(duì)多,多對(duì)一”但不能是“一對(duì)多”。
例1。給出學(xué)生初中學(xué)過的函數(shù)的傳統(tǒng)定義和幾個(gè)簡(jiǎn)單的一次、二次函數(shù),通過畫圖表示這些函數(shù)的對(duì)應(yīng)關(guān)系,引導(dǎo)學(xué)生發(fā)現(xiàn)它們是特殊的映射進(jìn)而給出函數(shù)的近代定義(設(shè)A、B是兩個(gè)非空集合,如果按照某種對(duì)應(yīng)法則f,使得A中的任何一個(gè)元素在集合B中都有唯一的元素與之對(duì)應(yīng)則這樣的對(duì)應(yīng)叫做集合A到集合B的映射,它包括非空集合A和B以及從A到B的對(duì)應(yīng)法則f),并說明把函f:A→B記為y=f(x),其中自變量x的取值范圍A叫做函數(shù)的定義域,與x的值相對(duì)應(yīng)的y(或f(x))值叫做函數(shù)值,函數(shù)值的集合{f(x):x∈A}叫做函數(shù)的值域。
并把函數(shù)的近代定義與映射定義比較使學(xué)生認(rèn)識(shí)到函數(shù)與映射的區(qū)別與聯(lián)系。(函數(shù)是非空數(shù)集到非空數(shù)集的映射)。
再以讓學(xué)生判斷的方式給出以下關(guān)于函數(shù)近代定義的注意事項(xiàng):
2。函數(shù)是非空數(shù)集到非空數(shù)集的映射。
3。f表示對(duì)應(yīng)關(guān)系,在不同的'函數(shù)中f的具體含義不一樣。
4。f(x)是一個(gè)符號(hào),不表示f與x的乘積,而表示x經(jīng)過f作用后的結(jié)果。
5。集合A中的數(shù)的任意性,集合B中數(shù)的唯一性。
6!癴:A→B”表示一個(gè)函數(shù)有三要素:法則f(是核心),定義域A(要優(yōu)先),值域C(上函數(shù)值的集合且C∈B)。
三、講解例題
例1。問y=1(x∈A)是不是函數(shù)?
解:y=1可以化為y=0*X+1
畫圖可以知道從x的取值范圍到y(tǒng)的取值范圍的對(duì)應(yīng)是“多對(duì)一”是從非空數(shù)集到非空數(shù)集的映射,所以它是函數(shù)。
[注]:引導(dǎo)學(xué)生從集合,映射的觀點(diǎn)認(rèn)識(shí)函數(shù)的定義。
四、課時(shí)小結(jié):
1。映射的定義。
2。函數(shù)的近代定義。
3。函數(shù)的三要素及符號(hào)的正確理解和應(yīng)用。
4。函數(shù)近代定義的五大注意點(diǎn)。
五、課后作業(yè)及板書設(shè)計(jì)
書本P51 習(xí)題2。1的1、2寫在書上3、4、5上交。
預(yù)習(xí)函數(shù)三要素的定義域,并能求簡(jiǎn)單函數(shù)的定義域。
函數(shù)(一)
一、映射:2。函數(shù)近代定義:例題練習(xí)
二、函數(shù)的定義[注]1—5
1。函數(shù)傳統(tǒng)定義三、作業(yè):
函數(shù)概念教案2
教學(xué)目標(biāo):
1.進(jìn)一步理解用集合與對(duì)應(yīng)的語言來刻畫的函數(shù)的概念,進(jìn)一步理解函數(shù)的本質(zhì)是數(shù)集之間的對(duì)應(yīng);
2.進(jìn)一步熟悉與理解函數(shù)的定義域、值域的定義,會(huì)利用函數(shù)的定義域與對(duì)應(yīng)法則判定有關(guān)函數(shù)是否為同一函數(shù);
3.通過教學(xué),進(jìn)一步培養(yǎng)學(xué)生由具體逐步過渡到符號(hào)化,代數(shù)式化,并能對(duì)以往學(xué)習(xí)過的知識(shí)進(jìn)行理性化思考,對(duì)事物間的聯(lián)系的一種數(shù)學(xué)化的思考.
教學(xué)重點(diǎn):
用對(duì)應(yīng)來進(jìn)一步刻畫函數(shù);求基本函數(shù)的定義域和值域.
教學(xué)過程:
一、問題情境
1.情境.
復(fù)述函數(shù)及函數(shù)的定義域的概念.
2.問題.
概念中集合A為函數(shù)的定義域,集合B的作用是什么呢?
二、學(xué)生活動(dòng)
1.理解函數(shù)的值域的概念;
2.能利用觀察法求簡(jiǎn)單函數(shù)的值域;
3.探求簡(jiǎn)單的復(fù)合函數(shù)f(f(x))的定義域與值域.
三、數(shù)學(xué)建構(gòu)
1.函數(shù)的值域:
。1)按照對(duì)應(yīng)法則f,對(duì)于A中所有x的值的對(duì)應(yīng)輸出值組成的集合稱之
為函數(shù)的值域;
。2)值域是集合B的子集.
2.x g(x) f(x) f(g(x)),其**(x)的值域即為f(g(x))的定義域;
四、數(shù)*用
(一)例題.
例1 已知函數(shù)f (x)=x2+2x,求 f (-2),f (-1),f (0),f (1).
例2 根據(jù)不同條件,分別求函數(shù)f(x)=(x-1)2+1的值域.
。1)x∈{-1,0,1,2,3};
(2)x∈R;
。3)x∈[-1,3];
。4)x∈(-1,2];
。5)x∈(-1,1).
例3 求下列函數(shù)的值域:
①= ;②= .
例4 已知函數(shù)f(x)與g(x)分別由下表給出:
x1234x1234
f(x)2341g(x)2143
分別求f (f (1)),f (g (2)),g(f (3)),g (g (4))的值.
(二)練習(xí).
(1)求下列函數(shù)的值域:
、伲2-x2;②=3-|x|.
。2)已知函數(shù)f(x)=3x2-5x+2,求f(3)、f(-2)、f(a)、f(a+1).
(3)已知函數(shù)f(x)=2x+1,g(x)=x2-2x+2,試分別求出g(f(x))和f(g(x))的值域,比較一下,看有什么發(fā)現(xiàn).
。4)已知函數(shù)=f(x)的定義域?yàn)閇-1,2],求f(x)+f(-x)的定義域.
(5)已知f(x)的定義域?yàn)閇-2,2],求f(2x),f(x2+1)的定義域.
五、回顧小結(jié)
函數(shù)的對(duì)應(yīng)本質(zhì),函數(shù)的定義域與值域;
利用分解的思想研究復(fù)合函數(shù).
六、作業(yè)
課本P31-5,8,9.
函數(shù)概念教案3
一、教材分析
本節(jié)課選自《普通高中課程標(biāo)準(zhǔn)數(shù)學(xué)教科書-必修1》(人教A版)《1.2.1 函數(shù)的概念》共3課時(shí),本節(jié)課是第1課時(shí)。
托馬斯說:“函數(shù)概念是近代數(shù)學(xué)思想之花”。 生活中的許多現(xiàn)象如物體運(yùn)動(dòng),氣溫升降,投資理財(cái)?shù)榷伎梢杂煤瘮?shù)的模型來刻畫,是我們更好地了解自己、認(rèn)識(shí)世界和預(yù)測(cè)未來的重要工具。
函數(shù)是數(shù)學(xué)的重要的基礎(chǔ)概念之一,是高等數(shù)學(xué)重多學(xué)科的基礎(chǔ)概念和重要的研究對(duì)象。同時(shí)函數(shù)也是物理學(xué)等其他學(xué)科的重要基礎(chǔ)知識(shí)和研究工具,教學(xué)內(nèi)容中蘊(yùn)涵著極其豐富的辯證思想。函數(shù)的的重要性正如*所說:“數(shù)學(xué)中的轉(zhuǎn)折點(diǎn)是笛卡爾的變數(shù),有了變數(shù),運(yùn)動(dòng)就進(jìn)入了數(shù)學(xué);有了變數(shù),辯證法就進(jìn)入了數(shù)學(xué)”。
二、學(xué)生學(xué)習(xí)情況分析
函數(shù)是中學(xué)數(shù)學(xué)的主體內(nèi)容,學(xué)生在中學(xué)階段對(duì)函數(shù)的認(rèn)識(shí)分三個(gè)階段:(一)初中從運(yùn)動(dòng)變化的角度來刻畫函數(shù),初步認(rèn)識(shí)正比例、反比例、一次和二次函數(shù);(二)高中用集合與對(duì)應(yīng)的觀點(diǎn)來刻畫函數(shù),研究函數(shù)的性質(zhì),學(xué)習(xí)典型的對(duì)、指、冪和三解函數(shù);(三)高中用導(dǎo)數(shù)工具研究函數(shù)的單調(diào)性和最值。
1.有利條件
現(xiàn)代教育心理學(xué)的研究認(rèn)為,有效的概念教學(xué)是建立在學(xué)生已有知識(shí)結(jié)構(gòu)的基礎(chǔ)上的,因此教師在設(shè)計(jì)教學(xué)的過程中必須注意在學(xué)生已有知識(shí)結(jié)構(gòu)中尋找新概念的固著點(diǎn),引導(dǎo)學(xué)生通過同化或順應(yīng),掌握新概念,進(jìn)而完善知識(shí)結(jié)構(gòu)。
初中用運(yùn)動(dòng)變化的觀點(diǎn)對(duì)函數(shù)進(jìn)行定義的,它反映了歷史上人們對(duì)它的一種認(rèn)識(shí),而且這個(gè)定義較為直觀,易于接受,因此按照由淺入深、力求符合學(xué)生認(rèn)知規(guī)律的內(nèi)容編排原則,函數(shù)概念在初中介紹到這個(gè)程度是合適的。也為我們用集合與對(duì)應(yīng)的觀點(diǎn)研究函數(shù)打下了一定的基礎(chǔ)。
2.不利條件
用集合與對(duì)應(yīng)的觀點(diǎn)來定義函數(shù),形式和內(nèi)容上都是比較抽象的,這對(duì)學(xué)生的理解能力是一個(gè)挑戰(zhàn),是本節(jié)課教學(xué)的一個(gè)不利條件。
三、教學(xué)目標(biāo)分析
課標(biāo)要求:通過豐富實(shí)例,進(jìn)一步體會(huì)函數(shù)是描述變量之間的依賴關(guān)系的重要數(shù)學(xué)模型,在此基礎(chǔ)上學(xué)習(xí)用集合與對(duì)應(yīng)的語言來刻畫函數(shù),體會(huì)對(duì)應(yīng)關(guān)系在刻畫函數(shù)概念中的作用;了解構(gòu)成函數(shù)的要素,會(huì)求一些簡(jiǎn)單函數(shù)的定義域和值域.
1.知識(shí)與能力目標(biāo):
⑴能從集合與對(duì)應(yīng)的角度理解函數(shù)的概念,更要理解函數(shù)的本質(zhì)屬性;
、评斫夂瘮(shù)的三要素的含義及其相互關(guān)系;
、菚(huì)求簡(jiǎn)單函數(shù)的定義域和值域
2.過程與方法目標(biāo):
⑴通過豐富實(shí)例,使學(xué)生建立起函數(shù)概念的背景,體會(huì)函數(shù)是描述變量之間依賴關(guān)系的數(shù)學(xué)模型;
⑵在函數(shù)實(shí)例中,通過對(duì)關(guān)鍵詞的強(qiáng)調(diào)和引導(dǎo)使學(xué)發(fā)現(xiàn)它們的共同特征,在此基礎(chǔ)上再用集合與對(duì)應(yīng)的語言來刻畫函數(shù),體會(huì)對(duì)應(yīng)關(guān)系在刻畫函數(shù)概念中的作用.
3.情感、態(tài)度與價(jià)值觀目標(biāo):
感受生活中的數(shù)學(xué),感悟事物之間聯(lián)系與變化的辯證唯物**觀點(diǎn)。
四、教學(xué)重點(diǎn)、難點(diǎn)分析
1.教學(xué)重點(diǎn):對(duì)函數(shù)概念的理解,用集合與對(duì)應(yīng)的語言來刻畫函數(shù);
重點(diǎn)依據(jù):初中是從變量的角度來定義函數(shù),高中是用集合與對(duì)應(yīng)的語言來刻畫函數(shù)。二者反映的本質(zhì)是一致的,即“函數(shù)是一種對(duì)應(yīng)關(guān)系”。 但是,初中定義并未完全揭示出函數(shù)概念的本質(zhì),對(duì)y?1這樣的函數(shù)用運(yùn)動(dòng)變化的觀點(diǎn)也很難解釋。在以函數(shù)為重要內(nèi)容的高中階段,課本應(yīng)將函數(shù)定義為兩個(gè)數(shù)集之間的一種對(duì)應(yīng)關(guān)系,按照這種觀點(diǎn),使我們對(duì)函數(shù)概念有了更深一層的認(rèn)識(shí),也很容易說明y?1這函數(shù)表達(dá)式。因此,分析兩種函數(shù)概念的關(guān)系,讓學(xué)生融會(huì)貫通地理解函數(shù)的概念應(yīng)為本節(jié)課的重點(diǎn)。
突出重點(diǎn):重點(diǎn)的突出依賴于對(duì)函數(shù)概念本質(zhì)屬性的把握,使學(xué)生通過表面的語言描述抓住概念的精髓。
2.教學(xué)難點(diǎn):第一:從實(shí)際問題中提煉出抽象的概念;第二:符號(hào)“y=f(x)”的含義的理解.
難點(diǎn)依據(jù):數(shù)學(xué)語言的抽象概括難度較大,對(duì)符號(hào)y=f(x)的理解會(huì)受到以前知識(shí)的負(fù)遷移。
突破難點(diǎn):難點(diǎn)的突破要依托豐富的實(shí)例,從集合與對(duì)應(yīng)的角度恰當(dāng)?shù)匾龑?dǎo),而對(duì)抽象符號(hào)的理解則要結(jié)合函數(shù)的三要素和小例子進(jìn)行說明。
五、教法與學(xué)法分析
1.教法分析
本節(jié)課我主要采用教師導(dǎo)學(xué)法、知識(shí)遷移法和知識(shí)對(duì)比法,從學(xué)生熟悉的豐富實(shí)例出發(fā),關(guān)注學(xué)生的原有的知識(shí)基礎(chǔ),注重概念的形成過程,從初中的函數(shù)概念自然過度到函數(shù)的近代定我。
2.學(xué)法分析
在教學(xué)過程中我注意在教學(xué)中引導(dǎo)學(xué)生用模型法分析函數(shù)問題、通過自主學(xué)習(xí)法總結(jié)“區(qū)間”的知識(shí)。
函數(shù)概念教案4
各位**老師大家好,今天我說課的內(nèi)容是函數(shù)的近代定義也就是函數(shù)的第一課時(shí)內(nèi)容。
一、教材分析
1、教材的地位和作用:
函數(shù)是數(shù)學(xué)中最主要的概念之一,而函數(shù)概念貫穿在中學(xué)數(shù)學(xué)的始終,概念是數(shù)學(xué)的基礎(chǔ),概念性強(qiáng)是函數(shù)理論的一個(gè)顯著特點(diǎn),只有對(duì)概念作到深刻理解,才能正確靈活地加以應(yīng)用。本課中學(xué)生對(duì)函數(shù)概念理解的程度會(huì)直接影響數(shù)學(xué)其它知識(shí)的學(xué)習(xí),所以函數(shù)的第一課時(shí)非常的重要。
2、教學(xué)目標(biāo)及確立的依據(jù):
教學(xué)目標(biāo):
。1)教學(xué)知識(shí)目標(biāo):了解對(duì)應(yīng)和映射概念、理解函數(shù)的近代定義、函數(shù)三要素,以及對(duì)函數(shù)抽象符號(hào)的理解。
(2)能力訓(xùn)練目標(biāo):通過教學(xué)培養(yǎng)學(xué)生的抽象概括能力、邏輯思維能力。
(3)德育滲透目標(biāo):使學(xué)生懂得一切事物都是在不斷變化、相互聯(lián)系和相互制約的辯證唯物**觀點(diǎn)。
教學(xué)目標(biāo)確立的依據(jù):
函數(shù)是數(shù)學(xué)中最主要的概念之一,而函數(shù)概念貫穿整個(gè)中學(xué)數(shù)學(xué),如:數(shù)、式、方程、函數(shù)、排列組合、數(shù)列極限等都是以函數(shù)為中心的代數(shù)。加強(qiáng)函數(shù)教學(xué)可幫助學(xué)生學(xué)好其他的數(shù)學(xué)內(nèi)容。而掌握好函數(shù)的概念是學(xué)好函數(shù)的基石。
3、教學(xué)重點(diǎn)難點(diǎn)及確立的依據(jù):
教學(xué)重點(diǎn):映射的概念,函數(shù)的近代概念、函數(shù)的三要素及函數(shù)符號(hào)的理解。
教學(xué)難點(diǎn):映射的概念,函數(shù)近代概念,及函數(shù)符號(hào)的理解。
重點(diǎn)難點(diǎn)確立的依據(jù):
映射的概念和函數(shù)的近代定義抽象性都比較強(qiáng),要求學(xué)生的理性認(rèn)識(shí)的能力也比較高,對(duì)于剛剛升入高中不久的學(xué)生來說不易理解。而且由于函數(shù)在高考中可以以低、中、高擋題出現(xiàn),所以**來高考有一種“函數(shù)熱”的趨勢(shì),所以本節(jié)的重點(diǎn)難點(diǎn)必然落在映射的概念和函數(shù)的近代定義及函數(shù)符號(hào)的理解與運(yùn)用上。
二、教材的處理:
將映射的定義及類比手法的運(yùn)用作為本課突破難點(diǎn)的關(guān)鍵。 函數(shù)的定義,是以集合、映射的觀點(diǎn)給出,這與初中教材變量值與對(duì)應(yīng)觀點(diǎn)給出不一樣了,從而給本身就很抽象的函數(shù)概念的理解帶來更大的困難。為解決這難點(diǎn),主要是從實(shí)際出發(fā)調(diào)動(dòng)學(xué)生的學(xué)習(xí)熱情與參與意識(shí),運(yùn)用引導(dǎo)對(duì)比的手法,啟發(fā)引導(dǎo)學(xué)生進(jìn)行有目的的反復(fù)比較幾個(gè)概念的異同,使學(xué)生真正對(duì)函數(shù)的概念有很準(zhǔn)確的認(rèn)識(shí)。
三、教學(xué)方法和學(xué)法
教學(xué)方法:講授為主,學(xué)生自主預(yù)習(xí)為輔。
依據(jù)是:因?yàn)橐孕碌挠^點(diǎn)認(rèn)識(shí)函數(shù)概念及函數(shù)符號(hào)與運(yùn)用時(shí),更重要的是必須給學(xué)生講清楚概念及注意事項(xiàng),并通過師生的共同討論來幫助學(xué)生深刻理解,這樣才能使函數(shù)的概念及符號(hào)的運(yùn)用在學(xué)生的思想和知識(shí)結(jié)構(gòu)中打上深刻的烙印,為學(xué)生能學(xué)好后面的知識(shí)打下堅(jiān)實(shí)的基礎(chǔ)。
學(xué)法:四、教學(xué)程序
一、課程導(dǎo)入
通過舉以下一個(gè)通俗的例子引出通過某個(gè)對(duì)應(yīng)法則可以將兩個(gè)非空集合聯(lián)系在一起。
例1:把高一(12)班和高一(11)全體同學(xué)分別看成是兩個(gè)集合,問,通過“找好朋友”這個(gè)對(duì)應(yīng)法則是否能將這兩個(gè)集合的某些元素聯(lián)系在一起?
二、 新課講授:
。1) 接著再通過幻燈片給出六組學(xué)生熟悉的數(shù)集的對(duì)應(yīng)關(guān)系引導(dǎo)學(xué)生總結(jié)歸納它們的共同性質(zhì)(一對(duì)一,多對(duì)一),進(jìn)而給出映射的概念,表示符號(hào)f:A→B,及原像和像的定義。強(qiáng)調(diào)指出非空集合A到非空集合B的映射包括三部分即非空集合A、B和A到B的對(duì)應(yīng)法則 f。進(jìn)一步引導(dǎo)學(xué)生總結(jié)判斷一個(gè)從A到B的對(duì)應(yīng)是否為映射的關(guān)鍵是看A中的任意一個(gè)元素通過對(duì)應(yīng)法則f在B中是否有唯一確定的元素與之對(duì)應(yīng)。
。2)鞏固練習(xí)課本52頁第八題。
此練習(xí)能讓學(xué)生更深刻的認(rèn)識(shí)到映射可以“一對(duì)多,多對(duì)一”但不能是“一對(duì)多”。
例1。給出學(xué)生初中學(xué)過的函數(shù)的傳統(tǒng)定義和幾個(gè)簡(jiǎn)單的一次、二次函數(shù),通過畫圖表示這些函數(shù)的對(duì)應(yīng)關(guān)系,引導(dǎo)學(xué)生發(fā)現(xiàn)它們是特殊的映射進(jìn)而給出函數(shù)的近代定義(設(shè)A、B是兩個(gè)非空集合,如果按照某種對(duì)應(yīng)法則f,使得A中的任何一個(gè)元素在集合B中都有唯一的元素與之對(duì)應(yīng)則這樣的對(duì)應(yīng)叫做集合A到集合B的映射,它包括非空集合A和B以及從A到B的對(duì)應(yīng)法則f),并說明把函f:A→B記為y=f(x),其中自變量x的取值范圍A叫做函數(shù)的定義域,與x的值相對(duì)應(yīng)的y(或f(x))值叫做函數(shù)值,函數(shù)值的集合{f(x):x∈A}叫做函數(shù)的值域。
并把函數(shù)的近代定義與映射定義比較使學(xué)生認(rèn)識(shí)到函數(shù)與映射的區(qū)別與聯(lián)系。(函數(shù)是非空數(shù)集到非空數(shù)集的映射)。
再以讓學(xué)生判斷的方式給出以下關(guān)于函數(shù)近代定義的注意事項(xiàng):
2。函數(shù)是非空數(shù)集到非空數(shù)集的映射。
3。f表示對(duì)應(yīng)關(guān)系,在不同的函數(shù)中f的具體含義不一樣。
4。f(x)是一個(gè)符號(hào),不表示f與x的乘積,而表示x經(jīng)過f作用后的結(jié)果。
5。集合A中的數(shù)的任意性,集合B中數(shù)的唯一性。
6!癴:A→B”表示一個(gè)函數(shù)有三要素:法則f(是核心),定義域A(要優(yōu)先),值域C(上函數(shù)值的集合且C∈B)。
三、講解例題
例1。問y=1(x∈A)是不是函數(shù)?
解:y=1可以化為y=0*X+1
畫圖可以知道從x的取值范圍到y(tǒng)的取值范圍的對(duì)應(yīng)是“多對(duì)一”是從非空數(shù)集到非空數(shù)集的映射,所以它是函數(shù)。
[注]:引導(dǎo)學(xué)生從集合,映射的觀點(diǎn)認(rèn)識(shí)函數(shù)的定義。
四、課時(shí)小結(jié):
1。映射的定義。
2。函數(shù)的近代定義。
3。函數(shù)的三要素及符號(hào)的正確理解和應(yīng)用。
4。函數(shù)近代定義的五大注意點(diǎn)。
五、課后作業(yè)及板書設(shè)計(jì)
書本P51 習(xí)題2。1的1、2寫在書上3、4、5上交。
預(yù)習(xí)函數(shù)三要素的定義域,并能求簡(jiǎn)單函數(shù)的定義域。
函數(shù)(一)
一、映射:2。函數(shù)近代定義:例題練習(xí)
二、函數(shù)的定義[注]1—5
1。函數(shù)傳統(tǒng)定義三、作業(yè):
函數(shù)概念教案5
一、教材分析
本節(jié)課選自《普通高中課程標(biāo)準(zhǔn)數(shù)學(xué)教科書-必修1》(人教A版)《1.2.1 函數(shù)的概念》共3課時(shí),本節(jié)課是第1課時(shí)。
托馬斯說:“函數(shù)概念是近代數(shù)學(xué)思想之花”。 生活中的許多現(xiàn)象如物體運(yùn)動(dòng),氣溫升降,投資理財(cái)?shù)榷伎梢杂煤瘮?shù)的模型來刻畫,是我們更好地了解自己、認(rèn)識(shí)世界和預(yù)測(cè)未來的重要工具。
函數(shù)是數(shù)學(xué)的重要的基礎(chǔ)概念之一,是高等數(shù)學(xué)重多學(xué)科的基礎(chǔ)概念和重要的研究對(duì)象。同時(shí)函數(shù)也是物理學(xué)等其他學(xué)科的重要基礎(chǔ)知識(shí)和研究工具,教學(xué)內(nèi)容中蘊(yùn)涵著極其豐富的辯證思想。函數(shù)的的重要性正如*所說:“數(shù)學(xué)中的轉(zhuǎn)折點(diǎn)是笛卡爾的變數(shù),有了變數(shù),運(yùn)動(dòng)就進(jìn)入了數(shù)學(xué);有了變數(shù),辯證法就進(jìn)入了數(shù)學(xué)”。
二、學(xué)生學(xué)習(xí)情況分析
函數(shù)是中學(xué)數(shù)學(xué)的主體內(nèi)容,學(xué)生在中學(xué)階段對(duì)函數(shù)的認(rèn)識(shí)分三個(gè)階段:(一)初中從運(yùn)動(dòng)變化的角度來刻畫函數(shù),初步認(rèn)識(shí)正比例、反比例、一次和二次函數(shù);(二)高中用集合與對(duì)應(yīng)的觀點(diǎn)來刻畫函數(shù),研究函數(shù)的性質(zhì),學(xué)習(xí)典型的對(duì)、指、冪和三解函數(shù);(三)高中用導(dǎo)數(shù)工具研究函數(shù)的單調(diào)性和最值。
1.有利條件
現(xiàn)代教育心理學(xué)的研究認(rèn)為,有效的概念教學(xué)是建立在學(xué)生已有知識(shí)結(jié)構(gòu)的基礎(chǔ)上的,因此教師在設(shè)計(jì)教學(xué)的過程中必須注意在學(xué)生已有知識(shí)結(jié)構(gòu)中尋找新概念的固著點(diǎn),引導(dǎo)學(xué)生通過同化或順應(yīng),掌握新概念,進(jìn)而完善知識(shí)結(jié)構(gòu)。
初中用運(yùn)動(dòng)變化的觀點(diǎn)對(duì)函數(shù)進(jìn)行定義的,它反映了歷史上人們對(duì)它的一種認(rèn)識(shí),而且這個(gè)定義較為直觀,易于接受,因此按照由淺入深、力求符合學(xué)生認(rèn)知規(guī)律的內(nèi)容編排原則,函數(shù)概念在初中介紹到這個(gè)程度是合適的。也為我們用集合與對(duì)應(yīng)的觀點(diǎn)研究函數(shù)打下了一定的基礎(chǔ)。
2.不利條件
用集合與對(duì)應(yīng)的觀點(diǎn)來定義函數(shù),形式和內(nèi)容上都是比較抽象的,這對(duì)學(xué)生的理解能力是一個(gè)挑戰(zhàn),是本節(jié)課教學(xué)的一個(gè)不利條件。
三、教學(xué)目標(biāo)分析
課標(biāo)要求:通過豐富實(shí)例,進(jìn)一步體會(huì)函數(shù)是描述變量之間的依賴關(guān)系的重要數(shù)學(xué)模型,在此基礎(chǔ)上學(xué)習(xí)用集合與對(duì)應(yīng)的語言來刻畫函數(shù),體會(huì)對(duì)應(yīng)關(guān)系在刻畫函數(shù)概念中的作用;了解構(gòu)成函數(shù)的要素,會(huì)求一些簡(jiǎn)單函數(shù)的定義域和值域.
1.知識(shí)與能力目標(biāo):
⑴能從集合與對(duì)應(yīng)的角度理解函數(shù)的概念,更要理解函數(shù)的本質(zhì)屬性;
⑵理解函數(shù)的三要素的含義及其相互關(guān)系;
、菚(huì)求簡(jiǎn)單函數(shù)的定義域和值域
2.過程與方法目標(biāo):
、磐ㄟ^豐富實(shí)例,使學(xué)生建立起函數(shù)概念的背景,體會(huì)函數(shù)是描述變量之間依賴關(guān)系的數(shù)學(xué)模型;
、圃诤瘮(shù)實(shí)例中,通過對(duì)關(guān)鍵詞的強(qiáng)調(diào)和引導(dǎo)使學(xué)發(fā)現(xiàn)它們的共同特征,在此基礎(chǔ)上再用集合與對(duì)應(yīng)的語言來刻畫函數(shù),體會(huì)對(duì)應(yīng)關(guān)系在刻畫函數(shù)概念中的作用.
3.情感、態(tài)度與價(jià)值觀目標(biāo):
感受生活中的數(shù)學(xué),感悟事物之間聯(lián)系與變化的辯證唯物**觀點(diǎn)。
四、教學(xué)重點(diǎn)、難點(diǎn)分析
1.教學(xué)重點(diǎn):對(duì)函數(shù)概念的理解,用集合與對(duì)應(yīng)的語言來刻畫函數(shù);
重點(diǎn)依據(jù):初中是從變量的角度來定義函數(shù),高中是用集合與對(duì)應(yīng)的語言來刻畫函數(shù)。二者反映的本質(zhì)是一致的,即“函數(shù)是一種對(duì)應(yīng)關(guān)系”。 但是,初中定義并未完全揭示出函數(shù)概念的本質(zhì),對(duì)y?1這樣的函數(shù)用運(yùn)動(dòng)變化的觀點(diǎn)也很難解釋。在以函數(shù)為重要內(nèi)容的高中階段,課本應(yīng)將函數(shù)定義為兩個(gè)數(shù)集之間的一種對(duì)應(yīng)關(guān)系,按照這種觀點(diǎn),使我們對(duì)函數(shù)概念有了更深一層的認(rèn)識(shí),也很容易說明y?1這函數(shù)表達(dá)式。因此,分析兩種函數(shù)概念的關(guān)系,讓學(xué)生融會(huì)貫通地理解函數(shù)的概念應(yīng)為本節(jié)課的重點(diǎn)。
突出重點(diǎn):重點(diǎn)的突出依賴于對(duì)函數(shù)概念本質(zhì)屬性的把握,使學(xué)生通過表面的語言描述抓住概念的精髓。
2.教學(xué)難點(diǎn):第一:從實(shí)際問題中提煉出抽象的概念;第二:符號(hào)“y=f(x)”的含義的理解.
難點(diǎn)依據(jù):數(shù)學(xué)語言的抽象概括難度較大,對(duì)符號(hào)y=f(x)的理解會(huì)受到以前知識(shí)的負(fù)遷移。
突破難點(diǎn):難點(diǎn)的突破要依托豐富的實(shí)例,從集合與對(duì)應(yīng)的角度恰當(dāng)?shù)匾龑?dǎo),而對(duì)抽象符號(hào)的理解則要結(jié)合函數(shù)的三要素和小例子進(jìn)行說明。
五、教法與學(xué)法分析
1.教法分析
本節(jié)課我主要采用教師導(dǎo)學(xué)法、知識(shí)遷移法和知識(shí)對(duì)比法,從學(xué)生熟悉的豐富實(shí)例出發(fā),關(guān)注學(xué)生的原有的知識(shí)基礎(chǔ),注重概念的形成過程,從初中的函數(shù)概念自然過度到函數(shù)的近代定我。
2.學(xué)法分析
在教學(xué)過程中我注意在教學(xué)中引導(dǎo)學(xué)生用模型法分析函數(shù)問題、通過自主學(xué)習(xí)法總結(jié)“區(qū)間”的知識(shí)。
函數(shù)概念教案6
教學(xué)目標(biāo):
1、進(jìn)一步理解的概念,能從簡(jiǎn)單的實(shí)際事例中,抽象出關(guān)系,列出解析式;
2、使學(xué)生分清常量與變量,并能確定自變量的取值范圍。
3、會(huì)求值,并體會(huì)自變量與值間的對(duì)應(yīng)關(guān)系。
4、使學(xué)生掌握解析式為只含有一個(gè)自變量的簡(jiǎn)單的整式、分式、二次根式的的自變量的取值范圍的求法。
5、通過的教學(xué)使學(xué)生體會(huì)到事物是相互聯(lián)系的。是有規(guī)律地運(yùn)動(dòng)變化著的。
教學(xué)重點(diǎn):了解的意義,會(huì)求自變量的取值范圍及求值。
教學(xué)難點(diǎn):概念的抽象性。
教學(xué)過程:
。ㄒ唬┮胄抡n:
上一節(jié)課我們講了的概念:一般地,設(shè)在一個(gè)變化過程中有兩個(gè)變量x、y,如果對(duì)于x的每一個(gè)值,y都有唯一的值與它對(duì)應(yīng),那么就說x是自變量,y是x的。
生活中有很多實(shí)例反映了關(guān)系,你能舉出一個(gè),并指出式中的自變量與嗎?
1、學(xué)校計(jì)劃**一次春游,學(xué)生每人交30元,求總金額y(元)與學(xué)生數(shù)n(個(gè))的關(guān)系。
2、為迎接新年,班委會(huì)計(jì)劃購(gòu)買100元的小禮物送給同學(xué),求所能購(gòu)買的總數(shù)n(個(gè))與單價(jià)(a)元的關(guān)系。
解:1、y=30n
y是,n是自變量
2、 ,n是,a是自變量。
(二)講授新課
剛才所舉例子中的,都是利用數(shù)學(xué)式子即解析式表示的。這種用數(shù)學(xué)式子表示時(shí),要考慮自變量的取值必須使解析式有意義。如第一題中的學(xué)生數(shù)n必須是正整數(shù)。
例1、求下列中自變量x的取值范圍.
(1) (2)
。3) (4)
。5) (6)
分析:在(1)、(2)中,x取任意實(shí)數(shù), 與 都有意義。
。3)小題的 是一個(gè)分式,分式成立的條件是分母不為0。這道題的分母是 ,因此要求 。
同理(4)小題的 也是分式,分式成立的條件是分母不為0,這道題的分母是 ,因此要求 且 。
第(5)小題, 是二次根式,二次根式成立的條件是被開方數(shù)大于、等于零。 的被開方數(shù)是 .
同理,第(6)小題 也是二次根式, 是被開方數(shù)。
解:(1)全體實(shí)數(shù)
(2)全體實(shí)數(shù)
。3)
(4) 且
。5)
(6)
小結(jié):從上面的例題中可以看出的解析式是整數(shù)時(shí),自變量可取全體實(shí)數(shù);的解析式是分式時(shí),自變量的取值應(yīng)使分母不為零;的解析式是二次根式時(shí),自變量的取值應(yīng)使被開方數(shù)大于、等于零。
注意:有些同學(xué)沒有真正理解解析式是分式時(shí),自變量的取值應(yīng)使分母不為零,片面地認(rèn)為,凡是分母,只要 即可。教師可將解題步驟設(shè)計(jì)得細(xì)致一些。先**本題的分母是什么?然后再要求分式的分母不為零。求出使成立的自變量的取值范圍。二次根式的問題也與次類似。
但象第(4)小題,有些同學(xué)會(huì)犯這樣的錯(cuò)誤,將答案寫成 或 。在解一元二次方程時(shí),方程的兩根用“或者”聯(lián)接,在這里就直接拿過來用。限于初中學(xué)生的接受能力,教師可聯(lián)系日常生活講清“且”與“或”。說明這里 與 是并且的關(guān)系。即2與—1這兩個(gè)值x都不能取。
函數(shù)概念教案7
教學(xué)目標(biāo):
1.進(jìn)一步理解指數(shù)函數(shù)的性質(zhì);
2.能較熟練地運(yùn)用指數(shù)函數(shù)的性質(zhì)解決指數(shù)函數(shù)的*移問題;
教學(xué)重點(diǎn):
指數(shù)函數(shù)的性質(zhì)的應(yīng)用;
教學(xué)難點(diǎn):
指數(shù)函數(shù)圖象的*移變換.
教學(xué)過程:
一、情境創(chuàng)設(shè)
1.復(fù)習(xí)指數(shù)函數(shù)的概念、圖象和性質(zhì)
練習(xí):函數(shù)=ax(a>0且a≠1)的定義域是_____,值域是______,函數(shù)圖象所過的定點(diǎn)坐標(biāo)為 .若a>1,則當(dāng)x>0時(shí), 1;而當(dāng)x<0時(shí), 1.若0<a<1,則當(dāng)x>0時(shí), 1;而當(dāng)x<0時(shí), 1.
2.情境問題:指數(shù)函數(shù)的性質(zhì)除了比較大小,還有什么作用呢?我們知道對(duì)任意的a>0且a≠1,函數(shù)=ax的圖象恒過(0,1),那么對(duì)任意的a>0且a≠1,函數(shù)=a2x1的圖象恒過哪一個(gè)定點(diǎn)呢?
二、數(shù)學(xué)應(yīng)用與建構(gòu)
例1 解不等式:
。1) ;(2) ;
(3) ;(4) .
小結(jié):解關(guān)于指數(shù)的不等式與判斷幾個(gè)指數(shù)值的大小一樣,是指數(shù)性質(zhì)的運(yùn)用,關(guān)鍵是底數(shù)所在的范圍.
例2 說明下列函數(shù)的圖象與指數(shù)函數(shù)=2x的圖象的關(guān)系,并畫出它們的示意圖:
。1) ; (2) ;(3) ;(4) .
小結(jié):指數(shù)函數(shù)的*移規(guī)律:=f(x)左右*移 =f(x+)(當(dāng)>0時(shí),向左*移,反之向右*移),上下*移 =f(x)+h(當(dāng)h>0時(shí),向上*移,反之向下*移).
練習(xí):
。1)將函數(shù)f (x)=3x的圖象向右*移3個(gè)單位,再向下*移2個(gè)單位,可以得到函數(shù) 的圖象.
。2)將函數(shù)f (x)=3x的圖象向右*移2個(gè)單位,再向上*移3個(gè)單位,可以得到函數(shù) 的圖象.
。3)將函數(shù) 圖象先向左*移2個(gè)單位,再向下*移1個(gè)單位所得函數(shù)的解析式是 .
。4)對(duì)任意的a>0且a≠1,函數(shù)=a2x1的圖象恒過的定點(diǎn)的坐標(biāo)是 .函數(shù)=a2x-1的圖象恒過的定點(diǎn)的坐標(biāo)是 .
小結(jié):指數(shù)函數(shù)的定點(diǎn)往往是解決問題的突破口!定點(diǎn)與單調(diào)性相結(jié)合,就可以構(gòu)造出函數(shù)的簡(jiǎn)圖,從而許多問題就可以找到解決的突破口.
。5)如何利用函數(shù)f(x)=2x的圖象,作出函數(shù)=2x和=2|x2|的圖象?
(6)如何利用函數(shù)f(x)=2x的圖象,作出函數(shù)=|2x-1|的圖象?
小結(jié):函數(shù)圖象的對(duì)稱變換規(guī)律.
例3 已知函數(shù)=f(x)是定義在R上的奇函數(shù),且x<0時(shí),f(x)=1-2x,試畫出此函數(shù)的圖象.
例4 求函數(shù) 的最小值以及取得最小值時(shí)的x值.
小結(jié):復(fù)合函數(shù)常常需要換元來求解其最值.
練習(xí):
(1)函數(shù)=ax在[0,1]上的最大值與最小值的和為3,則a等于 ;
(2)函數(shù)=2x的值域?yàn)?;
。3)設(shè)a>0且a≠1,如果=a2x+2ax-1在[-1,1]上的最大值為14,求a的值;
。4)當(dāng)x>0時(shí),函數(shù)f(x)=(a2-1)x的值總大于1,求實(shí)數(shù)a的取值范圍.
三、小結(jié)
1.指數(shù)函數(shù)的性質(zhì)及應(yīng)用;
2.指數(shù)型函數(shù)的定點(diǎn)問題;
3.指數(shù)型函數(shù)的草圖及其變換規(guī)律.
四、作業(yè):
課本P71-11,12,15題.
五、課后探究
。1)函數(shù)f(x)的定義域?yàn)?0,1),則函數(shù) 的定義域?yàn)?.
。2)對(duì)于任意的x1,x2R ,若函數(shù)f(x)=2x ,試比較 的大。
函數(shù)概念教案8
1 單位圓與正弦函數(shù)
在初中,我們學(xué)習(xí)了銳角α的正弦函數(shù)值:sinα= ,如圖:sinA= ,由于a是直角邊,c是斜邊,所sinA∈(0,1)。由于我們通常都是將角放到*面直角坐標(biāo)系中,我們來看看會(huì)發(fā)生什么?
在直角坐標(biāo)系中,(如圖所示),設(shè)角α(α∈(0, ))的終邊與半經(jīng)為r的圓交于點(diǎn)P(a,b),則角α的正弦值是:sinα= .根據(jù)相似三角形的知識(shí)可知,對(duì)于確定的角α, 都不會(huì)隨圓的半經(jīng)的改變而改變。為簡(jiǎn)單起見,令r=1(即為單位圓),那么sinα=b,也就是說,若角α的終邊與單位圓相交于P,則點(diǎn)P的縱坐標(biāo)b就是角α的正弦函數(shù)。
直角三角形顯然不能包含所有的角,那么,我們可以仿照銳角正弦函數(shù)的定義.你認(rèn)為該如何定義任意角的正弦函數(shù)?
一般地,在直角坐標(biāo)系中(如上圖),對(duì)任意角α,它的終邊與單位圓交于點(diǎn)P(a,b),我們可以唯一確定點(diǎn)P(a,b)的縱坐標(biāo)b,所以P點(diǎn)的縱坐標(biāo)b是角α的函數(shù),稱為正弦函數(shù),記作=sinα(α∈R)。通常我們用x,分別表示自變量與因變量,將正弦函數(shù)表示為=sinx.正弦函數(shù)值有時(shí)也叫正弦值.
請(qǐng)同學(xué)們畫圖,并利用正弦函數(shù)的定義比較說明: 角與 角的終邊與單位圓的交點(diǎn)的縱坐標(biāo)有什么關(guān)系?它們的正弦值有什么關(guān)系? 角和 角呢?- 角和 角呢?- 角和- 角呢?
sin =sin = sin =-sin =-
Sin(- )=sin( )= sin(- )=sin(- )=
通過上述問題的討論,容易得到:終邊相同的角的正弦函數(shù)值相等,即
sin(2π+α)=sinα (∈Z),說明對(duì)于任意一個(gè)角α,每增加2π的整數(shù)倍,其正弦函數(shù)值不變。所以,正弦函數(shù)是隨角的變化而周期性變化的,正弦函數(shù)是周期函數(shù),2π(∈Z,≠0)為正弦函數(shù)的周期。
2π是正弦函數(shù)的正周期中最小的一個(gè),稱為最小正周期。一般地,對(duì)于周期函數(shù)f(x),如果它所有的周期中存在一個(gè)最小的正數(shù),那么這個(gè)最小的正數(shù)就叫作f(x)的最小正周期。
【鞏固深化,發(fā)展思維】
1.若點(diǎn)P(—3,)是α終邊上一點(diǎn),且sinα=— ,求值.
2.若角α的頂點(diǎn)為坐標(biāo)原點(diǎn),始邊與x軸正半軸重合,終邊在函數(shù)=—3x (x≤0)的圖像上,則sinα= 。
。ㄈ、歸納整理,整體認(rèn)識(shí):
。1)請(qǐng)學(xué)生回顧本節(jié)課所學(xué)過的知識(shí)內(nèi)容有哪些?所涉及到的主要數(shù)學(xué)思想方法有那些?
。2)在本節(jié)課的學(xué)習(xí)過程中,還有那些不太明白的地方,請(qǐng)向老師提出。
。3)你在這節(jié)課中的表現(xiàn)怎樣?你的體會(huì)是什么?
(四)、作業(yè)布置:1、已知銳角 終邊上一點(diǎn) (3,4),求 角的正弦值。
2、已知 是角 終邊上一點(diǎn),求 的值。
3、已知角 的終邊落在直線 上,求 的值。
4、若實(shí)數(shù) , 滿足 ,求: 的值。
函數(shù)概念教案9
學(xué)習(xí)目標(biāo):1、掌握EXCEL中公式的輸入方法與格式 。
2、記憶EXCEL中常用的函數(shù),并能熟練使用這些函數(shù)進(jìn)行計(jì)算。
一、知識(shí)準(zhǔn)備
1、 EXCEL中數(shù)據(jù)的輸入技巧,特別是數(shù)據(jù)智能填充的使用
2、 EXCEL中單元格地址編號(hào)的規(guī)定
二、學(xué)中悟
1、對(duì)照下面的表格來填充
。1)D5單元格中的內(nèi)容為
(2)計(jì)算“王芳”的總分公式為
。3)計(jì)算她*均分的公式為
。4)思考其他人的成績(jī)能否利用公式的復(fù)制來得到?
。5)若要利用函數(shù)來計(jì)算“王芳”的總分和*均成績(jī),那么所用到的函數(shù)分別為 。
計(jì)算總分的公式變?yōu)椋?計(jì)算*均分的公式為。 思考:比較兩種方法進(jìn)行計(jì)算的特點(diǎn),思考EXCEL中提供的函數(shù)對(duì)我們計(jì)算有什么好處,我們又得到了什么啟示?
反思研究
三、 學(xué)后練
1、下面的表格是圓的參數(shù),根據(jù)已經(jīng)提供的參數(shù)利用公式計(jì)算出未知參數(shù)
1) 基礎(chǔ)練習(xí)
。1)半徑為3.5的圓的直徑的計(jì)算公式為
。2)半徑為3.5的圓的面積的計(jì)算公式為
2) 提高訓(xùn)練
。1)能否利用公式的復(fù)制來計(jì)算出下面兩個(gè)圓的直徑?若不能說明原因,并提出如何修改公式后才能利用公式復(fù)制來計(jì)算其他圓的直徑?
。2)能否利用公式的復(fù)制來計(jì)算出下面兩個(gè)圓的面積?若不能說明原因,并提出如何修改公式后才能利用公式復(fù)制來計(jì)算其他圓的面積?
2、根據(jù)下面的表格,在B5單元格中利用RIGHT函數(shù)去B4單元格中字符串的右3位。利用INT函數(shù)求出門牌號(hào)為1的電費(fèi)的整數(shù)值,結(jié)果置于C5單元格中。
思考實(shí)踐提高:根據(jù)上面兩個(gè)問題,我們得到了那些提示?并且將上面的公式與函數(shù)進(jìn)行上機(jī)實(shí)實(shí)踐。
四、 作業(yè)布置
。1)上機(jī)完成成績(jī)統(tǒng)計(jì)表中總分和*均分的計(jì)算;
。2)上機(jī)完成圓的直徑和面積的計(jì)算
(3)練習(xí)冊(cè)
函數(shù)概念教案10
。1)——定義、圖象、性質(zhì)目標(biāo):
1.了解對(duì)數(shù)函數(shù)的定義、圖象及其性質(zhì)以及它與指數(shù)函數(shù)間的關(guān)系,會(huì)求對(duì)數(shù)函數(shù)的定義域。
2.培養(yǎng)培養(yǎng)觀察分析、抽象概括能力、歸納總結(jié)能力、邏輯推理能力、化歸轉(zhuǎn)化能力;
3.培養(yǎng)堅(jiān)忍不拔的意志,培養(yǎng)發(fā)現(xiàn)問題和提出問題的意識(shí)、善于**思考的習(xí)慣,體會(huì)事物之間普遍聯(lián)系的辯證觀點(diǎn)。
重點(diǎn):對(duì)數(shù)函數(shù)的定義、圖象、性質(zhì)
難點(diǎn):對(duì)數(shù)函數(shù)與指數(shù)函數(shù)間的關(guān)系
過程:
一、復(fù)習(xí)引入:實(shí)例引入:回憶學(xué)習(xí)指數(shù)函數(shù)時(shí)用的實(shí)例我們研究指數(shù)函數(shù)時(shí),曾經(jīng)討論過細(xì)胞**問題,某種細(xì)胞**時(shí),得到的細(xì)胞的個(gè)數(shù) 是**次數(shù) 的函數(shù),這個(gè)函數(shù)可以用指數(shù)函數(shù) = 表示,F(xiàn)在,我們來研究相反的.問題,如果要求這種細(xì)胞經(jīng)過多少次**,大約可以得到1萬個(gè),10萬個(gè)……細(xì)胞,那么,**次數(shù) 就是要得到的細(xì)胞個(gè)數(shù) 的函數(shù)。根據(jù)對(duì)數(shù)的定義,這個(gè)函數(shù)可以寫成對(duì)數(shù)的形式就是 如果用 表示自變量, 表示函數(shù),這個(gè)函數(shù)就是 由反函數(shù)概念可知, 與指數(shù)函數(shù) 互為反函數(shù)這一節(jié),我們來研究指數(shù)函數(shù)的反函數(shù)對(duì)數(shù)函數(shù)
二、新課
1.對(duì)數(shù)函數(shù)的定義:函數(shù) 叫做對(duì)數(shù)函數(shù);它是指數(shù)函數(shù) 的反函數(shù)。對(duì)數(shù)函數(shù) 的定義域?yàn)?,值域?yàn)?。
2.對(duì)數(shù)函數(shù)的圖象由于對(duì)數(shù)函數(shù) 與指數(shù)函數(shù) 互為反函數(shù),所以 的圖象與 的圖象關(guān)于直線 對(duì)稱。因此,我們只要畫出和 的圖象關(guān)于 對(duì)稱的曲線,就可以得到 的圖象,然后根據(jù)圖象特征得出對(duì)數(shù)函數(shù)的性質(zhì)。
活動(dòng)設(shè)計(jì):由學(xué)生任意取底數(shù)作圖,觀察分析討論,教師引導(dǎo)、整理 3.對(duì)數(shù)函數(shù)的性質(zhì)由對(duì)數(shù)函數(shù)的圖象,觀察得出對(duì)數(shù)函數(shù)的性質(zhì)。見P87 表 圖象性質(zhì)定義域:(0,+∞)值域:R過點(diǎn)(1,0),即當(dāng) 時(shí), 時(shí) 時(shí) 時(shí) 時(shí) 在(0,+∞)上是增函數(shù)在(0,+∞)上是減函數(shù)活動(dòng)設(shè)計(jì):學(xué)生觀察、分析討論,教師引導(dǎo)、整理4.應(yīng)用例1.(課本第94頁)求下列函數(shù)的定義域:(1) ; (2) ; (3) 分析:此題主要利用對(duì)數(shù)函數(shù) 的定義域(0,+∞)求解。解:(1)由 >0得 ,∴函數(shù) 的定義域是 ;(2)由 得 ,∴函數(shù) 的定義域是 (3)由9- 得-3 ,∴函數(shù) 的定義域是 注:此題只是對(duì)數(shù)函數(shù)性質(zhì)的簡(jiǎn)單應(yīng)用,應(yīng)強(qiáng)調(diào)學(xué)生注意書寫格式。例2.求下列函數(shù)的反函數(shù)① ② 解:① ∴ ② ∴
三、小結(jié):對(duì)數(shù)函數(shù)定義、圖象、性質(zhì)四、作業(yè): 課本第95頁 練習(xí) 1,2 習(xí)題2.8 1,2
對(duì)數(shù)函數(shù)教案 (菁選3篇)(擴(kuò)展5)
——數(shù)學(xué)《二次函數(shù)》優(yōu)秀教案5篇
數(shù)學(xué)《二次函數(shù)》優(yōu)秀教案1
教學(xué)目標(biāo)
。ㄒ唬┙虒W(xué)知識(shí)點(diǎn)
1、能夠利用二次函數(shù)的圖象求一元二次方程的近似根、
2、進(jìn)一步發(fā)展估算能力、
。ǘ┠芰τ(xùn)練要求
1、經(jīng)歷用圖象法求一元二次方程的近似根的過程,獲得用圖象法求方程近似根的體驗(yàn)、
2、利用圖象法求一元二次方程的近似根,重要的是讓學(xué)生懂得這種求解方程的思路,體驗(yàn)數(shù)形結(jié)合思想、
(三)情感與價(jià)值觀要求
通過利用二次函數(shù)的圖象估計(jì)一元二次方程的根,進(jìn)一步掌握二次函數(shù)圖象與x軸的交點(diǎn)坐標(biāo)和一元二次方程的根的關(guān)系,提高估算能力、
教學(xué)重點(diǎn)
1、經(jīng)歷探索二次函數(shù)與一元二次方程的關(guān)系的過程,體會(huì)方程與函數(shù)之間的聯(lián)系、
2、能夠利用二次函數(shù)的圖象求一元二次方程的近似根、
教學(xué)難點(diǎn)
利用二次函數(shù)的圖象求一元二次方程的近似根、
教學(xué)方法
學(xué)生合作交流學(xué)習(xí)法、
教具準(zhǔn)備
投影片三張
第一張:(記作§2、8、2A)
第二張:(記作§2、8、2B)
第三張:(記作§2、8、2C)
教學(xué)過程
、、創(chuàng)設(shè)問題情境,引入新課
[師]上節(jié)課我們學(xué)習(xí)了二次函數(shù)y=ax2+bx+c(a≠0)的圖象與x軸的交點(diǎn)坐標(biāo)和一元二次方程ax2+bx+c=0(a≠0)的根的關(guān)系,懂得了二次函數(shù)圖象與x軸交點(diǎn)的橫坐標(biāo),就是y=0時(shí)的一元二次方程的根,于是,我們?cè)诓唤夥匠痰那闆r下,只要知道二次函數(shù)與x軸交點(diǎn)的橫坐標(biāo)即可、但是在圖象上我們很難準(zhǔn)確地求出方程的解,所以要進(jìn)行估算、本節(jié)課我們將學(xué)習(xí)利用二次函數(shù)的圖象估計(jì)一元二次方程的根、
數(shù)學(xué)《二次函數(shù)》優(yōu)秀教案2
一、說課內(nèi)容:
蘇教版九年級(jí)數(shù)學(xué)下冊(cè)第六章第一節(jié)的二次函數(shù)的概念及相關(guān)習(xí)題
二、教材分析:
1、教材的地位和作用
這節(jié)課是在學(xué)生已經(jīng)學(xué)習(xí)了一次函數(shù)、正比例函數(shù)、反比例函數(shù)的基礎(chǔ)上,來學(xué)**次函數(shù)的概念。二次函數(shù)是初中階段研究的最后一個(gè)具體的函數(shù),也是最重要的,在歷年來的中考題中占有較大比例。同時(shí),二次函數(shù)和以前學(xué)過的一元二次方程、一元二次不等式有著密切的聯(lián)系。進(jìn)一步學(xué)**次函數(shù)將為它們的解法提供新的方法和途徑,并使學(xué)生更為深刻的理解“數(shù)形結(jié)合”的重要思想。而本節(jié)課的二次函數(shù)的概念是學(xué)**次函數(shù)的基礎(chǔ),是為后來學(xué)**次函數(shù)的圖象做鋪墊。所以這節(jié)課在整個(gè)教材中具有承上啟下的重要作用。
2、教學(xué)目標(biāo)和要求:
(1)知識(shí)與技能:使學(xué)生理解二次函數(shù)的概念,掌握根據(jù)實(shí)際問題列出二次函數(shù)關(guān)系式的方法,并了解如何根據(jù)實(shí)際問題確定自變量的取值范圍。
(2)過程與方法:復(fù)習(xí)舊知,通過實(shí)際問題的引入,經(jīng)歷二次函數(shù)概念的探索過程,提高學(xué)生解決問題的能力.
(3)情感、態(tài)度與價(jià)值觀:通過觀察、操作、交流歸納等數(shù)學(xué)活動(dòng)加深對(duì)二次函數(shù)概念的理解,發(fā)展學(xué)生的數(shù)學(xué)思維,增強(qiáng)學(xué)好數(shù)學(xué)的愿望與信心.
3、教學(xué)重點(diǎn):對(duì)二次函數(shù)概念的理解。
4、教學(xué)難點(diǎn):由實(shí)際問題確定函數(shù)解析式和確定自變量的取值范圍。
三、教法學(xué)法設(shè)計(jì):
1、從創(chuàng)設(shè)情境入手,通過知識(shí)再現(xiàn),孕伏教學(xué)過程
2、從學(xué)生活動(dòng)出發(fā),通過以舊引新,順勢(shì)教學(xué)過程
3、利用探索、研究**,通過思維深入,領(lǐng)悟教學(xué)過程
四、教學(xué)過程:
(一)復(fù)習(xí)**
1.什么叫函數(shù)?我們之前學(xué)過了那些函數(shù)?
(一次函數(shù),正比例函數(shù),反比例函數(shù))
2.它們的形式是怎樣的?
(y=kx+b,k≠0;y=kx ,k≠0;y= , k≠0)
3.一次函數(shù)(y=kx+b)的自變量是什么?函數(shù)是什么?常量是什么?為什么要有k≠0的條件? k值對(duì)函數(shù)性質(zhì)有什么影響?
【設(shè)計(jì)意圖】復(fù)習(xí)這些問題是為了幫助學(xué)生弄清自變量、函數(shù)、常量等概念,加深對(duì)函數(shù)定義的理解.強(qiáng)調(diào)k≠0的條件,以備與二次函數(shù)中的a進(jìn)行比較.
(二)引入新課
函數(shù)是研究?jī)蓚(gè)變量在某變化過程中的相互關(guān)系,我們已學(xué)過正比例函數(shù),反比例函數(shù)和一次函數(shù)?聪旅嫒齻(gè)例子中兩個(gè)變量之間存在怎樣的關(guān)系。(電腦演示)
例1、(1)圓的半徑是r(cm)時(shí),面積s (cm)與半徑之間的關(guān)系是什么?
解:s=πr(r>0)
例2、用周長(zhǎng)為20m的籬笆圍成矩形場(chǎng)地,場(chǎng)地面積y(m)與矩形一邊長(zhǎng)x(m)之間的關(guān)系是什么?
解: y=x(20/2-x)=x(10-x)=-x+10x (0
例3、設(shè)***一年定期儲(chǔ)蓄的年利率是x,一年到期后,銀行將本金和利息自動(dòng)按一年定期儲(chǔ)蓄轉(zhuǎn)存。如果存款額是100元,那么請(qǐng)問兩年后的本息和y(元)與x之間的關(guān)系是什么(不考慮利息稅)?
解: y=100(1+x)
=100(x+2x+1)
= 100x+200x+100(0
教師**:以上三個(gè)例子所列出的函數(shù)與一次函數(shù)有何相同點(diǎn)與不同點(diǎn)?
【設(shè)計(jì)意圖】通過具體事例,讓學(xué)生列出關(guān)系式,啟發(fā)學(xué)生觀察,思考,歸納出二次函數(shù)與一次函數(shù)的聯(lián)系: (1)函數(shù)解析式均為整式(這表明這種函數(shù)與一次函數(shù)有共同的特征)。(2)自變量的最高次數(shù)是2(這與一次函數(shù)不同)。
(三)講解新課
以上函數(shù)不同于我們所學(xué)過的一次函數(shù),正比例函數(shù),反比例函數(shù),我們就把這種函數(shù)稱為二次函數(shù)。
二次函數(shù)的定義:形如y=ax2+bx+c (a≠0,a, b, c為常數(shù)) 的函數(shù)叫做二次函數(shù)。
鞏固對(duì)二次函數(shù)概念的理解:
1、強(qiáng)調(diào)“形如”,即由形來定義函數(shù)名稱。二次函數(shù)即y 是關(guān)于x的二次多項(xiàng)式(關(guān)于的x代數(shù)式一定要是整式)。
2、在 y=ax2+bx+c 中自變量是x ,它的取值范圍是一切實(shí)數(shù)。但在實(shí)際問題中,自變量的取值范圍是使實(shí)際問題有意義的值。(如例1中要求r>0)
3、為什么二次函數(shù)定義中要求a≠0 ?
(若a=0,ax2+bx+c就不是關(guān)于x的二次多項(xiàng)式了)
4、在例3中,二次函數(shù)y=100x2+200x+100中, a=100, b=200, c=100.
5、b和c是否可以為零?
由例1可知,b和c均可為零.
若b=0,則y=ax2+c;
若c=0,則y=ax2+bx;
若b=c=0,則y=ax2.
注明:以上三種形式都是二次函數(shù)的特殊形式,而y=ax2+bx+c是二次函數(shù)的一般形式.
【設(shè)計(jì)意圖】這里強(qiáng)調(diào)對(duì)二次函數(shù)概念的理解,有助于學(xué)生更好地理解,掌握其特征,為接下來的判斷二次函數(shù)做好鋪墊。
判斷:下列函數(shù)中哪些是二次函數(shù)?哪些不是二次函數(shù)?若是二次函數(shù),指出a、b、c.
(1)y=3(x-1)+1 (2)
(3)s=3-2t (4)y=(x+3)- x
(5) s=10πr (6) y=2+2x
(8)y=x4+2x2+1(可指出y是關(guān)于x2的二次函數(shù))
【設(shè)計(jì)意圖】理論學(xué)習(xí)完二次函數(shù)的概念后,讓學(xué)生在實(shí)踐中感悟什么樣的函數(shù)是二次函數(shù),將理論知識(shí)應(yīng)用到實(shí)踐操作中。
(四)鞏固練習(xí)
1.已知一個(gè)直角三角形的兩條直角邊長(zhǎng)的和是10cm。
(1)當(dāng)它的一條直角邊的長(zhǎng)為4.5cm時(shí),求這個(gè)直角三角形的面積;
(2)設(shè)這個(gè)直角三角形的面積為Scm2,其中一條直角邊為xcm,求S關(guān)
于x的函數(shù)關(guān)系式。
【設(shè)計(jì)意圖】此題由具體數(shù)據(jù)逐步過渡到用字母表示關(guān)系式,讓學(xué)生經(jīng)歷由具體到抽象的過程,從而降低學(xué)生學(xué)習(xí)的難度。
2.已知正方體的棱長(zhǎng)為xcm,它的表面積為Scm2,體積為Vcm3。
(1)分別寫出S與x,V與x之間的函數(shù)關(guān)系式子;
(2)這兩個(gè)函數(shù)中,那個(gè)是x的二次函數(shù)?
【設(shè)計(jì)意圖】簡(jiǎn)單的實(shí)際問題,學(xué)生會(huì)很容易列出函數(shù)關(guān)系式,也很容易分辨出哪個(gè)是二次函數(shù)。通過簡(jiǎn)單題目的練習(xí),讓學(xué)生體驗(yàn)到成功的歡愉,激發(fā)他們學(xué)習(xí)數(shù)學(xué)的興趣,建立學(xué)好數(shù)學(xué)的信心。
3.設(shè)圓柱的高為h(cm)是常量,底面半徑為rcm,底面周長(zhǎng)為Ccm,圓柱的體積為Vcm3
(1)分別寫出C關(guān)于r;V關(guān)于r的函數(shù)關(guān)系式;
(2)兩個(gè)函數(shù)中,都是二次函數(shù)嗎?
【設(shè)計(jì)意圖】此題要求學(xué)生熟記圓柱體積和底面周長(zhǎng)公式,在這兒相當(dāng)于做了一次復(fù)習(xí),并與今天所學(xué)知識(shí)聯(lián)系起來。
4. 籬笆墻長(zhǎng)30m,靠墻圍成一個(gè)矩形花壇,寫出花壇面積y(m2)與長(zhǎng)x之間的函數(shù)關(guān)系式,并指出自變量的取值范圍.
【設(shè)計(jì)意圖】此題較前面幾題稍微復(fù)雜些,旨在讓學(xué)生能夠開動(dòng)腦筋,積極思考,讓學(xué)生能夠“跳一跳,夠得到”。
(五)拓展延伸
1. 已知二次函數(shù)y=ax2+bx+c,當(dāng) x=0時(shí),y=0;x=1時(shí),y=2;x= -1時(shí),y=1.求a、b、c,并寫出函數(shù)解析式.
【設(shè)計(jì)意圖】在此稍微滲透簡(jiǎn)單的用待定系數(shù)法求二次函數(shù)解析式的問題,為下節(jié)課的教學(xué)做個(gè)鋪墊。
2.確定下列函數(shù)中k的值
(1)如果函數(shù)y= xk^2-3k+2 +kx+1是二次函數(shù),則k的值一定是______
(2)如果函數(shù)y=(k-3)xk^2-3k+2+kx+1是二次函數(shù),則k的值一定是______
【設(shè)計(jì)意圖】此題著重復(fù)**次函數(shù)的特征:自變量的最高次數(shù)為2次,且二次項(xiàng)系數(shù)不為0.
(六) 小結(jié)思考:
本節(jié)課你有哪些收獲?還有什么不清楚的地方?
【設(shè)計(jì)意圖】讓學(xué)生來談本節(jié)課的收獲,培養(yǎng)學(xué)生自我檢查、自我小結(jié)的良好習(xí)慣,將知識(shí)進(jìn)行整理并系統(tǒng)化。而且由此可了解到學(xué)生還有哪些不清楚的地方,以便在今后的教學(xué)中補(bǔ)充。
(七) 作業(yè)布置:
必做題:
1. 正方形的邊長(zhǎng)為4,如果邊長(zhǎng)增加x,則面積增加y,求y關(guān)于x 的函數(shù)關(guān)系式。這個(gè)函數(shù)是二次函數(shù)嗎?
2. 在長(zhǎng)20cm,寬15cm的矩形木板的四角上各鋸掉一個(gè)邊長(zhǎng)為xcm的正方形,寫出余下木板的面積y(cm2)與正方形邊長(zhǎng)x(cm)之間的函數(shù)關(guān)系,并注明自變量的取值范圍。
選做題:
1.已知函數(shù) 是二次函數(shù),求m的值。
2.試在*面直角坐標(biāo)系畫出二次函數(shù)y=x2和y=-x2圖象
【設(shè)計(jì)意圖】作業(yè)中分為必做題與選做題,實(shí)施分層教學(xué),體現(xiàn)新課標(biāo)人人學(xué)有價(jià)值的數(shù)學(xué),不同的人得到不同的發(fā)展。另外補(bǔ)充第4題,旨在激發(fā)學(xué)生繼續(xù)學(xué)**次函數(shù)圖象的興趣。
五、教學(xué)設(shè)計(jì)思考
以實(shí)現(xiàn)教學(xué)目標(biāo)為前提
以現(xiàn)代教育理論為依據(jù)
以現(xiàn)代信息技術(shù)為**
貫穿一個(gè)原則——以學(xué)生為主體的原則
突出一個(gè)特色——充分鼓勵(lì)表揚(yáng)的特色
滲透一個(gè)意識(shí)——應(yīng)用數(shù)學(xué)的意識(shí)
數(shù)學(xué)《二次函數(shù)》優(yōu)秀教案3
教學(xué)目標(biāo)
。ㄒ唬┙虒W(xué)知識(shí)點(diǎn)
1、經(jīng)歷探索二次函數(shù)與一元二次方程的關(guān)系的過程,體會(huì)方程與函數(shù)之間的聯(lián)系。
2、理解二次函數(shù)與x軸交點(diǎn)的個(gè)數(shù)與一元二次方程的根的個(gè)數(shù)之間的關(guān)系,理解何時(shí)方程有兩個(gè)不等的實(shí)根、兩個(gè)相等的實(shí)數(shù)和沒有實(shí)根。
3、理解一元二次方程的根就是二次函數(shù)與y=h(h是實(shí)數(shù))交點(diǎn)的橫坐標(biāo)。
。ǘ┠芰τ(xùn)練要求
1、經(jīng)歷探索二次函數(shù)與一元二次方程的關(guān)系的過程,培養(yǎng)學(xué)生的探索能力和創(chuàng)新精神。
2、通過觀察二次函數(shù)圖象與x軸的交點(diǎn)個(gè)數(shù),討論一元二次方程的根的情況,進(jìn)一步培養(yǎng)學(xué)生的數(shù)形結(jié)合思想。
3、通過學(xué)生共同觀察和討論,培養(yǎng)大家的合作交流意識(shí)。
。ㄈ┣楦信c價(jià)值觀要求
1、經(jīng)歷探索二次函數(shù)與一元二次方程的關(guān)系的過程,體驗(yàn)數(shù)學(xué)活動(dòng)充滿著探索與創(chuàng)造,感受數(shù)學(xué)的嚴(yán)謹(jǐn)性以及數(shù)學(xué)結(jié)論的確定性。
2、具有初步的創(chuàng)新精神和實(shí)踐能力。
教學(xué)重點(diǎn)
1、體會(huì)方程與函數(shù)之間的聯(lián)系。
2、理解何時(shí)方程有兩個(gè)不等的實(shí)根,兩個(gè)相等的實(shí)數(shù)和沒有實(shí)根。
3、理解一元二次方程的根就是二次函數(shù)與y=h(h是實(shí)數(shù))交點(diǎn)的橫坐標(biāo)。
教學(xué)難點(diǎn)
1、探索方程與函數(shù)之間的聯(lián)系的過程。
2、理解二次函數(shù)與x軸交點(diǎn)的個(gè)數(shù)與一元二次方程的根的個(gè)數(shù)之間的關(guān)系。
教學(xué)方法
討論探索法。
教具準(zhǔn)備
投影片二張
第一張:(記作§2.8.1A)
第二張:(記作§2.8.1B)
教學(xué)過程
、瘛(chuàng)設(shè)問題情境,引入新課
[師]我們學(xué)習(xí)了一元一次方程kx+b=0(k≠0)和一次函數(shù)y=kx+b(k≠0)后,討論了它們之間的關(guān)系。當(dāng)一次函數(shù)中的函數(shù)值y=0時(shí),一次函數(shù)y=kx+b就轉(zhuǎn)化成了一元一次方程kx+b=0,且一次函數(shù)y=kx+b(k≠0)的圖象與x軸交點(diǎn)的橫坐標(biāo)即為一元一次方程kx+b=0的解。
數(shù)學(xué)《二次函數(shù)》優(yōu)秀教案4
一、重視每一堂復(fù)習(xí)課
數(shù)學(xué)復(fù)習(xí)課不比新課,講的都是已經(jīng)學(xué)過的東西,我想許多老師都和我有相同的體會(huì),那就是復(fù)習(xí)課比新課難上。
二、重視每一個(gè)學(xué)生
學(xué)生是課堂的主體,離開學(xué)生談?wù)n堂效率肯定是行不通的。而我校的學(xué)生數(shù)學(xué)基礎(chǔ)大多不太好,上課的積極性普遍不高,對(duì)學(xué)習(xí)的熱情也不是很高,這些都是十分現(xiàn)實(shí)的事情,既然現(xiàn)狀無法更改,那么我們只能去適應(yīng)它,這就對(duì)我們老師提出了更高的要求
三、做好課外與學(xué)生的溝通
學(xué)生對(duì)你教學(xué)理念認(rèn)同和教學(xué)常規(guī)配合與否,功夫往往在課外,只有在課外與學(xué)生多進(jìn)行交流和溝通,和學(xué)生建立起比較深厚的師生情誼,那么最頑皮的學(xué)生也能在他喜歡的老師的課堂上聽進(jìn)一點(diǎn)
四、要多了解學(xué)生
你對(duì)學(xué)生的了解更有助于你的教學(xué),特別是在初三總復(fù)習(xí)間斷,及時(shí)了解每個(gè)學(xué)生的復(fù)習(xí)情況有助于你更好的制定復(fù)習(xí)計(jì)劃和備下一堂課,也有利于你更好的改進(jìn)教學(xué)方法。
二次函數(shù)教學(xué)方法一
一、立足教材,夯實(shí)雙基:
進(jìn)行中考數(shù)學(xué)復(fù)習(xí)的時(shí)候,要立足于教材,重新梳理教材中的典例和習(xí)題,就顯得尤為重要。并且要讓學(xué)生在掌握的基礎(chǔ)上,能夠做到知識(shí)的延伸和遷移,讓解題方法、技巧在學(xué)生遇到相似問題時(shí),能在頭腦中再現(xiàn)
二、立足課堂,提高效率:
做到教師入題海,學(xué)生出題海。教師應(yīng)多做題、多研究近幾年的中考試題,并根據(jù)本班學(xué)生的實(shí)際情況,從眾多復(fù)習(xí)資料中,選擇適合本班學(xué)生的最佳練習(xí),也可通過對(duì)題目的重組。
三、教師在設(shè)計(jì)教學(xué)目標(biāo)時(shí),要做到胸中有書,目中有人
讓每一節(jié)課都給學(xué)生留有時(shí)間,讓他們有**思考、合作探究交流的過程,最大限度的調(diào)動(dòng)學(xué)生的參與度,激發(fā)他們的學(xué)習(xí)興趣,達(dá)到最佳的復(fù)習(xí)效果。
四、激發(fā)興趣,提高質(zhì)量:
興趣是學(xué)習(xí)最好的動(dòng)力,在上復(fù)習(xí)課時(shí)尤為重要。因此,我們?cè)谑谡n的過程中,在關(guān)注知識(shí)復(fù)習(xí)的同時(shí),也要關(guān)注學(xué)生的學(xué)習(xí)欲望和學(xué)習(xí)效果,要讓學(xué)生在學(xué)習(xí)的過程中體驗(yàn)成功的快感。這樣他們才會(huì)更有興趣的學(xué)習(xí)下去。
二次函數(shù)教學(xué)方法二
1、質(zhì)疑問難是學(xué)生自主學(xué)習(xí)的重要表現(xiàn),優(yōu)化課堂結(jié)構(gòu),激活學(xué)生的主體意識(shí),必須鼓勵(lì)學(xué)生質(zhì)疑問難。教師要?jiǎng)?chuàng)造**融合的課堂氣氛,允許學(xué)生隨時(shí)“插嘴”、**、爭(zhēng)辯,甚至提出與教師不同的看法。
2、二次函數(shù)是初中階段繼一次函數(shù)、反比例函數(shù)之后,學(xué)生要學(xué)習(xí)的最后一類重要的代數(shù)函數(shù),它也是描述現(xiàn)實(shí)世界變量之間關(guān)系的重要的數(shù)學(xué)模型。
3、生有疑而問、質(zhì)疑問難,是用心思考、自主學(xué)習(xí)、主動(dòng)探究的可貴表現(xiàn),理應(yīng)得到老師的熱情鼓勵(lì)和贊揚(yáng),F(xiàn)在對(duì)學(xué)生的隨時(shí)“插嘴”,提出的各種疑難問題,應(yīng)抱歡迎、鼓勵(lì)的態(tài)度給與肯定,并做出正確的解釋。
4、初中階段主要研究二次函數(shù)的概念、圖像和性質(zhì),用二次函數(shù)的觀點(diǎn)審視一元二次方程,用二次函數(shù)的相關(guān)知識(shí)分析和解決簡(jiǎn)單的實(shí)際問題。
二次函數(shù)教學(xué)方法三
1、教學(xué)案例、教學(xué)設(shè)計(jì)、教學(xué)實(shí)錄、教學(xué)敘事的區(qū)別:是事先設(shè)想的教育教學(xué)思路,是對(duì)準(zhǔn)備實(shí)施的教育措施的簡(jiǎn)要說明,反映的是教學(xué)預(yù)期;而教學(xué)案例則是對(duì)已發(fā)生的教育教學(xué)過程的描述,反映的是教學(xué)結(jié)果。
2、教學(xué)案例與教學(xué)實(shí)錄:它們同樣是對(duì)教育教學(xué)情境的描述,但教學(xué)實(shí)錄是有聞必錄(事實(shí)判斷),而教學(xué)案例是根據(jù)目的和功能選擇內(nèi)容,并且必須有作者的反思(價(jià)值判斷)。
3、教學(xué)案例與敘事研究的聯(lián)系與區(qū)別:從“情景故事”的意義上講,教育敘事研究報(bào)告也是一種“教育案例”,但“教學(xué)案例”特指有典型意義的、包含疑難問題的、多角度描述的經(jīng)過研究并加上作者反思(或自我點(diǎn)評(píng))的教學(xué)敘事;
4、教學(xué)案例必須從教學(xué)任務(wù)分析的目標(biāo)出發(fā),有意識(shí)地選擇有關(guān)信息,必須事先進(jìn)行實(shí)地作業(yè),因此日常教育敘事日志可以作為寫作教學(xué)案例的素材積累。
數(shù)學(xué)《二次函數(shù)》優(yōu)秀教案5
一、教材分析
本節(jié)課在討論了二次函數(shù)y=a(x-h)2+k(a≠0)的圖像的基礎(chǔ)上對(duì)二次函數(shù)y=ax2+bx+c(a≠0)的圖像和性質(zhì)進(jìn)行研究。主要的研究方法是通過配方將y=ax2+bx+c(a≠0)向y=a(x-h)2+k(a≠0)轉(zhuǎn)化,體會(huì)知識(shí)之間在內(nèi)的聯(lián)系。在具體探究過程中,從特殊的例子出發(fā),分別研究a>0和a<0的情況,再?gòu)奶厥獾揭话愕贸鰕=ax2+bx+c(a≠0)的圖像和性質(zhì)。
二、學(xué)情分析
本節(jié)課前,學(xué)生已經(jīng)探究過二次函數(shù)y=a(x-h)2+k(a≠0)的圖像和性質(zhì),面對(duì)一般式向頂點(diǎn)式的轉(zhuǎn)化,讓學(xué)上體會(huì)化歸思想,分析這兩個(gè)式子的區(qū)別。
三、教學(xué)目標(biāo)
(一)知識(shí)與能力目標(biāo)
1. 經(jīng)歷求二次函數(shù)y=ax2+bx+c(a≠0)的對(duì)稱軸和頂點(diǎn)坐標(biāo)的過程;
2. 能通過配方把二次函數(shù)y=ax2+bx+c(a≠0)化成y=a(x-h)2+k(a≠0)的形式,從而確定開口方向、頂點(diǎn)坐標(biāo)和對(duì)稱軸。
(二)過程與方法目標(biāo)
通過思考、探究、化歸、嘗試等過程,讓學(xué)生從中體會(huì)探索新知的方式和方法。
(三)情感態(tài)度與價(jià)值觀目標(biāo)
1. 經(jīng)歷求二次函數(shù)y=ax2+bx+c(a≠0)的對(duì)稱軸和頂點(diǎn)坐標(biāo)的過程,滲透配方和化歸的思想方法;
2. 在運(yùn)用二次函數(shù)的知識(shí)解決問題的過程中,親自體會(huì)到學(xué)習(xí)數(shù)學(xué)知識(shí)的價(jià)值,從而提高學(xué)生學(xué)習(xí)數(shù)學(xué)知識(shí)的興趣并獲得成功的體驗(yàn)。
四、教學(xué)重難點(diǎn)
1.重點(diǎn)
通過配方求二次函數(shù)y=ax2+bx+c(a≠0)的對(duì)稱軸和頂點(diǎn)坐標(biāo)。
2.難點(diǎn)
二次函數(shù)y=ax2+bx+c(a≠0)的圖像的性質(zhì)。
五、教學(xué)策略與 設(shè)計(jì)說明
本節(jié)課主要滲透類比、化歸數(shù)學(xué)思想。對(duì)比一般式和頂點(diǎn)式的區(qū)別和聯(lián)系;體會(huì)式子的恒等變形的重要意義。
六、教學(xué)過程
教學(xué)環(huán)節(jié)(注明每個(gè)環(huán)節(jié)預(yù)設(shè)的時(shí)間)
(一)提出問題(約1分鐘)
教師活動(dòng):形如y=a(x-h)2+k(a≠0)的拋物線的對(duì)稱軸、頂點(diǎn)坐標(biāo)分別是什么?那么對(duì)于一般式y(tǒng)=ax2+bx+c(a≠0)頂點(diǎn)坐標(biāo)和對(duì)稱軸又怎樣呢?圖像又如何?
學(xué)生活動(dòng):學(xué)生快速回答出第一個(gè)問題,第二個(gè)問題引起學(xué)生的思考。
目的:由舊有的知識(shí)引出新內(nèi)容,體現(xiàn)復(fù)習(xí)與求新的關(guān)系,暗示了探究新知的方法。
(二)探究新知
1.探索二次函數(shù)y=0.5x2-6x+21的函數(shù)圖像(約2分鐘)
教師活動(dòng):教師提出思考問題。這里教師適當(dāng)引導(dǎo)能否將次一般式化成頂點(diǎn)式?然后結(jié)合頂點(diǎn)式確定其頂點(diǎn)和對(duì)稱軸。
學(xué)生活動(dòng):討論解決
目的:激發(fā)興趣
2.配方求解頂點(diǎn)坐標(biāo)和對(duì)稱軸(約5分鐘)
教師活動(dòng):教師板書配方過程:y=0.5x2-6x+21=0.5(x2-12x+42)
=0.5(x2-12x+36-36+42)
=0.5(x-6)2+3
教師還應(yīng)強(qiáng)調(diào)這里的配方法比一元二次方程的配方稍復(fù)雜,注意其區(qū)別與聯(lián)系。
學(xué)生活動(dòng):學(xué)生關(guān)注黑板上的講解內(nèi)容,注意自己容易出錯(cuò)的地方。
目的:即加深對(duì)本課知識(shí)的認(rèn)知有增強(qiáng)了配方法的應(yīng)用意識(shí)。
3.畫出該二次函數(shù)圖像(約5分鐘)
教師活動(dòng):提出問題。這里要引導(dǎo)學(xué)生是否可以通過y=0.5x2的圖像的*移來說明該函數(shù)圖像。關(guān)注學(xué)生在連線時(shí)是否用*滑的曲線,對(duì)稱性如何。
學(xué)生活動(dòng):學(xué)生通過列表、描點(diǎn)、連線結(jié)合二次函數(shù)圖像的對(duì)稱性完成作圖。
目的:強(qiáng)化二次函數(shù)圖像的畫法。即確定開口方向、頂點(diǎn)坐標(biāo)、對(duì)稱軸結(jié)合圖像的對(duì)稱性完成圖像。
4.探究y=-2x2-4x+1的函數(shù)圖像特點(diǎn)(約3分鐘)
教師活動(dòng):教師提出問題。找學(xué)生板演拋物線的開口方向、頂點(diǎn)和對(duì)稱軸內(nèi)容,教師巡視,學(xué)生互相查找問題。這里教師要關(guān)注學(xué)生是否真正掌握了配方法的步驟及含義。
學(xué)生活動(dòng):學(xué)生**完成。
目的:研究a<0時(shí)一個(gè)具體函數(shù)的圖像和性質(zhì),體會(huì)研究二次函數(shù)圖像的一般方法。
5.結(jié)合該二次函數(shù)圖像小結(jié)y=ax2+bx+c(a≠0)的性質(zhì)(約14分鐘)
教師活動(dòng):教師將y=ax2+bx+c(a≠0)通過配方化成y=a(x-h)2+k(a≠0)的形式。確定函數(shù)頂點(diǎn)、對(duì)稱軸和開口方向并著重討論分析a>0和a<0時(shí),y隨x的變化情況、拋物線與y的交點(diǎn)以及函數(shù)的最值如何。
學(xué)生活動(dòng):仔細(xì)理解記憶一般式中的頂點(diǎn)坐標(biāo)、對(duì)稱軸和開口方向;理解y隨x的變化情況。
目的:體會(huì)由特殊到一般的過程。體驗(yàn)、觀察、分析二次函數(shù)圖像和性質(zhì)。
6.簡(jiǎn)單應(yīng)用(約11分鐘)
教師活動(dòng):教師板書:已知拋物線y=0.5x2-2x+1.5,求這條拋物線的開口方向、頂點(diǎn)坐標(biāo)、對(duì)稱軸圖像和y軸的交點(diǎn)坐標(biāo)并確定y隨x的變化情況和最值。
教師巡視,個(gè)別指導(dǎo)。教師在這里可以用兩種方法解決該問題:i)用配方法如例題所示;ii)我們可以先求出對(duì)稱軸,然后將對(duì)稱軸代入到原函數(shù)解析式求其函數(shù)值,此時(shí)對(duì)稱軸數(shù)值和所求出的函數(shù)值即為頂點(diǎn)的橫、縱坐標(biāo)。
學(xué)生活動(dòng):學(xué)生先**完成,約3分鐘后討論交流,最后形成結(jié)論。
目的:鞏固新知
課堂小結(jié)(2分鐘)
1. 本節(jié)課研究的內(nèi)容是什么?研究的過程中你遇到了哪些知識(shí)上的問題?
2. 你對(duì)本節(jié)課有什么感想或疑惑?
布置作業(yè)(1分鐘)
1. 教科書習(xí)題22.1第6,7兩題;
2. 《課時(shí)練》本節(jié)內(nèi)容。
板書設(shè)計(jì)
提出問題 畫函數(shù)圖像 學(xué)生板演練習(xí)
例題配方過程
到頂點(diǎn)式的配方過程 一般式相關(guān)知識(shí)點(diǎn)
教學(xué)反思
在教學(xué)中我采用了合作、體驗(yàn)、探究的教學(xué)方式。在我引導(dǎo)下,學(xué)生通過觀察、歸納出二次函數(shù)y=ax2+bx+c的圖像性質(zhì),體驗(yàn)知識(shí)的形成過程,力求體現(xiàn)“主體參與、自主探索、合作交流、指導(dǎo)引探”的教學(xué)理念。整個(gè)教學(xué)過程主要分為三部分:第一部分是知識(shí)回顧;第二部分是學(xué)習(xí)探究;第三部分是課堂練習(xí)。從當(dāng)堂的反饋和第二天的作業(yè)情況來看,絕大多數(shù)同學(xué)能掌握本節(jié)課的知識(shí),達(dá)到了學(xué)習(xí)目標(biāo)中的要求。
我認(rèn)為優(yōu)點(diǎn)主要包括:
1.教態(tài)自然,能注重身體語言的作用,聲音洪亮,**具有啟發(fā)性。
2.教學(xué)目標(biāo)明確、思路清晰,注重學(xué)生的自我學(xué)習(xí)培養(yǎng)和小組合作學(xué)習(xí)的落實(shí)。
3.板書字體端正,格式清晰明了,突出重點(diǎn)、難點(diǎn)。
4.我覺的精彩之處是求一般式的頂點(diǎn)坐標(biāo)時(shí)的第二種方法,給學(xué)生減輕了一些負(fù)擔(dān),不一定非得配方或運(yùn)用公式求頂點(diǎn)坐標(biāo)。
所以我對(duì)于本節(jié)課基本上是滿意的。但也有很多需要改進(jìn)的地方主要表現(xiàn)在:
1.知識(shí)的生成過程體現(xiàn)的不夠具體,有些急于求成。在學(xué)生活動(dòng)中自己引導(dǎo)的較少,時(shí)間較短,討論的不夠積極;
2.一般式圖像的性質(zhì)自己總結(jié)的較多,學(xué)生發(fā)言較少,有些知識(shí)完全可以有學(xué)生提出并生成,這樣的結(jié)論學(xué)生理解起來會(huì)更深刻;
3.學(xué)生在回答問題的過程中我老是打斷學(xué)生。**一個(gè)問題,學(xué)生說了一半,我就迫不及待地引導(dǎo)他說出下一半,有的時(shí)候是我替學(xué)生說了,這樣學(xué)生的思路就被我打斷了。破壞學(xué)生的思路是我們教師最大的毛病,此頑疾不除,教學(xué)質(zhì)量難以保證。
4.合作學(xué)習(xí)的有效性不夠。正所謂:“水本無波,相蕩乃成漣漪;石本無火,相擊而生靈光!敝挥姓嬲炎灾鳌⑻骄、合作的學(xué)習(xí)方式落到實(shí)處,才能培養(yǎng)學(xué)生成為既有創(chuàng)新能力,又能適應(yīng)現(xiàn)代社會(huì)發(fā)展的公民。
重新去解讀這節(jié)課的話我會(huì)注意以上一些問題,再多一些時(shí)間給學(xué)生,讓他們?nèi)ンw驗(yàn),探究而后形成自己的知識(shí)。
對(duì)數(shù)函數(shù)教案 (菁選3篇)(擴(kuò)展6)
——高一數(shù)學(xué)教案《函數(shù)概念》3篇
高一數(shù)學(xué)教案《函數(shù)概念》1
教材分析:函數(shù)是描述客觀世界變化規(guī)律的重要數(shù)學(xué)模型.高中階段不僅把函數(shù)看成變量之間的依賴關(guān)系,同時(shí)還用集合與對(duì)應(yīng)的語言刻畫函數(shù),高中階段更注重函數(shù)模型化的思想.
教學(xué)目的:
(1)通過豐富實(shí)例,進(jìn)一步體會(huì)函數(shù)是描述變量之間的依賴關(guān)系的重要數(shù)學(xué)模型,在此基礎(chǔ)上學(xué)習(xí)用集合與對(duì)應(yīng)的語言來刻畫函數(shù),體會(huì)對(duì)應(yīng)關(guān)系在刻畫函數(shù)概念中的作用;
(2)了解構(gòu)成函數(shù)的要素;
。3)會(huì)求一些簡(jiǎn)單函數(shù)的定義域和值域;
(4)能夠正確使用“區(qū)間”的符號(hào)表示某些函數(shù)的定義域;
教學(xué)重點(diǎn):理解函數(shù)的模型化思想,用合與對(duì)應(yīng)的語言來刻畫函數(shù);
教學(xué)難點(diǎn):符號(hào)“y=f(x)”的含義,函數(shù)定義域和值域的區(qū)間表示;
教學(xué)過程:
一、引入課題
1.復(fù)習(xí)初中所學(xué)函數(shù)的概念,強(qiáng)調(diào)函數(shù)的模型化思想;
2.閱讀課本引例,體會(huì)函數(shù)是描述客觀事物變化規(guī)律的數(shù)學(xué)模型的思想:
。1)炮彈的射高與時(shí)間的變化關(guān)系問題;
。2)南極臭氧空洞面積與時(shí)間的變化關(guān)系問題;
。3)“八五”計(jì)劃以來我國(guó)城鎮(zhèn)居民的恩格爾系數(shù)與時(shí)間的變化關(guān)系問題
備用實(shí)例:
我國(guó)xxxx年4月份非典疫情統(tǒng)計(jì):
日期222324252627282930
新增確診病例數(shù)1061058910311312698152101
3.引導(dǎo)學(xué)生應(yīng)用集合與對(duì)應(yīng)的語言描述各個(gè)實(shí)例中兩個(gè)變量間的依賴關(guān)系;
4.根據(jù)初中所學(xué)函數(shù)的概念,判斷各個(gè)實(shí)例中的兩個(gè)變量間的關(guān)系是否是函數(shù)關(guān)系.
二、新課教學(xué)
(一)函數(shù)的'有關(guān)概念
1.函數(shù)的概念:
設(shè)A、B是非空的數(shù)集,如果按照某個(gè)確定的對(duì)應(yīng)關(guān)系f,使對(duì)于集合A中的任意一個(gè)數(shù)x,在集合B中都有唯一確定的數(shù)f(x)和它對(duì)應(yīng),那么就稱f:A→B為從集合A到集合B的一個(gè)函數(shù)(function).
記作:y=f(x),x∈A.
其中,x叫做自變量,x的取值范圍A叫做函數(shù)的定義域(domain);與x的值相對(duì)應(yīng)的y值叫做函數(shù)值,函數(shù)值的集合{f(x)|x∈A}叫做函數(shù)的值域(range).
注意:
○1“y=f(x)”是函數(shù)符號(hào),可以用任意的字母表示,如“y=g(x)”;
○2函數(shù)符號(hào)“y=f(x)”中的f(x)表示與x對(duì)應(yīng)的函數(shù)值,一個(gè)數(shù),而不是f乘x.
2.構(gòu)成函數(shù)的三要素:
定義域、對(duì)應(yīng)關(guān)系和值域
3.區(qū)間的概念
。1)區(qū)間的分類:開區(qū)間、閉區(qū)間、半開半閉區(qū)間;
。2)無窮區(qū)間;
。3)區(qū)間的數(shù)軸表示.
4.一次函數(shù)、二次函數(shù)、反比例函數(shù)的定義域和值域討論
。ㄓ蓪W(xué)生完成,師生共同分析講評(píng))
。ǘ┑湫屠}
1.求函數(shù)定義域
課本P20例1
解:(略)
說明:
○1函數(shù)的定義域通常由問題的實(shí)際背景確定,如果課前三個(gè)實(shí)例;
○2如果只給出解析式y(tǒng)=f(x),而沒有指明它的定義域,則函數(shù)的定義域即是指能使這個(gè)式子有意義的實(shí)數(shù)的集合;
○3函數(shù)的定義域、值域要寫成集合或區(qū)間的形式.
鞏固練習(xí):課本P22第1題
2.判斷兩個(gè)函數(shù)是否為同一函數(shù)
課本P21例2
解:(略)
說明:
○1構(gòu)成函數(shù)三個(gè)要素是定義域、對(duì)應(yīng)關(guān)系和值域.由于值域是由定義域和對(duì)應(yīng)關(guān)系決定的,所以,如果兩個(gè)函數(shù)的定義域和對(duì)應(yīng)關(guān)系完全一致,即稱這兩個(gè)函數(shù)相等(或?yàn)橥缓瘮?shù))
○2兩個(gè)函數(shù)相等當(dāng)且僅當(dāng)它們的定義域和對(duì)應(yīng)關(guān)系完全一致,而與表示自變量和函數(shù)值的字母無關(guān)。
鞏固練習(xí):
○1課本P22第2題
○2判斷下列函數(shù)f(x)與g(x)是否表示同一個(gè)函數(shù),說明理由?
(1)f(x)=(x-1)0;g(x)=1
。2)f(x)=x;g(x)=
(3)f(x)=x2;f(x)=(x+1)2
(4)f(x)=|x|;g(x)=
。ㄈ┱n堂練習(xí)
求下列函數(shù)的定義域
(1)
。2)
(3)
。4)
。5)
。6)
三、歸納小結(jié),強(qiáng)化思想
從具體實(shí)例引入了函數(shù)的的概念,用集合與對(duì)應(yīng)的語言描述了函數(shù)的定義及其相關(guān)概念,介紹了求函數(shù)定義域和判斷同一函數(shù)的典型題目,引入了區(qū)間的概念來表示集合。
四、作業(yè)布置
課本P28習(xí)題1.2(A組)第1—7題(B組)第1題
高一數(shù)學(xué)教案《函數(shù)概念》2
一、教材分析
1、 教材的地位和作用:
函數(shù)是數(shù)學(xué)中最主要的概念之一,而函數(shù)概念貫穿在中學(xué)數(shù)學(xué)的始終,概念是數(shù)學(xué)的基礎(chǔ),概念性強(qiáng)是函數(shù)理論的一個(gè)顯著特點(diǎn),只有對(duì)概念作到深刻理解,才能正確靈活地加以應(yīng)用。本課中對(duì)函數(shù)概念理解的程度會(huì)直接影響其它知識(shí)的學(xué)習(xí),所以函數(shù)的第一課時(shí)非常的重要。
2、 教學(xué)目標(biāo)及確立的依據(jù):
教學(xué)目標(biāo):
(1) 教學(xué)知識(shí)目標(biāo):了解對(duì)應(yīng)和映射概念、理解函數(shù)的近代定義、函數(shù)三要素,以及對(duì)函數(shù)抽象符號(hào)的理解。
(2) 能力訓(xùn)練目標(biāo):通過教學(xué)培養(yǎng)的抽象概括能力、邏輯思維能力。
(3) 德育滲透目標(biāo):使懂得一切事物都是在不斷變化、相互聯(lián)系和相互制約的辯證唯物**觀點(diǎn)。
教學(xué)目標(biāo)確立的依據(jù):
函數(shù)是數(shù)學(xué)中最主要的概念之一,而函數(shù)概念貫穿整個(gè)中學(xué)數(shù)學(xué),如:數(shù)、式、方程、函數(shù)、排列組合、數(shù)列極限等都是以函數(shù)為中心的代數(shù)。加強(qiáng)函數(shù)教學(xué)可幫助學(xué)好其他的內(nèi)容。而掌握好函數(shù)的概念是學(xué)好函數(shù)的基石。
3、教學(xué)重點(diǎn)難點(diǎn)及確立的依據(jù):
教學(xué)重點(diǎn):映射的概念,函數(shù)的近代概念、函數(shù)的三要素及函數(shù)符號(hào)的理解。
教學(xué)難點(diǎn):映射的概念,函數(shù)近代概念,及函數(shù)符號(hào)的理解。
重點(diǎn)難點(diǎn)確立的依據(jù):
映射的概念和函數(shù)的近代定義抽象性都比較強(qiáng),要求學(xué)生的理性認(rèn)識(shí)的能力也比較高,對(duì)于剛剛升入高中不久的來說不易理解。而且由于函數(shù)在高考中可以以低、中、高擋題出現(xiàn),所以**來有一種“函數(shù)熱”的趨勢(shì),所以本節(jié)的重點(diǎn)難點(diǎn)必然落在映射的概念和函數(shù)的近代定義及函數(shù)符號(hào)的理解與運(yùn)用上。
二、教材的處理:
將映射的定義及類比手法的運(yùn)用作為本課突破難點(diǎn)的關(guān)鍵。 函數(shù)的定義,是以集合、映射的觀點(diǎn)給出,這與初中教材變量值與對(duì)應(yīng)觀點(diǎn)給出不一樣了,從而給本身就很抽象的函數(shù)概念的理解帶來更大的困難。為解決這難點(diǎn),主要是從實(shí)際出發(fā)調(diào)動(dòng)學(xué)生的學(xué)習(xí)熱情與參與意識(shí),運(yùn)用引導(dǎo)對(duì)比的手法,啟發(fā)引導(dǎo)學(xué)生進(jìn)行有目的的反復(fù)比較幾個(gè)概念的異同,使真正對(duì)函數(shù)的概念有很準(zhǔn)確的認(rèn)識(shí)。
三、教學(xué)方法和學(xué)法
教學(xué)方法:講授為主,自主預(yù)習(xí)為輔。
依據(jù)是:因?yàn)橐孕碌挠^點(diǎn)認(rèn)識(shí)函數(shù)概念及函數(shù)符號(hào)與運(yùn)用時(shí),更重要的是必須給學(xué)生講清楚概念及注意事項(xiàng),并通過師生的共同討論來幫助學(xué)生深刻理解,這樣才能使函數(shù)的概念及符號(hào)的運(yùn)用在學(xué)生的思想和知識(shí)結(jié)構(gòu)中打上深刻的烙印,為能學(xué)好后面的知識(shí)打下堅(jiān)實(shí)的基礎(chǔ)。
學(xué)法:四、教學(xué)程序
一、課程導(dǎo)入
通過舉以下一個(gè)通俗的例子引出通過某個(gè)對(duì)應(yīng)法則可以將兩個(gè)非空集合聯(lián)系在一起。
例1:把高一(12)班和高一(11)全體同學(xué)分別看成是兩個(gè)集合,問,通過“找好朋友”這個(gè)對(duì)應(yīng)法則是否能將這兩個(gè)集合的某些元素聯(lián)系在一起?
二. 新課講授:
(1) 接著再通過幻燈片給出六組學(xué)生熟悉的數(shù)集的對(duì)應(yīng)關(guān)系引導(dǎo)學(xué)生歸納它們的共同性質(zhì)(一對(duì)一,多對(duì)一),進(jìn)而給出映射的概念,表示符號(hào)f:a→b,及原像和像的定義。強(qiáng)調(diào)指出非空集合a到非空集合b的映射包括三部分即非空集合a、b和a到b的對(duì)應(yīng)法則 f。進(jìn)一步引導(dǎo)判斷一個(gè)從a到b的對(duì)應(yīng)是否為映射的關(guān)鍵是看a中的任意一個(gè)元素通過對(duì)應(yīng)法則f在b中是否有唯一確定的元素與之對(duì)應(yīng)。
(2)鞏固練習(xí)課本52頁第八題。
此練習(xí)能讓更深刻的認(rèn)識(shí)到映射可以“一對(duì)多,多對(duì)一”但不能是“一對(duì)多”。
例1. 給出學(xué)生初中學(xué)過的函數(shù)的傳統(tǒng)定義和幾個(gè)簡(jiǎn)單的一次、二次函數(shù),通過畫圖表示這些函數(shù)的對(duì)應(yīng)關(guān)系,引導(dǎo)發(fā)現(xiàn)它們是特殊的映射進(jìn)而給出函數(shù)的近代定義(設(shè)a、b是兩個(gè)非空集合,如果按照某種對(duì)應(yīng)法則f,使得a中的任何一個(gè)元素在集合b中都有唯一的元素與之對(duì)應(yīng)則這樣的對(duì)應(yīng)叫做集合a到集合b的映射,它包括非空集合a和b以及從a到b的對(duì)應(yīng)法則f),并說明把函f:a→b記為y=f(x),其中自變量x的取值范圍a叫做函數(shù)的定義域,與x的值相對(duì)應(yīng)的y(或f(x))值叫做函數(shù)值,函數(shù)值的集合{ f(x):x∈a}叫做函數(shù)的值域。
并把函數(shù)的近代定義與映射定義比較使認(rèn)識(shí)到函數(shù)與映射的區(qū)別與聯(lián)系。(函數(shù)是非空數(shù)集到非空數(shù)集的映射)。
再以讓判斷的方式給出以下關(guān)于函數(shù)近代定義的注意事項(xiàng):2. 函數(shù)是非空數(shù)集到非空數(shù)集的映射。
3. f表示對(duì)應(yīng)關(guān)系,在不同的函數(shù)中f的具體含義不一樣。
4. f(x)是一個(gè)符號(hào),不表示f與x的乘積,而表示x經(jīng)過f作用后的結(jié)果。
5. 集合a中的數(shù)的任意性,集合b中數(shù)的唯一性。
66. “f:a→b”表示一個(gè)函數(shù)有三要素:法則f(是核心),定義域a(要優(yōu)先),值域c(上函數(shù)值的集合且c∈b)。
三.講解例題
例1.問y=1(x∈a)是不是函數(shù)?
解:y=1可以化為y=0*x+1
畫圖可以知道從x的取值范圍到y(tǒng)的取值范圍的對(duì)應(yīng)是“多對(duì)一”是從非空數(shù)集到非空數(shù)集的映射,所以它是函數(shù)。
[注]:引導(dǎo)從集合,映射的觀點(diǎn)認(rèn)識(shí)函數(shù)的定義。
四.課時(shí)小結(jié):
1. 映射的定義。
2. 函數(shù)的近代定義。
3. 函數(shù)的三要素及符號(hào)的正確理解和應(yīng)用。
4. 函數(shù)近代定義的五大注意點(diǎn)。
五.課后作業(yè)及板書設(shè)計(jì)
書本p51 習(xí)題2.1的1、2寫在書上3、4、5上交。
預(yù)習(xí)函數(shù)三要素的定義域,并能求簡(jiǎn)單函數(shù)的定義域。
函數(shù)(一)
一、映射:
2.函數(shù)近代定義: 例題練習(xí)
二、函數(shù)的定義 [注]1—5
1.函數(shù)傳統(tǒng)定義
三、作業(yè):
高一數(shù)學(xué)教案《函數(shù)概念》3
教材分析:函數(shù)是描述客觀世界變化規(guī)律的重要數(shù)學(xué)模型.高中階段不僅把函數(shù)看成變量之間的依賴關(guān)系,同時(shí)還用集合與對(duì)應(yīng)的語言刻畫函數(shù),高中階段更注重函數(shù)模型化的思想.
教學(xué)目的:
。1)通過豐富實(shí)例,進(jìn)一步體會(huì)函數(shù)是描述變量之間的依賴關(guān)系的重要數(shù)學(xué)模型,在此基礎(chǔ)上學(xué)習(xí)用集合與對(duì)應(yīng)的語言來刻畫函數(shù),體會(huì)對(duì)應(yīng)關(guān)系在刻畫函數(shù)概念中的作用;
。2)了解構(gòu)成函數(shù)的要素;
(3)會(huì)求一些簡(jiǎn)單函數(shù)的定義域和值域;
(4)能夠正確使用“區(qū)間”的符號(hào)表示某些函數(shù)的定義域;
教學(xué)重點(diǎn):理解函數(shù)的模型化思想,用合與對(duì)應(yīng)的語言來刻畫函數(shù);
教學(xué)難點(diǎn):符號(hào)“y=f(x)”的含義,函數(shù)定義域和值域的區(qū)間表示;
教學(xué)過程:
一、引入課題
1.復(fù)習(xí)初中所學(xué)函數(shù)的概念,強(qiáng)調(diào)函數(shù)的模型化思想;
2.閱讀課本引例,體會(huì)函數(shù)是描述客觀事物變化規(guī)律的數(shù)學(xué)模型的思想:
。1)炮彈的射高與時(shí)間的變化關(guān)系問題;
。2)南極臭氧空洞面積與時(shí)間的變化關(guān)系問題;
(3)“八五”計(jì)劃以來我國(guó)城鎮(zhèn)居民的恩格爾系數(shù)與時(shí)間的變化關(guān)系問題
備用實(shí)例:
我國(guó)xxxx年4月份非典疫情統(tǒng)計(jì):
日期222324252627282930
新增確診病例數(shù)1061058910311312698152101
3.引導(dǎo)學(xué)生應(yīng)用集合與對(duì)應(yīng)的語言描述各個(gè)實(shí)例中兩個(gè)變量間的依賴關(guān)系;
4.根據(jù)初中所學(xué)函數(shù)的概念,判斷各個(gè)實(shí)例中的兩個(gè)變量間的關(guān)系是否是函數(shù)關(guān)系.
二、新課教學(xué)
。ㄒ唬┖瘮(shù)的有關(guān)概念
1.函數(shù)的概念:
設(shè)A、B是非空的數(shù)集,如果按照某個(gè)確定的對(duì)應(yīng)關(guān)系f,使對(duì)于集合A中的任意一個(gè)數(shù)x,在集合B中都有唯一確定的數(shù)f(x)和它對(duì)應(yīng),那么就稱f:A→B為從集合A到集合B的一個(gè)函數(shù)(function).
記作:y=f(x),x∈A.
其中,x叫做自變量,x的取值范圍A叫做函數(shù)的定義域(domain);與x的值相對(duì)應(yīng)的y值叫做函數(shù)值,函數(shù)值的集合{f(x)|x∈A}叫做函數(shù)的值域(range).
注意:
○1“y=f(x)”是函數(shù)符號(hào),可以用任意的字母表示,如“y=g(x)”;
○2函數(shù)符號(hào)“y=f(x)”中的f(x)表示與x對(duì)應(yīng)的函數(shù)值,一個(gè)數(shù),而不是f乘x.
2.構(gòu)成函數(shù)的三要素:
定義域、對(duì)應(yīng)關(guān)系和值域
3.區(qū)間的概念
。1)區(qū)間的`分類:開區(qū)間、閉區(qū)間、半開半閉區(qū)間;
。2)無窮區(qū)間;
。3)區(qū)間的數(shù)軸表示.
4.一次函數(shù)、二次函數(shù)、反比例函數(shù)的定義域和值域討論
。ㄓ蓪W(xué)生完成,師生共同分析講評(píng))
。ǘ┑湫屠}
1.求函數(shù)定義域
課本P20例1
解:(略)
說明:
○1函數(shù)的定義域通常由問題的實(shí)際背景確定,如果課前三個(gè)實(shí)例;
○2如果只給出解析式y(tǒng)=f(x),而沒有指明它的定義域,則函數(shù)的定義域即是指能使這個(gè)式子有意義的實(shí)數(shù)的集合;
○3函數(shù)的定義域、值域要寫成集合或區(qū)間的形式.
鞏固練習(xí):課本P22第1題
2.判斷兩個(gè)函數(shù)是否為同一函數(shù)
課本P21例2
解:(略)
說明:
○1構(gòu)成函數(shù)三個(gè)要素是定義域、對(duì)應(yīng)關(guān)系和值域.由于值域是由定義域和對(duì)應(yīng)關(guān)系決定的,所以,如果兩個(gè)函數(shù)的定義域和對(duì)應(yīng)關(guān)系完全一致,即稱這兩個(gè)函數(shù)相等(或?yàn)橥缓瘮?shù))
○2兩個(gè)函數(shù)相等當(dāng)且僅當(dāng)它們的定義域和對(duì)應(yīng)關(guān)系完全一致,而與表示自變量和函數(shù)值的字母無關(guān)。
鞏固練習(xí):
○1課本P22第2題
○2判斷下列函數(shù)f(x)與g(x)是否表示同一個(gè)函數(shù),說明理由?
。1)f(x)=(x-1)0;g(x)=1
。2)f(x)=x;g(x)=
。3)f(x)=x2;f(x)=(x+1)2
。4)f(x)=|x|;g(x)=
。ㄈ┱n堂練習(xí)
求下列函數(shù)的定義域
(1)
。2)
(3)
。4)
(5)
。6)
三、歸納小結(jié),強(qiáng)化思想
從具體實(shí)例引入了函數(shù)的的概念,用集合與對(duì)應(yīng)的語言描述了函數(shù)的定義及其相關(guān)概念,介紹了求函數(shù)定義域和判斷同一函數(shù)的典型題目,引入了區(qū)間的概念來表示集合。
四、作業(yè)布置
課本P28習(xí)題1.2(A組)第1—7題(B組)第1題
對(duì)數(shù)函數(shù)教案 (菁選3篇)(擴(kuò)展7)
——《對(duì)數(shù)函數(shù)及其性質(zhì)》教學(xué)反思3篇
《對(duì)數(shù)函數(shù)及其性質(zhì)》教學(xué)反思1
《對(duì)數(shù)函數(shù)及其性質(zhì)》是人教版數(shù)學(xué)必修一的內(nèi)容。有人說“課堂教學(xué)是學(xué)術(shù)研究的實(shí)踐活動(dòng),既像科學(xué)家進(jìn)入科學(xué)實(shí)驗(yàn)室,又像藝術(shù)家登上藝術(shù)表演的`舞臺(tái),教學(xué)是一種創(chuàng)造的藝術(shù),一種遺憾的藝術(shù)!被仡欉@節(jié)課有成功之處,也有遺憾之處。
成功之處:
1、通過盲生摸讀理解函數(shù)圖象,讓學(xué)生更直觀地歸納出對(duì)數(shù)函數(shù)的性質(zhì),對(duì)突破本節(jié)課的重、難點(diǎn)起了很大的幫助。
2、在引入新課時(shí),根據(jù)我校學(xué)生的實(shí)際情況我重新設(shè)計(jì)了教學(xué)情境,從“細(xì)胞**”問題導(dǎo)入新課。由于問題具有開放性,又簡(jiǎn)單易行,學(xué)生表現(xiàn)得都很積極,課堂開始讓學(xué)生動(dòng)起來了。這樣引入新課就自然了許多,學(xué)生接受起來也容易些。一堂成功的數(shù)學(xué)課,往往給人以自然、**、舒服的享受。所以設(shè)計(jì)恰當(dāng)?shù)那榫骋胄抡n是很重要的。
3、通過選取不同的底數(shù)a的對(duì)數(shù)圖象,讓學(xué)生類比研究指數(shù)函數(shù)圖象及其性質(zhì)分組探究對(duì)數(shù)函數(shù)的圖象和性質(zhì)。這個(gè)環(huán)節(jié)讓學(xué)生合作學(xué)習(xí),合作學(xué)習(xí)讓學(xué)生感受到學(xué)習(xí)過程中的互助,還能讓學(xué)生自己建構(gòu)知識(shí)體系。不同數(shù)學(xué)內(nèi)容之間的聯(lián)系和類比,有助于學(xué)生了解與中學(xué)數(shù)學(xué)知識(shí)有關(guān)的擴(kuò)展知識(shí)及內(nèi)在的數(shù)學(xué)思想,促使學(xué)生認(rèn)真思考其中的一些問題,加深對(duì)其理解。
遺憾之處:
1、在分組討論如何畫對(duì)數(shù)函數(shù)圖象時(shí),由于擔(dān)心教學(xué)任務(wù)不能準(zhǔn)確完成,我就直接找?guī)孜粚W(xué)生說出特殊點(diǎn)的坐標(biāo)來列表,然后“描點(diǎn)、連線”一句話帶過,整個(gè)過程太過精簡(jiǎn),沒有讓學(xué)生真正的參與進(jìn)來,對(duì)調(diào)動(dòng)學(xué)生的積極性也沒有起到好的作用,讓學(xué)生失去一個(gè)展示自己成果的機(jī)會(huì)。
2、在講完例題緊接著給出的練習(xí)題難易不當(dāng),這樣學(xué)生做起來就有點(diǎn)吃力了,甚至有些學(xué)生覺得不知道該怎么做了,最后兩道稍難的練習(xí)題應(yīng)該留到下節(jié)課解決會(huì)更好些。
3、課堂小結(jié)只是帶領(lǐng)學(xué)生復(fù)習(xí)了本節(jié)課所學(xué)的重點(diǎn)內(nèi)容。如果能結(jié)合練習(xí)題提出問題,讓學(xué)生思考解決這些問題的同時(shí)也為下節(jié)課的教學(xué)做準(zhǔn)備,這樣更有助于學(xué)生知識(shí)的擴(kuò)展和延伸。
教育無止境,教育事業(yè)應(yīng)該是一個(gè)常做常新的事業(yè)。為師無止境,教書生涯應(yīng)該是一個(gè)不斷常新不斷前行的充滿新奇的旅途。反思將讓教師的生命變得五彩繽紛,反思將讓我們的教育變成一支抑揚(yáng)頓挫的交響樂。
《對(duì)數(shù)函數(shù)及其性質(zhì)》教學(xué)反思2
本節(jié)課在學(xué)習(xí)了指數(shù)函數(shù)及其性質(zhì)以后,學(xué)生通過類比學(xué)習(xí)的方法很容易進(jìn)入學(xué)習(xí)探究的狀態(tài),因此我采用了知識(shí)遷移及類比的學(xué)習(xí)方法進(jìn)行本節(jié)課的設(shè)計(jì)。
首先,復(fù)習(xí)有關(guān)指數(shù)函數(shù)知識(shí)及簡(jiǎn)單運(yùn)算,通過創(chuàng)設(shè)文物考古的情境,估算出出土文物或古遺址的年代,引入對(duì)數(shù)函數(shù)的概念。一方面體現(xiàn)了“數(shù)學(xué)源于現(xiàn)實(shí),寓于現(xiàn)實(shí),用于現(xiàn)實(shí)”,另一方面使學(xué)生產(chǎn)生強(qiáng)烈的探索欲望。然后,讓學(xué)生親自動(dòng)手畫兩個(gè)圖象,我借助電腦**,通過描點(diǎn)作圖,引導(dǎo)學(xué)生說出圖像特征及變化規(guī)律,并從而得出對(duì)數(shù)函數(shù)的性質(zhì),提高學(xué)生的形數(shù)結(jié)合的能力。在性質(zhì)的分析環(huán)節(jié)中,給予簡(jiǎn)單的提示(如,從圖形觀察特征,并用數(shù)學(xué)符號(hào)語言描述等),學(xué)生基本上能夠運(yùn)用類比指數(shù)函數(shù)的性質(zhì),說出對(duì)數(shù)函數(shù)的定義域、值域、單調(diào)性、過定點(diǎn)、函數(shù)值的變化情況等。性質(zhì)的應(yīng)用的設(shè)計(jì)我采用了求定義域及比較大小兩個(gè)例題及練習(xí),學(xué)生完成得還不錯(cuò)。最后用了幾分鐘總結(jié)本堂課所學(xué)知識(shí)點(diǎn)。
本堂課有兩個(gè)亮點(diǎn)。第一,借助電腦,演示作圖過程及圖像變化的動(dòng)畫過程,從而使學(xué)生直接地接受并提高了學(xué)生的學(xué)習(xí)興趣和積極性,很好地突破難點(diǎn)和提高教學(xué)效率,從而增大教學(xué)的容量和直觀性、準(zhǔn)確性,增強(qiáng)教學(xué)內(nèi)容的表現(xiàn)形式,在貫徹教學(xué)的直觀性原則上發(fā)揮其獨(dú)特的優(yōu)勢(shì)。第二,由圖形變化特征引導(dǎo)學(xué)生自己總結(jié)出對(duì)數(shù)函數(shù)的性質(zhì)。使學(xué)生積極思維、主動(dòng)獲取知識(shí),從而養(yǎng)成良好的學(xué)習(xí)方法。
并逐步學(xué)會(huì)**提出問題、解決問題。總之,調(diào)動(dòng)學(xué)生的非智力因素來促進(jìn)智力因素的發(fā)展,引導(dǎo)學(xué)生積極開動(dòng)腦筋,思考問題和解決問題,從而發(fā)揚(yáng)鉆研精神、勇于探索創(chuàng)新。從課堂效果和學(xué)生的作業(yè)看來,我認(rèn)為本堂課還存在著以下兩個(gè)**論文參考文獻(xiàn)不足之處。第一,內(nèi)容多,講得太快,由于大部分學(xué)生數(shù)學(xué)基礎(chǔ)較差,理解能力,運(yùn)算能力,思維能力不高,課堂上應(yīng)多給學(xué)生緩沖的時(shí)間。
比如,在例題講解的環(huán)節(jié),時(shí)間上還應(yīng)多給予學(xué)生**思考的時(shí)間。本堂課不應(yīng)該一節(jié)課講完,應(yīng)分為兩節(jié)課來講,這樣才能使課堂簡(jiǎn)潔。教學(xué)語言要更簡(jiǎn)練著實(shí),教學(xué)中應(yīng)充分挖掘教材內(nèi)在的魅力,通過生動(dòng)的比喻,夸張等方法打動(dòng)學(xué)生。有句廣告詞說:“簡(jiǎn)約而不簡(jiǎn)單!焙(jiǎn)簡(jiǎn)單單教數(shù)學(xué),實(shí)實(shí)在在學(xué)數(shù)學(xué)是新課程,新時(shí)代對(duì)數(shù)學(xué)課堂教學(xué)本質(zhì)回歸的熱切期盼。努力讓課堂化繁為簡(jiǎn),以小見大,以少勝多,充分發(fā)揮學(xué)生的主體性,促進(jìn)師生**流暢的交流。第二,教學(xué)中手勢(shì)動(dòng)作不夠豐富。如果一堂課教師只僅僅靠單一的語言交流而沒有其他輔助的交流,學(xué)生聽課就一定會(huì)象聽講座,聽理論培訓(xùn)一樣感覺,課堂的氣氛就顯得死板而毫無生氣,更不能很好地調(diào)動(dòng)學(xué)生的主觀能動(dòng)性。據(jù)有關(guān)資料顯示:在信息傳遞中,一句話只表明了說話者要表達(dá)的內(nèi)容的百分之七,聲音則占所要表達(dá)內(nèi)容的百分之***,而剩下的百分之五十多的內(nèi)容卻來自于說話者的姿態(tài),動(dòng)作,表情等。由此可見,教師課堂上手勢(shì)動(dòng)作的運(yùn)用對(duì)于學(xué)生獲取信息就非常重要。因而,合理的運(yùn)用有效的手勢(shì)動(dòng)作,用于教師的輔助教學(xué),一定會(huì)收到事半功倍的效果。既讓教師的語言表達(dá)更加完美準(zhǔn)確,又能易于學(xué)生理解并接受,達(dá)到意想不到的效果。
通過認(rèn)真的反思,同時(shí)參考學(xué)生提出的意見,針對(duì)學(xué)生存在的共性問題,決定舉出一些例題講解,加強(qiáng)學(xué)生練習(xí)力度,從練習(xí)中發(fā)現(xiàn)問題,利用晚自習(xí)補(bǔ)充講解,直到大部分學(xué)生理解掌握為止。
對(duì)數(shù)函數(shù)教案 (菁選3篇)(擴(kuò)展8)
——對(duì)數(shù)函數(shù)及其性質(zhì)說課稿 (菁選3篇)
對(duì)數(shù)函數(shù)及其性質(zhì)說課稿1
一、教學(xué)背景
1、教材分析
《對(duì)數(shù)函數(shù)及其性質(zhì)》是人教版普通高中課程數(shù)學(xué)必修1第二章第二節(jié)第二部分內(nèi)容,對(duì)數(shù)函數(shù)是一類特殊的函數(shù),在實(shí)際生產(chǎn)過程中運(yùn)用很廣泛。同時(shí),通過對(duì)對(duì)數(shù)函數(shù)及其圖象和性質(zhì)的研究,既可以從具體的感性認(rèn)識(shí)上來對(duì)函數(shù)的圖象和性質(zhì)更好的理解,也可為以后研究?jī)绾瘮?shù)、三角函數(shù)等其它函數(shù)的圖象和性質(zhì)起示范和鋪墊作用。
2、學(xué)情分析
剛?cè)敫咭坏膶W(xué)生,仍保留著初中生許多學(xué)**點(diǎn),能力發(fā)展正處于形象思維向抽象思維轉(zhuǎn)折階段,但更注重形象思維。由于函數(shù)概念十分抽象,對(duì)數(shù)函數(shù)又以對(duì)數(shù)運(yùn)算為基礎(chǔ),同時(shí),初中函數(shù)教學(xué)要求降低,導(dǎo)致初中生運(yùn)算能力有所下降,這雙重問題增加了對(duì)數(shù)函數(shù)教學(xué)的難度。但在此之前,學(xué)生已經(jīng)學(xué)習(xí)了指數(shù)函數(shù)及其性質(zhì),學(xué)生已經(jīng)初步對(duì)新函數(shù)的研究方法有所了解,為本節(jié)的學(xué)習(xí)奠定了基礎(chǔ)。
基于以上分析,我制定如下教學(xué)目標(biāo)及重、難點(diǎn):
3、教學(xué)目標(biāo)
知識(shí)與技能:
初步掌握對(duì)數(shù)函數(shù)的概念、圖象及性質(zhì),并應(yīng)用性質(zhì)解決簡(jiǎn)單數(shù)學(xué)問題。
過程與方法:
經(jīng)歷對(duì)數(shù)函數(shù)性質(zhì)的探索過程,體會(huì)函數(shù)思想、分類討論思想和轉(zhuǎn)化思想在解決具體問題中的應(yīng)用。
情感態(tài)度與價(jià)值觀:
培養(yǎng)勇于探索的精神,培養(yǎng)學(xué)生的成功意識(shí),合作交流的學(xué)習(xí)方式,激發(fā)學(xué)生學(xué)習(xí)數(shù)學(xué)、應(yīng)用數(shù)學(xué)的興趣。
4、教學(xué)重、難點(diǎn)
重點(diǎn):理解對(duì)數(shù)函數(shù)的概念,掌握對(duì)數(shù)函數(shù)的圖象及性質(zhì)。
難點(diǎn):由圖象探究函數(shù)性質(zhì),應(yīng)用性質(zhì)解決具體問題。
二、教學(xué)方法及**
1、教法
根據(jù)建構(gòu)**的`學(xué)習(xí)理論和新課程標(biāo)準(zhǔn)理念,本節(jié)課以自主探究法和講解法為主,以練習(xí)法為輔,引導(dǎo)學(xué)生自己觀察、歸納、分析,培養(yǎng)學(xué)生采用自主探究的方法進(jìn)行學(xué)習(xí),使學(xué)生體會(huì)學(xué)習(xí)的樂趣。
2、學(xué)法
(1)類比學(xué)習(xí):通過指數(shù)函數(shù)類比學(xué)習(xí)對(duì)數(shù)函數(shù)。
(2)小組合作學(xué)習(xí):將學(xué)生分成7個(gè)小組,通過小組內(nèi)討論交流,歸納得出對(duì)數(shù)函數(shù)的圖象和性質(zhì)。
3、教學(xué)**
采用多**輔助教學(xué)。
三、教學(xué)教程
1、情境引入
通過銀行的復(fù)利計(jì)算問題,逐步引出對(duì)數(shù)函數(shù)。
設(shè)計(jì)意圖:情景來源于生活,通過生活中的實(shí)例來反應(yīng)對(duì)數(shù)函數(shù)的重要性,目的在于激發(fā)學(xué)生學(xué)習(xí)的興趣,讓每一個(gè)學(xué)生都主動(dòng)融入到學(xué)習(xí)中。
2、新知探索
通過上述模型,讓學(xué)生給對(duì)數(shù)函數(shù)下定義。
學(xué)生用描點(diǎn)法畫和的圖象,教師再借助于計(jì)算機(jī)再畫幾個(gè)對(duì)數(shù)函數(shù)的圖象,讓學(xué)生觀察并總結(jié)出一般情況。
以“你們能根據(jù)圖象歸納出對(duì)數(shù)函數(shù)的性質(zhì)嗎?”設(shè)問,引導(dǎo)學(xué)生能過圖象的特征得出對(duì)應(yīng)的性質(zhì)。
例比較下列各組數(shù)中兩個(gè)值的大。
(1)log23.4和log28.5;
(2) log0.33.4和log0.38.5;
(3) loga3.4和loga8.5(a>0,且a≠1);
(4) log23.4和log3.42;
(5) log3.42和log0.38.5。
3、鞏固練習(xí)
(1)比較大。
lg6________lg8;ln1.3________
(2)比較正數(shù)m,n的大小:
若,則m_____n;若,則m_____n.
4、總結(jié)提煉
(1)自主探究新知識(shí)的方法;
(2)本節(jié)課應(yīng)用了哪些數(shù)學(xué)思想。
5、布置作業(yè)
(1)閱讀教材P70~P72,梳理對(duì)數(shù)函數(shù)的概念、圖象、性質(zhì)等知識(shí)點(diǎn);
(2)教材P74—7、8
四、板書設(shè)計(jì)
2.2.2對(duì)數(shù)函數(shù)及其性質(zhì)
一、概念例題
二、圖象
三、性質(zhì)
四、教學(xué)反思
對(duì)數(shù)函數(shù)及其性質(zhì)說課稿2
我校是一所農(nóng)村高中學(xué)校,學(xué)生的基礎(chǔ)比較薄弱,發(fā)散性思維還未能得到充分的開發(fā).因此,一直以來,我的數(shù)學(xué)課堂教學(xué)的側(cè)重點(diǎn)是:運(yùn)用探究式教學(xué)方式,積極調(diào)動(dòng)學(xué)生學(xué)習(xí)的主動(dòng)性,大力培養(yǎng)學(xué)生的開放性思維.
我本次授課的內(nèi)容是《對(duì)數(shù)函數(shù)及其性質(zhì)》,整個(gè)課題按照新課程標(biāo)準(zhǔn)的要求大概需要3個(gè)課時(shí)來完成,我提交的是第一個(gè)課時(shí)的教案.
函數(shù)是高中數(shù)學(xué)的核心,對(duì)數(shù)函數(shù)是函數(shù)的重要分支,對(duì)數(shù)函數(shù)的知識(shí)在實(shí)際生活中有著廣泛的應(yīng)用.對(duì)數(shù)函數(shù)這部分教學(xué)內(nèi)容,蘊(yùn)含了函數(shù)與方程及轉(zhuǎn)化的數(shù)學(xué)思想和方法,是后續(xù)學(xué)習(xí)中不可缺少的部分,也是高考的必考內(nèi)容.因此在第一課時(shí)的教學(xué)中,如何有效地激發(fā)學(xué)生學(xué)習(xí)對(duì)數(shù)函數(shù)的興趣是這節(jié)課的首要任務(wù).為了降低學(xué)生學(xué)習(xí)的難度,我按照新課程標(biāo)準(zhǔn)的要求制定了適合學(xué)生實(shí)際水*的教學(xué)目標(biāo),并在教學(xué)過程中把重點(diǎn)放在如何準(zhǔn)確把握對(duì)數(shù)函數(shù)的圖象與特征上.下面從三個(gè)方面來說明我的教案設(shè)計(jì).
一、教學(xué)把握得當(dāng)
。ㄒ唬└拍钜胱匀.我首先和學(xué)生一起回顧了考古學(xué)家是如何估算古遺址的年代,然后讓學(xué)生動(dòng)手計(jì)算當(dāng)碳14的含量P取不同數(shù)值時(shí)相對(duì)應(yīng)的生物**年數(shù)t,最后再引導(dǎo)學(xué)生共同觀察t與p之間的關(guān)系,從而自然而然的引入概念.
。ǘ┩笍刂v解定義.在引入對(duì)數(shù)函數(shù)的概念后,許多學(xué)生可能未能及時(shí)地意識(shí)到它只是一個(gè)形式定義,因此我通過材料1來幫助學(xué)生消化與掌握概念.
。ㄈ﹫(jiān)持讓學(xué)生自己動(dòng)手實(shí)驗(yàn).一方面學(xué)生已經(jīng)掌握了畫圖的一般方法,另一方面通過讓學(xué)生自己畫圖,使得他們對(duì)圖象有豐富的感性認(rèn)識(shí),印象更加深刻.這樣處理,體現(xiàn)了以學(xué)生為主體,教師為主導(dǎo)的教學(xué)方式.
。ㄋ模┣擅畹赝黄齐y點(diǎn).我采取把學(xué)生分成若干個(gè)小組的形式,由他們進(jìn)行小組合作討論、探究、相互補(bǔ)充的方法得出對(duì)數(shù)函數(shù)的性質(zhì).這樣不但激發(fā)了學(xué)生學(xué)習(xí)新知識(shí)的興趣,也提高了學(xué)生分析問題的能力以及團(tuán)隊(duì)合作的精神,同時(shí)也加深了他們對(duì)圖象的認(rèn)識(shí).
另外,學(xué)生討論完畢后,我先讓一個(gè)小組選派**上講臺(tái)跟全班同學(xué)交流他們所得到對(duì)數(shù)函數(shù)的一般圖象和性質(zhì),然后再請(qǐng)其它小組選派**提出補(bǔ)充意見,再由老師進(jìn)行歸納、總結(jié).這樣做不但使學(xué)生愉快地接受了新知識(shí)、活躍了課堂氣氛,而且突出雙邊活動(dòng),開啟了學(xué)生的思維,也符合新課標(biāo)的教學(xué)理念.
。ㄎ澹╈`活處理例題與練習(xí)題.我是通過兩則材料(材料2、4)來加深學(xué)生對(duì)對(duì)數(shù)函數(shù)性質(zhì)的理解與運(yùn)用.材料2是作為例題來體現(xiàn)的,目的是讓學(xué)生利用對(duì)數(shù)函數(shù)的單調(diào)性來解決,使學(xué)生學(xué)會(huì)運(yùn)用數(shù)形結(jié)合的思想來解決問題.其中材料2的第1、2小題是以具體數(shù)字為底數(shù)的對(duì)數(shù)值大小的比較,第3小題則是以字母為底數(shù)的對(duì)數(shù)值大小的比較,這樣子設(shè)計(jì)體現(xiàn)了由具體到抽象、由易到難的原則,符合學(xué)生的認(rèn)知水*.
而材料4是以練習(xí)題的.形式出現(xiàn)的,它是材料2的再現(xiàn),以口答的形式解決,目的主要是加深學(xué)生對(duì)新知識(shí)的理解與應(yīng)用;至于材料3是為了提高學(xué)生如何求對(duì)數(shù)型函數(shù)定義域的認(rèn)識(shí)而設(shè)置的.
二、充分發(fā)揮多**輔助教學(xué)的優(yōu)勢(shì).一方面為學(xué)生展現(xiàn)自己的才華提供了*臺(tái):(一)鼓勵(lì)學(xué)生在得到具體的對(duì)數(shù)函數(shù)圖象并且經(jīng)過充分的討論后敢于**把觀察得出的結(jié)論與其他同學(xué)交流;(二)為學(xué)生之間互相點(diǎn)評(píng)各自解答的練習(xí)提供**.另一方面在講解對(duì)數(shù)函數(shù)的性質(zhì)時(shí),多**演示的直觀性、生動(dòng)性躍然于紙上.這樣不僅激發(fā)了學(xué)生學(xué)習(xí)的興趣,還提高了課堂效率.
三、課堂采取靈活多樣的教學(xué)方法.既有教師的講解,又有小組的合作討論,還有師生的互動(dòng)交流.這樣就充分調(diào)動(dòng)了學(xué)生探索新知識(shí)的積極性,發(fā)揮了學(xué)生的主體作用,營(yíng)造了**的課堂氣氛,做到了寓學(xué)于樂.
小結(jié)側(cè)重于再次講解對(duì)數(shù)函數(shù)的圖象特征及其性質(zhì),以期加深學(xué)生的印象,同時(shí)與教學(xué)目的相呼應(yīng).
數(shù)學(xué)這門科學(xué)需要觀察和探究,我所設(shè)計(jì)的這節(jié)課就是讓學(xué)生通過動(dòng)手實(shí)驗(yàn),然后觀察、探究新知的過程,但由于缺乏經(jīng)驗(yàn),難免有不足之處,真誠(chéng)地希望得到各位專家學(xué)者的批評(píng)指正,使我能夠不斷地成長(zhǎng)與進(jìn)步.
對(duì)數(shù)函數(shù)及其性質(zhì)說課稿3
一、教學(xué)背景
1、教材分析
《對(duì)數(shù)函數(shù)及其性質(zhì)》是人教版普通高中課程數(shù)學(xué)必修1第二章第二節(jié)第二部分內(nèi)容,對(duì)數(shù)函數(shù)是一類特殊的函數(shù),在實(shí)際生產(chǎn)過程中運(yùn)用很廣泛。同時(shí),通過對(duì)對(duì)數(shù)函數(shù)及其圖象和性質(zhì)的研究,既可以從具體的感性認(rèn)識(shí)上來對(duì)函數(shù)的圖象和性質(zhì)更好的理解,也可為以后研究?jī)绾瘮?shù)、三角函數(shù)等其它函數(shù)的圖象和性質(zhì)起示范和鋪墊作用。
2、學(xué)情分析
剛?cè)敫咭坏膶W(xué)生,仍保留著初中生許多學(xué)**點(diǎn),能力發(fā)展正處于形象思維向抽象思維轉(zhuǎn)折階段,但更注重形象思維。由于函數(shù)概念十分抽象,對(duì)數(shù)函數(shù)又以對(duì)數(shù)運(yùn)算為基礎(chǔ),同時(shí),初中函數(shù)教學(xué)要求降低,導(dǎo)致初中生運(yùn)算能力有所下降,這雙重問題增加了對(duì)數(shù)函數(shù)教學(xué)的難度。但在此之前,學(xué)生已經(jīng)學(xué)習(xí)了指數(shù)函數(shù)及其性質(zhì),學(xué)生已經(jīng)初步對(duì)新函數(shù)的研究方法有所了解,為本節(jié)的學(xué)習(xí)奠定了基礎(chǔ)。
基于以上分析,我制定如下教學(xué)目標(biāo)及重、難點(diǎn):
3、教學(xué)目標(biāo)
知識(shí)與技能:
初步掌握對(duì)數(shù)函數(shù)的概念、圖象及性質(zhì),并應(yīng)用性質(zhì)解決簡(jiǎn)單數(shù)學(xué)問題。
過程與方法:
經(jīng)歷對(duì)數(shù)函數(shù)性質(zhì)的探索過程,體會(huì)函數(shù)思想、分類討論思想和轉(zhuǎn)化思想在解決具體問題中的應(yīng)用。
情感態(tài)度與價(jià)值觀:
培養(yǎng)勇于探索的精神,培養(yǎng)學(xué)生的成功意識(shí),合作交流的學(xué)習(xí)方式,激發(fā)學(xué)生學(xué)習(xí)數(shù)學(xué)、應(yīng)用數(shù)學(xué)的興趣。
4、教學(xué)重、難點(diǎn)
重點(diǎn):理解對(duì)數(shù)函數(shù)的概念,掌握對(duì)數(shù)函數(shù)的圖象及性質(zhì)。
難點(diǎn):由圖象探究函數(shù)性質(zhì),應(yīng)用性質(zhì)解決具體問題。
二、教學(xué)方法及**
1、教法
根據(jù)建構(gòu)**的學(xué)習(xí)理論和新課程標(biāo)準(zhǔn)理念,本節(jié)課以自主探究法和講解法為主,以練習(xí)法為輔,引導(dǎo)學(xué)生自己觀察、歸納、分析,培養(yǎng)學(xué)生采用自主探究的方法進(jìn)行學(xué)習(xí),使學(xué)生體會(huì)學(xué)習(xí)的樂趣。
2、學(xué)法
(1)類比學(xué)習(xí):通過指數(shù)函數(shù)類比學(xué)習(xí)對(duì)數(shù)函數(shù)。
(2)小組合作學(xué)習(xí):將學(xué)生分成7個(gè)小組,通過小組內(nèi)討論交流,歸納得出對(duì)數(shù)函數(shù)的圖象和性質(zhì)。
3、教學(xué)**
采用多**輔助教學(xué)。
三、教學(xué)教程
1、情境引入
通過銀行的復(fù)利計(jì)算問題,逐步引出對(duì)數(shù)函數(shù)。
設(shè)計(jì)意圖:情景來源于生活,通過生活中的實(shí)例來反應(yīng)對(duì)數(shù)函數(shù)的重要性,目的在于激發(fā)學(xué)生學(xué)習(xí)的興趣,讓每一個(gè)學(xué)生都主動(dòng)融入到學(xué)習(xí)中。
2、新知探索
通過上述模型,讓學(xué)生給對(duì)數(shù)函數(shù)下定義。
學(xué)生用描點(diǎn)法畫和的圖象,教師再借助于計(jì)算機(jī)再畫幾個(gè)對(duì)數(shù)函數(shù)的圖象,讓學(xué)生觀察并總結(jié)出一般情況。
以“你們能根據(jù)圖象歸納出對(duì)數(shù)函數(shù)的性質(zhì)嗎?”設(shè)問,引導(dǎo)學(xué)生能過圖象的特征得出對(duì)應(yīng)的性質(zhì)。
例比較下列各組數(shù)中兩個(gè)值的大小:
(1)log23.4和log28.5;
(2) log0.33.4和log0.38.5;
(3) loga3.4和loga8.5(a>0,且a≠1);
(4) log23.4和log3.42;
(5) log3.42和log0.38.5。
3、鞏固練習(xí)
(1)比較大小:
lg6________lg8;ln1.3________
(2)比較正數(shù)m,n的大小:
若,則m_____n;若,則m_____n.
4、總結(jié)提煉
(1)自主探究新知識(shí)的.方法;
(2)本節(jié)課應(yīng)用了哪些數(shù)學(xué)思想。
5、布置作業(yè)
(1)閱讀教材P70~P72,梳理對(duì)數(shù)函數(shù)的概念、圖象、性質(zhì)等知識(shí)點(diǎn);
(2)教材P74—7、8
四、板書設(shè)計(jì)
2.2.2對(duì)數(shù)函數(shù)及其性質(zhì)
一、概念例題
二、圖象
三、性質(zhì)
四、教學(xué)反思
對(duì)數(shù)函數(shù)教案 (菁選3篇)(擴(kuò)展9)
——二次函數(shù)數(shù)學(xué)教案菁選
二次函數(shù)數(shù)學(xué)教案
作為一名默默奉獻(xiàn)的教育工作者,通常需要用到教案來輔助教學(xué),教案是教學(xué)活動(dòng)的依據(jù),有著重要的地位。如何把教案做到重點(diǎn)突出呢?下面是小編收集整理的二次函數(shù)數(shù)學(xué)教案,希望能夠幫助到大家。
二次函數(shù)數(shù)學(xué)教案1
I.定義與定義表達(dá)式一般地,自變量x和因變量y之間存在如下關(guān)系:
y=ax^2+bx+c
(a,b,c為常數(shù),a0,且a決定函數(shù)的開口方向,a0時(shí),開口方向向上,a0時(shí),開口方向向下,IaI還可以決定開口大小,IaI越大開口就越小,IaI越小開口就越大.)
則稱y為x的二次函數(shù)。
二次函數(shù)表達(dá)式的右邊通常為二次三項(xiàng)式。
II.二次函數(shù)的.三種表達(dá)式一般式:y=ax^2+bx+c(a,b,c為常數(shù),a0)
頂點(diǎn)式:y=a(x-h)^2+k[拋物線的頂點(diǎn)P(h,k)]
交點(diǎn)式:y=a(x-x?)(x-x?)[僅限于與x軸有交點(diǎn)A(x?,0)和B(x?,0)的拋物線]
注:在3種形式的互相轉(zhuǎn)化中,有如下關(guān)系:
h=-b/2ak=(4ac-b^2)/4ax?,x?=(-bb^2-4ac)/2a
III.二次函數(shù)的圖像在*面直角坐標(biāo)系中作出二次函數(shù)y=x^2的圖像,
可以看出,二次函數(shù)的圖像是一條拋物線。
二次函數(shù)數(shù)學(xué)教案2
教學(xué)目標(biāo)
1·從具體函數(shù)的圖象中認(rèn)識(shí)二次函數(shù)的基本性質(zhì),了解二次函數(shù)與二次方程的相互關(guān)系·
2·探索二次函數(shù)的變化規(guī)律,掌握函數(shù)的最大值(或最小值)及函數(shù)的增減性的概念·能夠利用二次函數(shù)的圖象求一元二次方程的近似根·
3·通過具體實(shí)例,讓學(xué)生經(jīng)歷概念的形成過程,使學(xué)生體會(huì)到函數(shù)能夠反映實(shí)際事物的變化規(guī)律,體驗(yàn)數(shù)學(xué)來源于生活,服務(wù)于生活的辯證觀點(diǎn)·
教學(xué)重點(diǎn)
二次函數(shù)的最大值,最小值及增減性的理解和求法·
教學(xué)難點(diǎn)
二次函數(shù)的性質(zhì)的應(yīng)用·
《22·2二次函數(shù)與一元二次方程》同步練習(xí)
三、解答題
7·(1)請(qǐng)?jiān)谧鴺?biāo)系中畫出二次函數(shù)y=x2—2x的大致圖象;
。2)根據(jù)方程的根與函數(shù)圖象的關(guān)系,將方程x2—2x=1的根在圖上近似地表示出來(描點(diǎn));
。3)觀察圖象,直接寫出方程x2—2x=1的`根(精確到0·1)·
《22·2二次函數(shù)與一元二次方程》練習(xí)題
16·(杭州中考)把一個(gè)足球垂直水*地面向上踢,時(shí)間為t(秒)時(shí)該足球距離地面的高度h(米)適用公式h=20t—5t2(0≤t≤4)·
。1)當(dāng)t=3時(shí),求足球距離地面的高度;
。2)當(dāng)足球距離地面的高度為10米時(shí),求t;
(3)若存在實(shí)數(shù)t1,t2(t1≠t2),當(dāng)t=t1或t2時(shí),足球距離地面的高度都為m(米),求m的取值范圍·
二次函數(shù)數(shù)學(xué)教案3
目標(biāo):
。1)能夠根據(jù)實(shí)際問題,熟練地列出二次函數(shù)關(guān)系式,并求出函數(shù)的自變量的取值范圍。
(2)注重學(xué)生參與,聯(lián)系實(shí)際,豐富學(xué)生的感性認(rèn)識(shí),培養(yǎng)學(xué)生的良好的學(xué)**慣
重點(diǎn)難點(diǎn):
能夠根據(jù)實(shí)際問題,熟練地列出二次函數(shù)關(guān)系式,并求出函數(shù)的自變量的取值范圍。
過程:
一、試一試
1.設(shè)矩形花圃的垂直于墻的一邊AB的長(zhǎng)為xm,先取x的一些值,算出矩形的另一邊BC的長(zhǎng),進(jìn)而得出矩形的面積ym2.試將計(jì)算結(jié)果填寫在下表的空格 中,
AB長(zhǎng)x(m)123456789
BC長(zhǎng)(m)12
面積y(m2)48
2.x的值是否可以任意取?有限定范圍嗎?
3.我們發(fā)現(xiàn),當(dāng)AB的長(zhǎng)(x)確定后,矩形的面積(y)也隨之確定, y是x的函數(shù),試寫出這個(gè)函數(shù)的關(guān)系式,
對(duì)于1.,可讓學(xué)生根據(jù)表中給出的AB的長(zhǎng),填出相應(yīng)的BC的長(zhǎng)和面積,然后引導(dǎo)學(xué)生觀察表格中數(shù)據(jù)的變化情況,提出問題:(1)從所填表格中,你能發(fā)現(xiàn)什么?(2)對(duì)前面提出的問題的解答能作出什么猜想?讓學(xué)生思考、交流、發(fā)表意見,達(dá)成共識(shí):當(dāng)AB的長(zhǎng)為5cm,BC的長(zhǎng)為10m時(shí),圍成的矩形面積最大;最大面積為50m2。
對(duì)于2,可讓學(xué)生分組討論、交流,然后各組派**發(fā)表意見。形成共識(shí),x的值不可以任意取,有限定范圍,其范圍是0 <x <10。
對(duì)于3,教師可提出問題,(1)當(dāng)AB=xm時(shí),BC長(zhǎng)等于多少m?(2)面積y等于多少?并指出y=x(20-2x)(0 <x <10)就是所求的函數(shù)關(guān)系式.
二、提出問題
某商店將每 件進(jìn)價(jià)為8元的某種商品按每件10元出售,一天可銷出約100件.該店想通過降低售價(jià)、增加銷售量的辦法來提高利潤(rùn),經(jīng)過市場(chǎng)**,發(fā)現(xiàn)這種商品單價(jià)每降低0.1元,其銷售量可增加10件。將這種商品的售價(jià)降低多少時(shí),能使銷售利潤(rùn)最大?
在這個(gè)問題中,可提出如下問題供學(xué)生思考并 回答:
1.商品的'利潤(rùn)與售價(jià)、進(jìn)價(jià)以及銷售量之間有什么關(guān)系?
2.如果不降低售價(jià),該商品每件利潤(rùn)是多少元?一天總的利潤(rùn)是多 少元?
3.若每件商品降價(jià)x元,則每件商品的利潤(rùn)是多少元?一天可銷售約多少件商品?
4.x的值是否可以任意取?如果不能任意取,請(qǐng)求出它的范圍,
5.若設(shè)該商品每天的利潤(rùn)為y元,求y與x的函數(shù)關(guān)系式。
將函數(shù)關(guān)系式y(tǒng)=x(20-2x)(0 <x <10=化為:
y=-2x2+20x (0<x<10)……………………………(1)
將函數(shù)關(guān)系式y(tǒng)=(10-8-x)(100+100x)(0≤x≤2)化為:
y =-100x2+100x+20D (0≤x≤2)……………………(2)
三、觀察;概括
1.教師引導(dǎo)學(xué)生觀察函數(shù)關(guān)系式(1)和(2),提出以下問題讓學(xué)生思考回答;
(1)函數(shù)關(guān)系式(1)和(2)的自變量各有幾個(gè)?
(各有1個(gè))
(2)多項(xiàng)式-2x2+20和-100x2+100x+200分別是幾次多項(xiàng)式?
(分別是二次多項(xiàng)式 )
(3)函數(shù)關(guān)系式(1)和(2)有什么共同特點(diǎn)?
(都是用自變量的二次多項(xiàng)式來表示的)
(4)本章導(dǎo)圖中的問題以及P1頁的問題2有什么共同特點(diǎn) ?
讓學(xué)生討論、交流,發(fā)表意見,歸結(jié)為:自變量x為何值時(shí),函數(shù)y取得最大值。
2.二次函數(shù)定義:形如y=ax2+bx+c (a、b、、c是常數(shù),a≠0)的函數(shù)叫做x的二次函數(shù),a叫做二次函數(shù)的系數(shù),b叫做一次項(xiàng)的系數(shù),c叫作常數(shù)項(xiàng).
四、課堂練習(xí)
1.(口答)下列函數(shù)中,哪些是二次函數(shù)?
(1)y= 5x+1 (2)y=4x2-1
(3)y=2x3-3x2 (4)y=5x4-3x+1
2.P3練習(xí)第1,2題。
五、小結(jié)
1.請(qǐng)敘述二次函數(shù)的定義.
2,許多實(shí)際問題可以轉(zhuǎn)化為二次函數(shù)來解決,請(qǐng)你聯(lián)系生活實(shí) 際,編一道二次函數(shù)應(yīng)用題,并寫出函數(shù)關(guān)系式。
二次函數(shù)數(shù)學(xué)教案4
教學(xué)目標(biāo)
【知識(shí)與技能】
使學(xué)生會(huì)用描點(diǎn)法畫出函數(shù)y=ax2的圖象,理解并掌握拋物線的有關(guān)概念及其性質(zhì).
【過程與方法】
使學(xué)生經(jīng)歷探索二次函數(shù)y=ax2的圖象及性質(zhì)的過程,獲得利用圖象研究函數(shù)性質(zhì)的經(jīng)驗(yàn),培養(yǎng)學(xué)生分析、解決問題的能力.
【情感、態(tài)度與價(jià)值觀】
使學(xué)生經(jīng)歷探索二次函數(shù)y=ax2的圖象和性質(zhì)的過程,培養(yǎng)學(xué)生觀察、思考、歸納的良好思維品質(zhì).
重點(diǎn)難點(diǎn)
【重點(diǎn)】
使學(xué)生理解拋物線的有關(guān)概念及性質(zhì),會(huì)用描點(diǎn)法畫出二次函數(shù)y=ax2的圖象.
【難點(diǎn)】
用描點(diǎn)法畫出二次函數(shù)y=ax2的圖象以及探索二次函數(shù)的性質(zhì).
教學(xué)過程
一、問題引入
1.一次函數(shù)的圖象是什么?反比例函數(shù)的圖象是什么?
(一次函數(shù)的圖象是一條直線,反比例函數(shù)的圖象是雙曲線.)
2.畫函數(shù)圖象的一般步驟是什么?
一般步驟:(1)列表(取幾組x,y的對(duì)應(yīng)值);(2)描點(diǎn)(根據(jù)表中x,y的數(shù)值在坐標(biāo)*面中描點(diǎn)(x,y));(3)連線(用*滑曲線).
3.二次函數(shù)的圖象是什么形狀?二次函數(shù)有哪些性質(zhì)?
(運(yùn)用描點(diǎn)法作二次函數(shù)的圖象,然后觀察、分析并歸納得到二次函數(shù)的性質(zhì).)
二、新課教授
【例1】 畫出二次函數(shù)y=x2的圖象.
解:(1)列表中自變量x可以是任意實(shí)數(shù),列表表示幾組對(duì)應(yīng)值.
(2)描點(diǎn):根據(jù)上表中x,y的數(shù)值在*面直角坐標(biāo)系中描點(diǎn)(x,y).
(3)連線:用*滑的曲線順次連接各點(diǎn),得到函數(shù)y=x2的圖象,如圖所示.
思考:觀察二次函數(shù)y=x2的圖象,思考下列問題:
(1)二次函數(shù)y=x2的圖象是什么形狀?
(2)圖象是軸對(duì)稱圖形嗎?如果是,它的對(duì)稱軸是什么?
(3)圖象有最低點(diǎn)嗎?如果有,最低點(diǎn)的坐標(biāo)是什么?
師生活動(dòng):
教師引導(dǎo)學(xué)生在*面直角坐標(biāo)系中畫出二次函數(shù)y=x2的圖象,通過數(shù)形結(jié)合解決上面的3個(gè)問題.
學(xué)生動(dòng)手畫圖,觀察、討論并歸納,積極展示探究結(jié)果,教師評(píng)價(jià).
函數(shù)y=x2的圖象是一條關(guān)于y軸(x=0)對(duì)稱的曲線,這條曲線叫做拋物線.實(shí)際上二次函數(shù)的圖象都是拋物線.二次函數(shù)y=x2的圖象可以簡(jiǎn)稱為拋物線y=x2.
由圖象可以看出,拋物線y=x2開口向上;y軸是拋物線y=x2的對(duì)稱軸:拋物線y=x2與它的對(duì)稱軸的交點(diǎn)(0,0)叫做拋物線的頂點(diǎn),它是拋物線y=x2的最低點(diǎn).實(shí)際上每條拋物線都有對(duì)稱軸,拋物線與對(duì)稱軸的交點(diǎn)叫做拋物線的頂點(diǎn),頂點(diǎn)是拋物線的最低點(diǎn)或最高點(diǎn).
【例2】 在同一直角坐標(biāo)系中,畫出函數(shù)y=x2及y=2x2的圖象.
解:分別填表,再畫出它們的圖象.
思考:函數(shù)y=x2、y=2x2的圖象與函數(shù)y=x2的圖象有什么共同點(diǎn)和不同點(diǎn)?
師生活動(dòng):
教師引導(dǎo)學(xué)生在*面直角坐標(biāo)系中畫出二次函數(shù)y=x2、y=2x2的`圖象.
學(xué)生動(dòng)手畫圖,觀察、討論并歸納,回答探究的思路和結(jié)果,教師評(píng)價(jià).
拋物線y=x2、y=2x2與拋物線y=x2的開口均向上,頂點(diǎn)坐標(biāo)都是(0,0),函數(shù)y=2x2的圖象的開口較窄,y=x2的圖象的開口較大.
探究1:畫出函數(shù)y=-x2、y=-x2、y=-2x2的圖象,并考慮這些圖象有什么共同點(diǎn)和不同點(diǎn)。
師生活動(dòng):
學(xué)生在*面直角坐標(biāo)系中畫出函數(shù)y=-x2、y=-x2、y=-2x2的圖象,觀察、討論并歸納.教師巡視學(xué)生的探究情況,若發(fā)現(xiàn)問題,及時(shí)點(diǎn)撥.
學(xué)生匯報(bào)探究的思路和結(jié)果,教師評(píng)價(jià),給出圖形.
拋物線y=-x2、y=-x2、y=-2x2開口均向下,頂點(diǎn)坐標(biāo)都是(0,0),函數(shù)y=-2x2的圖象開口最窄,y=-x2的圖象開口最大.
探究2:對(duì)比拋物線y=x2和y=-x2,它們關(guān)于x軸對(duì)稱嗎?拋物線y=ax2和y=-ax2呢?
師生活動(dòng):
學(xué)生在*面直角坐標(biāo)系中畫出函數(shù)y=x2和y=-x2的圖象,觀察、討論并歸納.
教師巡視學(xué)生的探究情況,發(fā)現(xiàn)問題,及時(shí)點(diǎn)撥.
學(xué)生匯報(bào)探究思路和結(jié)果,教師評(píng)價(jià),給出圖形.
拋物線y=x2、y=-x2的圖象關(guān)于x軸對(duì)稱.一般地,拋物線y=ax2和y=-ax2的圖象也關(guān)于x軸對(duì)稱.
教師引導(dǎo)學(xué)生小結(jié)(知識(shí)點(diǎn)、規(guī)律和方法).
一般地,拋物線y=ax2的對(duì)稱軸是y軸,頂點(diǎn)是原點(diǎn).當(dāng)a0時(shí),拋物線y=ax2的開口向上,頂點(diǎn)是拋物線的最低點(diǎn),當(dāng)a越大時(shí),拋物線的開口越小;當(dāng)a0時(shí),拋物線y=ax2的開口向下,頂點(diǎn)是拋物線的最高點(diǎn),當(dāng)a越大時(shí),拋物線的開口越大.
從二次函數(shù)y=ax2的圖象可以看出:如果a0,當(dāng)x0時(shí),y隨x的增大而減小,當(dāng)x0時(shí),y隨x的增大而增大;如果a0,當(dāng)x0時(shí),y隨x的增大而增大,當(dāng)x0時(shí),y隨x的增大而減小.
三、鞏固練習(xí)
1.拋物線y=-4x2-4的開口向,頂點(diǎn)坐標(biāo)是,對(duì)稱軸是,當(dāng)x=時(shí),y有最值,是.
【答案】下 (0,-4) x=0 0 大 -4
2.當(dāng)m≠時(shí),y=(m-1)x2-3m是關(guān)于x的二次函數(shù).
【答案】1
3.已知拋物線y=-3x2上兩點(diǎn)A(x,-27),B(2,y),則x=,y=.
【答案】-3或3 -12
4.拋物線y=3x2與直線y=kx+3的交點(diǎn)坐標(biāo)為(2,b),則k=,b=.
【答案】 12
5.已知拋物線的頂點(diǎn)在原點(diǎn),對(duì)稱軸為y軸,且經(jīng)過點(diǎn)(-1,-2),則拋物線的表達(dá)式為.
【答案】y=-2x2
6.在同一坐標(biāo)系中,圖象與y=2x2的圖象關(guān)于x軸對(duì)稱的是()
A.y=x2B.y=x2
C.y=-2x2 D.y=-x2
【答案】C
7.拋物線y=4x2、y=-2x2、y=x2的圖象,開口最大的是()
A.y=x2 B.y=4x2
C.y=-2x2 D.無法確定
【答案】A
8.對(duì)于拋物線y=x2和y=-x2在同一坐標(biāo)系中的位置,下列說法錯(cuò)誤的是()
A.兩條拋物線關(guān)于x軸對(duì)稱
B.兩條拋物線關(guān)于原點(diǎn)對(duì)稱
C.兩條拋物線關(guān)于y軸對(duì)稱
D.兩條拋物線的交點(diǎn)為原點(diǎn)
【答案】C
四、課堂小結(jié)
1.二次函數(shù)y=ax2的圖象過原點(diǎn)且關(guān)于y軸對(duì)稱,自變量x的取值范圍是一切實(shí)數(shù).
2.二次函數(shù)y=ax2的性質(zhì):拋物線y=ax2的對(duì)稱軸是y軸,頂點(diǎn)是原點(diǎn).當(dāng)a0時(shí),拋物線y=x2開口向上,頂點(diǎn)是拋物線的最低點(diǎn),當(dāng)a越大時(shí),拋物線的開口越小;當(dāng)a0時(shí),拋物線y=ax2開口向下,頂點(diǎn)是拋物線的最高點(diǎn),當(dāng)a越大時(shí),拋物線的開口越大.
3.二次函數(shù)y=ax2的圖象可以通過列表、描點(diǎn)、連線三個(gè)步驟畫出來.
教學(xué)反思
本節(jié)課的內(nèi)容主要研究二次函數(shù)y=ax2在a取不同值時(shí)的圖象,并引出拋物線的有關(guān)概念,再根據(jù)圖象總結(jié)拋物線的有關(guān)性質(zhì).整個(gè)內(nèi)容分成:(1)例1是基礎(chǔ);(2)在例1的基礎(chǔ)之上引入例2,讓學(xué)生體會(huì)a的大小對(duì)拋物線開口寬闊程度的影響;(3)例2及后面的練習(xí)探究讓學(xué)生領(lǐng)會(huì)a的**對(duì)拋物線開口方向的影響;(4)最后讓學(xué)生比較例1和例2,練習(xí)歸納總結(jié).
二次函數(shù)數(shù)學(xué)教案5
二次函數(shù)的性質(zhì)與圖像
【學(xué)習(xí)目標(biāo)】
1、使學(xué)生掌握研究二次函數(shù)的一般方法——配方法;
2、應(yīng)“描點(diǎn)法”畫出二次函數(shù) ( 的圖像,通過圖像總結(jié)二次函數(shù)的性質(zhì);
3、通過研究二次函數(shù)和圖像的性質(zhì),能進(jìn)一步體會(huì)研究一般函數(shù)的方法,能由特殊到一般地研究問題。
【自主學(xué)習(xí)】
二次函數(shù)的性質(zhì)與圖像
1)定義:函數(shù) 叫二次函數(shù),它的.定義域是 。特別地,當(dāng) 時(shí),二次函數(shù)變?yōu)?( 。
2)函數(shù) 的圖像和性質(zhì):
。1)函數(shù) 的圖像是一條頂點(diǎn)為原點(diǎn)的拋物線,當(dāng) 時(shí),拋物線開口 ,當(dāng) 時(shí),拋物線開口 。
。2)函數(shù) 為 (填“奇函數(shù)”或“偶函數(shù)”)。
。3)函數(shù) 的圖像的對(duì)稱軸為 。
3)二次函數(shù) 的性質(zhì)
。1)函數(shù)的圖像是 ,拋物線的頂點(diǎn)坐標(biāo)是 ,拋物線的對(duì)稱軸是直線 。
(2)當(dāng) 時(shí),拋物線開口向上,函數(shù)在 處取得最小值 ;在區(qū)間 上是減函數(shù),在 上是增函數(shù)。
。3)當(dāng) 時(shí),拋物線開口向下,函數(shù)在 處取得最大值 ;在區(qū)間 上是增函數(shù),在 上是減函數(shù)。
跟蹤1、試述二次函數(shù) 的性質(zhì),并作出它的圖像。
跟蹤2、研討二次函數(shù) 的性質(zhì)和圖像。
跟蹤3、求函數(shù) 的值域和它的圖像的對(duì)稱軸,并說出它在那個(gè)區(qū)間上是增函數(shù)?在那個(gè)區(qū)間上是減函數(shù)?
跟蹤4、課本P60練習(xí)B
1、
【歸納總結(jié)】
研究二次函數(shù)的圖像與性質(zhì)的思路是什么?
函數(shù)二次函數(shù) (a、b、c是常數(shù),a≠0)
圖像a>0 a<0
性質(zhì)
【典例示范】
例1:將函數(shù) 配方,確定其對(duì)稱軸和頂點(diǎn)坐標(biāo),求出 它的單調(diào)區(qū)間及最大值或最小值,并畫出它的圖像。
例2:二次函數(shù) 與 的圖像開口大小相同,開口方向也相同。已知函數(shù) 的解析式和 的頂點(diǎn),寫出符合下列條件的函數(shù) 的解析式。
。1)函數(shù) , 的圖像的頂點(diǎn)是(4, );
(2)函數(shù) , 圖像的頂點(diǎn)是 。
二次函數(shù)數(shù)學(xué)教案6
【知識(shí)與技能】
1.會(huì)用描點(diǎn)法畫函數(shù)y=ax2(a>0)的圖象,并根據(jù)圖象認(rèn)識(shí)、理解和掌握其性質(zhì).
2.體會(huì)數(shù)形結(jié)合的轉(zhuǎn)化,能用y=ax2(a>0)的圖象和性質(zhì)解決簡(jiǎn)單的實(shí)際問題.
【過程與方法】
經(jīng)歷探索二次函數(shù)y=ax2(a>0)圖象的作法和性質(zhì)的過程,獲得利用圖象研究函數(shù)的經(jīng)驗(yàn),培養(yǎng)觀察、思考、歸納的`良好思維習(xí)慣.
【情感態(tài)度】
通過動(dòng)手畫圖,同學(xué)之間交流討論,達(dá)到對(duì)二次函數(shù)y=ax2(a>0)圖象和性質(zhì)的真正理解,從而產(chǎn)生對(duì)數(shù)學(xué)的興趣,調(diào)動(dòng)學(xué)生的積極性.
【教學(xué)重點(diǎn)】
1.會(huì)畫y=ax2(a>0)的圖象.
2.理解,掌握?qǐng)D象的性質(zhì).
【教學(xué)難點(diǎn)】
二次函數(shù)圖象及性質(zhì)探究過程和方法的體會(huì)教學(xué)過程.
一、情境導(dǎo)入,初步認(rèn)識(shí)
問題1 請(qǐng)同學(xué)們回憶一下一次函數(shù)的圖象、反比例函數(shù)的圖象的特征是什么?二次函數(shù)圖象是什么形狀呢?
問題2 如何用描點(diǎn)法畫一個(gè)函數(shù)圖象呢?
【教學(xué)說明】
、俾裕
、诹斜怼⒚椟c(diǎn)、連線.
二、思考探究,獲取新知
探究1 畫二次函數(shù)y=ax2(a>0)的圖象.
畫二次函數(shù)y=ax2的圖象.
【教學(xué)說明】
、僖笸瑢W(xué)們?nèi)巳藙?dòng)手,按“列表、描點(diǎn)、連線”的步驟畫圖y=x2的圖象,同學(xué)們畫好后相互交流、展示,表揚(yáng)畫得比較規(guī)范的同學(xué).
、趶牧斜砗兔椟c(diǎn)中,體會(huì)圖象關(guān)于y軸對(duì)稱的特征.
、蹚(qiáng)調(diào)畫拋物線的三個(gè)誤區(qū).
誤區(qū)一:用直線連結(jié),而非光滑的曲線連結(jié),不符合函數(shù)的變化規(guī)律和發(fā)展趨勢(shì).
誤區(qū)二:并非對(duì)稱點(diǎn),存在漏點(diǎn)現(xiàn)象,導(dǎo)致拋物線變形.
誤區(qū)三:忽視自變量的取值范圍,拋物線要求用*滑曲線連點(diǎn)的同時(shí),還需要向兩旁無限延伸,而并非到某些點(diǎn)停止.
二次函數(shù)數(shù)學(xué)教案7
教學(xué)目標(biāo):
利用數(shù)形結(jié)合的數(shù)學(xué)思想分析問題解決問題。
利用已有二次函數(shù)的知識(shí)經(jīng)驗(yàn),自主進(jìn)行探究和合作學(xué)習(xí),解決情境中的數(shù)學(xué)問題,初步形成數(shù)學(xué)建模能力,解決一些簡(jiǎn)單的實(shí)際問題。
在探索中體驗(yàn)數(shù)學(xué)來源于生活并運(yùn)用于生活,感悟二次函數(shù)中數(shù)形結(jié)合的美,激發(fā)學(xué)生學(xué)習(xí)數(shù)學(xué)的興趣,通過合作學(xué)習(xí)獲得成功,樹立自信心。
教學(xué)重點(diǎn)和難點(diǎn):
運(yùn)用數(shù)形結(jié)合的思想方法進(jìn)行解二次函數(shù),這是重點(diǎn)也是難點(diǎn)。
教學(xué)過程:
。ㄒ唬┮耄
分組復(fù)習(xí)舊知。
探索:從二次函數(shù)y=x2+4x+3在直角坐標(biāo)系中的圖象中,你能得到哪些信息?
可引導(dǎo)學(xué)生從幾個(gè)方面進(jìn)行討論:
(1)如何畫圖
。2)頂點(diǎn)、圖象與坐標(biāo)軸的交點(diǎn)
。3)所形成的三角形以及四邊形的面積
。4)對(duì)稱軸
從上面的問題導(dǎo)入今天的課題二次函數(shù)中的圖象與性質(zhì)。
。ǘ┬率冢
1、再探索:二次函數(shù)y=x2+4x+3圖象上找一點(diǎn),使形成的圖形面積與已知圖形面積有數(shù)量關(guān)系。例如:拋物線y=x2+4x+3的頂點(diǎn)為點(diǎn)A,且與x軸交于點(diǎn)B、C;在拋物線上求一點(diǎn)E使SBCE= SABC。
再探索:在拋物線y=x2+4x+3上找一點(diǎn)F,使BCE與BCD全等。
再探索:在拋物線y=x2+4x+3上找一點(diǎn)M,使BOM與ABC相似。
2、讓同學(xué)討論:從已知條件如何求二次函數(shù)的解析式。
例如:已知一拋物線的頂點(diǎn)坐標(biāo)是C(2,1)且與x軸交于點(diǎn)A、點(diǎn)B,已知SABC=3,求拋物線的解析式。
。ㄈ┨岣呔毩(xí)
根據(jù)我們學(xué)校人人皆知的船模特色項(xiàng)目設(shè)計(jì)了這樣一個(gè)情境:
讓班級(jí)中的上科院小院士來簡(jiǎn)要介紹學(xué)校船模組的情況以及在繪制船模圖紙時(shí)也常用到拋物線的知識(shí)的情況,再出題:船身的龍骨是近似拋物線型,船身的最大長(zhǎng)度為48cm,且高度為12cm。求此船龍骨的拋物線的解析式。
讓學(xué)生在練習(xí)中體會(huì)二次函數(shù)的圖象與性質(zhì)在解題中的作用。
(四)讓學(xué)生討論小結(jié)(略)
。ㄎ澹┳鳂I(yè)布置
1、在直角坐標(biāo)*面內(nèi),點(diǎn)O為坐標(biāo)原點(diǎn),二次函數(shù)y=x2+(k—5)x—(k+4)的圖象交x軸于點(diǎn)A(x1,0)、B(x2,0)且(x1+1)(x2+1)=—8。
(1)求二次函數(shù)的解析式;
。2)將上述二次函數(shù)圖象沿x軸向右*移2個(gè)單位,設(shè)*移后的圖象與y軸的'交點(diǎn)為C,頂點(diǎn)為P,求 POC的面積。
2、如圖,一個(gè)二次函數(shù)的圖象與直線y= x—1的交點(diǎn)A、B分別在x、y軸上,點(diǎn)C在二次函數(shù)圖象上,且CBAB,CB=AB,求這個(gè)二次函數(shù)的解析式。
3、盧浦大橋拱形可以近似看作拋物線的一部分,在大橋截面1:11000的比例圖上,跨度AB=5cm,拱高OC=0。9cm,線段DE表示大橋拱內(nèi)橋長(zhǎng),DE∥AB,如圖1,在比例圖上,以直線AB為x軸,拋物線的對(duì)稱軸為y軸,以1cm作為數(shù)軸的單位長(zhǎng)度,建立*面直角坐標(biāo)系,如圖2。
。1)求出圖2上以這一部分拋物線為圖象的函數(shù)解析式,寫出函數(shù)定義域;
。2)如果DE與AB的距離OM=0。45cm,求盧浦大橋拱內(nèi)實(shí)際橋長(zhǎng)(備用數(shù)據(jù): ,計(jì)算結(jié)果精確到1米)
二次函數(shù)數(shù)學(xué)教案8
一、教材分析
1、教材的地位和作用
二次函數(shù)是在學(xué)生系統(tǒng)學(xué)習(xí)了函數(shù)概念,基本掌握了函數(shù)的性質(zhì)的基礎(chǔ)上進(jìn)行研究的,在初中的學(xué)習(xí)中已經(jīng)給出了二次函數(shù)的圖象及性質(zhì),學(xué)生已經(jīng)基本掌握了二次函數(shù)的圖象及一些性質(zhì),只是研究函數(shù)的方法都是按照函數(shù)解析式---定義域----圖象----性質(zhì)的方法進(jìn)行的,基于這種情況,我認(rèn)為本節(jié)課的作用是讓學(xué)生借助于熟悉的函數(shù)來進(jìn)一步學(xué)習(xí)研究函數(shù)的更一般的方法,即:利用解析式分析性質(zhì)來推斷函數(shù)圖象。它可以進(jìn)一步深化學(xué)生對(duì)函數(shù)概念與性質(zhì)的理解與認(rèn)識(shí),使學(xué)生得到較系統(tǒng)的函數(shù)知識(shí)和研究函數(shù)的方法,站在新的高度研究函數(shù)的性質(zhì)與圖象。因此,本節(jié)課的內(nèi)容十分重要。
2、教學(xué)的重點(diǎn)和難點(diǎn)
教學(xué)重點(diǎn):使學(xué)生掌握二次函數(shù)的概念、性質(zhì)和圖象;從函數(shù)的性質(zhì)推斷圖象的方法。
教學(xué)難點(diǎn):掌握從函數(shù)的性質(zhì)推斷圖象的方法。
二、目標(biāo)分析
按照新課標(biāo)指出三維目標(biāo),根據(jù)任教班級(jí)學(xué)生的實(shí)際情況,本節(jié)課我確定的教學(xué)目標(biāo)是:
1、知識(shí)與技能:掌握二次函數(shù)的性質(zhì)與圖象,能夠借助于具體的二次函數(shù),理解和掌握從函數(shù)的'性質(zhì)推斷圖象的方研究法。
2、過程與方法:通過老師的引導(dǎo)、點(diǎn)撥,讓學(xué)生在分組合作、積極探索的氛圍中,掌握從函數(shù)解析式、性質(zhì)出發(fā)去認(rèn)識(shí)函數(shù)圖象的高度理解和研究函數(shù)的方法。
3、情感、態(tài)度、價(jià)值觀:讓學(xué)生感受數(shù)學(xué)思想方法之美、體會(huì)數(shù)學(xué)思想方法之重要;培養(yǎng)學(xué)生主動(dòng)學(xué)習(xí)、合作交流的意識(shí)等。
三、教法學(xué)法分析
遵循“教師的主導(dǎo)作用和學(xué)生的主體地位相**的教學(xué)規(guī)律”,從教師的角色突出體現(xiàn)教師是設(shè)計(jì)者、**者、引導(dǎo)者、合作者,經(jīng)過教師對(duì)教材的分析理解,在教師的**引導(dǎo)和師生互動(dòng)過程中以問題為載體實(shí)施整個(gè)教學(xué)過程;在學(xué)生這方面,通過自主探索、合作交流、歸納方法等一系列活動(dòng)為主線,感受知識(shí)的形成過程,拓展和完善自己的認(rèn)知結(jié)構(gòu),進(jìn)而體現(xiàn)出教學(xué)過程中教師與學(xué)生的雙主體作用。
四、教學(xué)過程分析
根據(jù)新課標(biāo)的理念,我把整個(gè)的教學(xué)過程分為六個(gè)階段,即:創(chuàng)設(shè)情景、提出問題
師生互動(dòng)、探究新知
**探究,鞏固方法
強(qiáng)化訓(xùn)練,加深理解
小結(jié)歸納,拓展深化
布置作業(yè),提高升華
環(huán)節(jié)1本節(jié)課一開始我就讓學(xué)生直接總結(jié)出二次函數(shù)的性質(zhì)與圖象形狀,在學(xué)生回答后,以有必要再重復(fù)嗎?編者的失誤?還是另有用意呢?的設(shè)問來激發(fā)學(xué)生的求知欲,在學(xué)生感覺很疑惑的時(shí)候馬上進(jìn)入環(huán)節(jié)2:試作出二次函數(shù)
的圖象。目的是充分暴露學(xué)生在作圖時(shí)不能很好的結(jié)合函數(shù)的性質(zhì)而出現(xiàn)的錯(cuò)誤或偏差問題,突出本節(jié)課的重要性。在學(xué)生總結(jié)交流的基礎(chǔ)上教師指出學(xué)生的錯(cuò)誤并以設(shè)問的方式提出本節(jié)課的目標(biāo):如何利用函數(shù)性質(zhì)的研究來推斷出較為準(zhǔn)確的函數(shù)圖象,進(jìn)而引導(dǎo)學(xué)生進(jìn)入師生互動(dòng)、探究新知階段。
在這個(gè)階段,我引用課本所給的例題1請(qǐng)同學(xué)們以學(xué)習(xí)小組為單位嘗試完成并作出總結(jié)發(fā)言。目的是:讓學(xué)生充分參與,在合作探究中讓學(xué)生最大限度地突破目標(biāo)或暴露出在嘗試研究過程中出現(xiàn)的分析障礙,即不能很好的把握函數(shù)的性質(zhì)對(duì)圖象的影響,不能把抽象的性質(zhì)與直觀的圖象融會(huì)貫通,這樣便于教師在與學(xué)生互動(dòng)的過程中準(zhǔn)確把握難點(diǎn),各個(gè)擊破,最終形成知識(shí)的遷移。在學(xué)生探討后,教師選小組**做總結(jié)發(fā)言,其他小組作出補(bǔ)充,教師引導(dǎo)從逐步完善函數(shù)性質(zhì)的分析。其中,學(xué)生對(duì)于對(duì)稱軸的確定、單調(diào)區(qū)間及單調(diào)性的分析闡述等可能存在困難。這時(shí)教師可以利用對(duì)解析式的分析結(jié)合多**演示引導(dǎo)學(xué)生得到分析的思路和解決的方法,在師生互動(dòng)的過程中把函數(shù)的性質(zhì)完善。之后進(jìn)入環(huán)節(jié)3:再次讓學(xué)生利用二次函數(shù)的性質(zhì)推斷出二次函數(shù)的圖象,強(qiáng)化用二次函數(shù)的性質(zhì)推斷圖象的關(guān)鍵。進(jìn)而突破教學(xué)難點(diǎn)。讓學(xué)生真正實(shí)現(xiàn)知識(shí)的遷移,完成整個(gè)探究過程,形成較為完整的新的認(rèn)知體系.當(dāng)然,在這個(gè)過程中可能會(huì)有學(xué)生提出圖象為什么是曲線而不是直線等問題,為了消除學(xué)生的疑惑,進(jìn)入第4個(gè)環(huán)節(jié):教師要簡(jiǎn)單說明這是研究函數(shù)要考慮的一個(gè)重要的性質(zhì),是函數(shù)的凹凸性,后面我們將要給大家介紹,同學(xué)們可以閱讀課本第110頁的探索與研究。這樣也給學(xué)生留下一個(gè)思考與探索的空間,培養(yǎng)學(xué)生課外閱讀、自主研究的能力,增強(qiáng)學(xué)生學(xué)習(xí)數(shù)學(xué)的積極性.
在以上環(huán)節(jié)完成后,進(jìn)入第5個(gè)環(huán)節(jié):讓學(xué)生對(duì)利用解析式分析性質(zhì)然后推斷函數(shù)圖象的研究過程進(jìn)行梳理并加以提煉、抽象、概括,得出研究函數(shù)的具體操作過程,使問題得以升華,拓寬學(xué)生的思維,將新知識(shí)內(nèi)化到自己的認(rèn)知結(jié)構(gòu)中去.最終尋求到解決問題的方法。
教學(xué)的最終目標(biāo)應(yīng)該落實(shí)到每一個(gè)學(xué)生個(gè)體的內(nèi)化與發(fā)展,由此讓引導(dǎo)學(xué)生進(jìn)入**探究,鞏固方法的階段。例2在題目的設(shè)置上變換二次函數(shù)的開口方向,目的是一方面使學(xué)生加深對(duì)知識(shí)的理解,完善知識(shí)結(jié)構(gòu),另一方面使學(xué)生由簡(jiǎn)單地模仿和接受,變?yōu)閷?duì)知識(shí)的主動(dòng)認(rèn)識(shí),從而進(jìn)一步提高分析、類比和綜合的能力.學(xué)生在例1的基礎(chǔ)**會(huì)目標(biāo)明確地進(jìn)行函數(shù)性質(zhì)的研究,然后推斷出比較準(zhǔn)確的函數(shù)圖象,使新知得到有效鞏固.
通過前面三個(gè)階段的學(xué)習(xí),學(xué)生應(yīng)該基本掌握了本節(jié)課的相關(guān)知識(shí)。但對(duì)二次函數(shù)中系數(shù)a、b、c的對(duì)二次函數(shù)的影響還有待提高,為此我把課本中的例3進(jìn)行改編,引導(dǎo)學(xué)生進(jìn)入強(qiáng)化訓(xùn)練,加深理解階段。一方面可以解決學(xué)生對(duì)奇偶性的質(zhì)疑,另一方面也可以把學(xué)生對(duì)二次函數(shù)的認(rèn)識(shí)提到新的高度。
第五個(gè)階段:小結(jié)歸納,拓展深化。為了讓學(xué)生能夠站在更高的角度認(rèn)識(shí)二次函數(shù)和掌握函數(shù)的一般研究方法,教師引導(dǎo)學(xué)生從兩個(gè)方面總結(jié)。在你對(duì)函數(shù)圖象與性質(zhì)的關(guān)系有怎樣的理解方面教師要引導(dǎo)、拓展,明確今天所學(xué)習(xí)的方法實(shí)際上是研究函數(shù)性質(zhì)圖象的一般方法,對(duì)于一些陌生的或較為復(fù)雜的函數(shù)只要借助于適當(dāng)?shù)姆椒ǖ玫较嚓P(guān)的性質(zhì)就可以推斷出函數(shù)的圖象,從而把學(xué)生的認(rèn)知水*定格在一個(gè)新的高度去理解和認(rèn)識(shí)函數(shù)問題。
最后一個(gè)階段是布置作業(yè),提高升華,作業(yè)的設(shè)置是分層落實(shí).鞏固題讓學(xué)生復(fù)習(xí)解題思路,準(zhǔn)確應(yīng)用,以便舉一反三.探究題通過對(duì)教材例題的改編,供學(xué)有余力的學(xué)生自主探索,提高他們分析問題、解決問題的能力.
以上六個(gè)階段環(huán)環(huán)相扣,層層深入,并充分體現(xiàn)教師與學(xué)生的交流互動(dòng),在教師的整體調(diào)控下,學(xué)生通過動(dòng)手操作,動(dòng)眼觀察,動(dòng)腦思考,親身經(jīng)歷了知識(shí)的形成和發(fā)展過程,并得以遷移內(nèi)化。而最終的探究作業(yè)又將激發(fā)學(xué)生興趣,帶領(lǐng)學(xué)生進(jìn)入對(duì)二次函數(shù)更進(jìn)一步的思考和研究之中,從而達(dá)到知識(shí)在課堂以外的延伸?傊@節(jié)課是本著“授之以漁”而非“授之以魚”的理念來設(shè)計(jì)的。
二次函數(shù)數(shù)學(xué)教案9
學(xué)習(xí)目標(biāo):
1、能解釋二次函數(shù) 的圖像的位置關(guān)系;
2、體會(huì)本節(jié)中圖形的變化與 圖形上的點(diǎn)的坐標(biāo)變化之間的關(guān)系(轉(zhuǎn)化),感受形數(shù) 結(jié)合的數(shù)學(xué)思想等。
學(xué)習(xí)重點(diǎn)與難點(diǎn):
對(duì)二次函數(shù) 的圖像的位置關(guān)系解釋和研究問題的數(shù)學(xué)方法的感受是學(xué)習(xí)重點(diǎn);難點(diǎn)是對(duì)數(shù)學(xué)問題研究問題方法的感受和領(lǐng)悟。
學(xué)習(xí)過程:
一、知識(shí)準(zhǔn)備
本節(jié)課的學(xué)習(xí)的內(nèi)容是課本P12-P14的內(nèi)容,內(nèi)容較長(zhǎng),課本上問題較多,需要你操作、觀察、思考和概括,請(qǐng)你注意:學(xué)習(xí)時(shí)要圈、點(diǎn)、勾、畫,隨時(shí)記錄甚至批注課本,想想那個(gè)人是如何研究出來的。你有何新的發(fā)現(xiàn)呢?
二、學(xué)習(xí)內(nèi)容
1.思考:二次函數(shù) 的圖象是個(gè)什么圖形?是拋物線嗎?為什么?(請(qǐng)你仔細(xì)看課本P12-P13,作出合理的解釋)
x -3 -2 -1
0 1 2 3
類似的:二次函數(shù) 的圖象與函數(shù) 的圖象有什么關(guān)系?
它的對(duì)稱軸、頂點(diǎn)、最值、增減性如何?
2.想一想:二次函數(shù) 的圖象是拋物線嗎?如果結(jié)合下表和看課本P13-P14你的解釋是什么?
x
-8 -7 -6 -3 -2 -1 0 1 2 3 4 5 6
類似的:二次函數(shù) 的圖象與二次函數(shù) 的圖象有什么關(guān)系 ?它的對(duì)稱軸、頂點(diǎn)呢?它的對(duì)稱軸、頂點(diǎn)、最值、增減性如何呢
三、知識(shí)梳理
1、二次函數(shù) 圖像的形狀,位置的關(guān)系是:
2、它們的性質(zhì)是:
四、達(dá)標(biāo)測(cè)試
、睂佄锞y=4x2向上*移3個(gè)單位,所得的拋物線的函數(shù)式是 。
將拋物線y=-5x2+1向下*移5個(gè)單位,所得的拋物線的函數(shù)式是 。
將函數(shù)y=-3x2+4的圖象向 *移 個(gè)單位可得y=-3x2的圖象;
將y=2x2-7的圖象向 *移 個(gè)單位得到可由 y=2x2的圖象。
將y=x2-7的圖象向 *移 個(gè)單位 可得到 y=x2+2的圖象。
2.拋物線y=-3(x-1)2可以看作是拋物線y=-3x2沿x 軸 *移了 個(gè)單位;
拋物線y=-3(x+1)2可以看作是拋物線y=-3x2沿x軸 *移了 個(gè)單位.
拋物線y=-3(x-1)2的頂點(diǎn)是 ;對(duì)稱軸 是 ;
拋物線y=-3(x+1)2的'頂點(diǎn)是 ;對(duì)稱軸是 .
3.拋物線y=-3(x-1)2在對(duì)稱軸(x=1)的左側(cè),即當(dāng)x 時(shí), y隨著x的增大而 ; 在對(duì)稱軸(x=1)右側(cè),即當(dāng)x 時(shí), y隨著x的增大而 .當(dāng)x= 時(shí),函數(shù)y有最 值,最 值是 ;
二次 函數(shù)y=2x2+5的圖像是 ,開口 ,對(duì)稱軸是 ,當(dāng)x= 時(shí),y有最 值,是 。
4.將函數(shù)y=3 (x-4)2的圖象沿x軸對(duì)折后得到的函數(shù)解析式是 ;
將函數(shù)y=3(x-4)2的 圖象沿y軸對(duì)折后得到的函數(shù)解析式是 ;
5.把拋物線y=a(x-4)2向左*移6個(gè)單位后得到拋物線y=- 3(x-h)2的圖象,則a= ,h= .
函數(shù)y=(3x+6)2的圖象是由函數(shù) 的圖象向左*移5個(gè)單位得到的,其圖象開口向 ,對(duì)稱軸是 ,頂點(diǎn)坐標(biāo)是 ,當(dāng)x 時(shí),y隨x的增大而增大,當(dāng)x= 時(shí),y有最 值是 .
6.已知二次函數(shù)y=ax2+c ,當(dāng)x取x1,x2(x1x2), x1,x2分別是A,B兩點(diǎn)的橫坐標(biāo))時(shí),函數(shù)值相等,
則當(dāng)x取x1+x2時(shí),函數(shù)值為 ( )
A. a+c B. a-c C. c D. c
7.已知二次函數(shù)y=a(x-h)2, 當(dāng)x=2時(shí)有最大值,且此函數(shù)的圖象經(jīng)過點(diǎn)(1,-3),求此函數(shù)的解析式,并指出當(dāng)x為何值時(shí),y隨x的增大而增大?
二次函數(shù)數(shù)學(xué)教案10
教學(xué)目標(biāo)
熟練地掌握二次函數(shù)的最值及其求法。
重 點(diǎn)
二次函數(shù)的的最值及其求法。
難 點(diǎn)
二次函數(shù)的最值及其求法。
一、引入
二次函數(shù)的最值:
二、例題分析:
例1:求二次函數(shù) 的最大值以及取得最大值時(shí) 的值。
變題1:⑴、 ⑵、 ⑶、
變題2:求函數(shù) ( )的最大值。
變題3:求函數(shù) ( )的最大值。
例2:已知 ( )的最大值為3,最小值為2,求 的取值范圍。
例3:若 , 是二次方程 的兩個(gè)實(shí)數(shù)根,求 的最小值。
三、隨堂練習(xí):
1、若函數(shù) 在 上有最小值 ,最大值2,若 ,
則 =________, =________。
2、已知 , 是關(guān)于 的'一元二次方程 的兩實(shí)數(shù)根,則 的最小值是( )
A、0 B、1 C、-1 D、2
3、求函數(shù) 在區(qū)間 上的最大值。
四、回顧小結(jié)
本節(jié)課了以下內(nèi)容:
1、二次函數(shù)的的最值及其求法。
課后作業(yè)
班級(jí):( )班 姓名__________
一、基礎(chǔ)題:
1、函數(shù) ( )
A、有最大值6 B、有最小值6 C、有最大值10 D、有最大值2
2、函數(shù) 的最大值是4,且當(dāng) =2時(shí), =5,則 =______, =_______。
二、提高題:
3、試求關(guān)于 的函數(shù) 在 上的最大值 ,高三。
4、已知函數(shù) 當(dāng) 時(shí),取最大值為2,求實(shí)數(shù) 的值。
5、已知 是方程 的兩實(shí)根,求 的最大值和最小值。
三、題:
6、已知函數(shù) , ,其中 ,求該函數(shù)的最大值與最小值,
并求出函數(shù)取最大值和最小值時(shí)所對(duì)應(yīng)的自變量 的值。
二次函數(shù)數(shù)學(xué)教案11
教學(xué)目標(biāo):
1、使學(xué)生進(jìn)一步理解二次函數(shù)的基本性質(zhì);
2、滲透解析幾何,數(shù)形結(jié)合,函數(shù)等數(shù)學(xué)思想.培養(yǎng)學(xué)生發(fā)現(xiàn)問題解決問題,及邏輯思維的能力.
3、使學(xué)生參與教學(xué)過程,通過主體的積極思維,體驗(yàn)感悟數(shù)學(xué).逐步建立數(shù)學(xué)的觀念,培養(yǎng)學(xué)生**地獲取知識(shí)的能力.
教學(xué)重點(diǎn):初步理解數(shù)形結(jié)合的數(shù)學(xué)思想
教學(xué)難點(diǎn):初步理解數(shù)形結(jié)合的數(shù)學(xué)思想
教學(xué)用具:微機(jī)
教學(xué)方法:探究式、小組合作學(xué)習(xí)
教學(xué)過程:
例1、已知:拋物線y=x2-(m2-1)x-2m2-2
、徘笞C:無論m取什么實(shí)數(shù),拋物線與x軸一定有兩個(gè)交點(diǎn)
、苖取什么實(shí)數(shù)時(shí),兩交點(diǎn)間距離最短?是多少?
解:
△ =(m2-1)2+4(2m2+2)
=m4-2m2+1+8m2+8
=m4+6m2+9
=(m2+3)2
m2≥0
∴m2+3>0
∴△>0
∴拋物線與x軸有兩個(gè)交點(diǎn)
問題:為什么說當(dāng)△>0時(shí),拋物線y =ax2+bx+c與x軸有兩個(gè)交點(diǎn).(能否從數(shù)和形兩方面說明)
設(shè)計(jì)意圖:在課堂上創(chuàng)設(shè)讓學(xué)生說數(shù)學(xué)的機(jī)會(huì),學(xué)會(huì)合作學(xué)習(xí),以達(dá)到①經(jīng)驗(yàn)共享,在思維的碰撞**同提高.②學(xué)會(huì)合作,消除個(gè)人中心.③發(fā)現(xiàn)自我,提高參與度.④弘揚(yáng)個(gè)體的主體性,形成健康,豐富的個(gè)性.
數(shù):點(diǎn)在曲線上,點(diǎn)的坐標(biāo)滿足曲線的方程.反之,曲線方程的每一個(gè)實(shí)數(shù)解對(duì)應(yīng)的點(diǎn)都在曲線上.拋物線與x軸的交點(diǎn),既在拋物線上,又在x軸上.所以交點(diǎn)的坐標(biāo)既滿足拋物線的解析式,也滿足x軸的解析式.設(shè)交點(diǎn)坐標(biāo)為(x,y)
∴
這樣交點(diǎn)問題就轉(zhuǎn)化成求這個(gè)二元二次方程組的解.代入y =0,消去y,轉(zhuǎn)化成ax2+bx+c=0這個(gè)一元二次方程求根問題.根據(jù)以前學(xué)過的知識(shí),當(dāng)△>0時(shí), ax2+bx+c=0有兩個(gè)不相等的實(shí)根.∴y =ax2+bx+c
y =0
有兩個(gè)不等的實(shí)數(shù)解
∴拋物線與x軸交于兩個(gè)不同的點(diǎn).
形:頂點(diǎn)在x軸上方,且開口向下.或者頂點(diǎn)在x軸下方,且開口向上.
設(shè)計(jì)意圖:滲透解析幾何的基本思想
使學(xué)生掌握轉(zhuǎn)化思想使學(xué)生在解題過程中,感知數(shù)學(xué)的直觀性和形式化這二重性.掌握數(shù)形結(jié)合,分類討論的思想方法.逐步學(xué)會(huì)數(shù)學(xué)的思維.
轉(zhuǎn)化成代數(shù)語言為:
小結(jié):第一種方法,根據(jù)解析幾何的基本思想.將求曲線的交點(diǎn)問題,轉(zhuǎn)化成求方程組的解的問題.
第二種方法,借助于圖象思考問題,比較直觀.發(fā)現(xiàn)規(guī)律后,再用數(shù)學(xué)的符號(hào)語言將其形式化.這既體現(xiàn)了數(shù)學(xué)中的數(shù)形結(jié)合的思想方法,也是探索解數(shù)學(xué)問題的一般方法.
思考:試從數(shù)、形兩方面說明拋物線與x軸的交點(diǎn)個(gè)數(shù)與判別 式的符號(hào)的關(guān)系.
設(shè)計(jì)意圖:數(shù)學(xué)學(xué)習(xí)是一個(gè)再創(chuàng)造的過程,不能等同于數(shù)學(xué)知識(shí)的匯集,而要讓學(xué)生經(jīng)歷數(shù)學(xué)知識(shí)的創(chuàng)造過程.使主體積極地參與到學(xué)習(xí)中去.以數(shù)學(xué)知識(shí)為載體,揭示出蘊(yùn)涵于其中的數(shù)學(xué)思想方法,逐步形成數(shù)學(xué)觀念.
、苖取什么實(shí)數(shù)時(shí),兩交點(diǎn)間距離最短?是多少?
解:設(shè)二次函數(shù)與x軸的兩交點(diǎn)為(x1,0),(x2,0)
解法㈠ 由⑴可知m為任何實(shí)數(shù)時(shí), 都有△>0
解①
∴ x1+x2=m2-1
x1·x2=-2(m2+1)
∴│x2-x1│=
=
=
=
=m2+3
∴當(dāng)m =0時(shí),兩交點(diǎn)最小距離為3
這里兩交點(diǎn)間距離是m的.函數(shù)
設(shè)計(jì)意圖:培養(yǎng)學(xué)生的問題意識(shí).在解題過程中,發(fā)現(xiàn)問題,并能運(yùn)用已有的數(shù)學(xué)知識(shí),將其一般化,形式化,解決問題,體會(huì)數(shù)學(xué)問題解決的一般方法.培養(yǎng)學(xué)生**地獲取數(shù)學(xué)知識(shí)的能力.滲透函數(shù)思想
問題: 觀察本題兩交點(diǎn)間距離與判別式的值之間有何異同?具有一般的規(guī)律嗎?如何說明.
設(shè)x1、x2 為ax2+bx+c =0的兩根
可以推出:
還可以理解為頂點(diǎn)到x軸距離最短.
設(shè)計(jì)意圖:在對(duì)比、分析中,明確概念,揭示知識(shí)間的聯(lián)系,幫助學(xué)生建立良好的認(rèn)知結(jié)構(gòu).
小結(jié):觀察這道題的結(jié)論,我們猜測(cè)出規(guī)律,將其一般化,推導(dǎo)出這個(gè)公式,這是學(xué)習(xí)數(shù)學(xué)知識(shí)的一般方法.
解法㈡:用十字相乘法或求根公式法求根.
思考:一元二次方程與二次函數(shù)的關(guān)系.
思考:求m取什么實(shí)數(shù)時(shí),y =x2-(m2-1)x -2 m2-2被直線y =2所截得的線段最短?是多少?
練習(xí):
觀察函數(shù) 的圖象,回答:
。1)y>0時(shí),x的取值范圍如何?
(2)y=0時(shí),x取什么值?
。1)y<0時(shí),x的取值范圍如何?
小結(jié):數(shù)與形是數(shù)學(xué)中相互依賴的兩個(gè)方面.圖形比較直觀,可以啟發(fā)思路;而數(shù)學(xué)的嚴(yán)格證明也是必不可少的.直觀性和形式化是數(shù)學(xué)的兩重性.
探究活動(dòng)
探究問題:
欣欣日用品零售商店,從某公司批發(fā)部每月按銷售合同以批發(fā)單價(jià)每把8元購(gòu)進(jìn)雨傘(數(shù)量至少為100把),欣欣商店根據(jù)銷售記錄,這批雨傘以零售單價(jià)每把為14元出售時(shí),月銷售量為100把,數(shù)學(xué)教案-二次函數(shù)y=ax2+bx+c 的圖象,初中數(shù)學(xué)教案《數(shù)學(xué)教案-二次函數(shù)y=ax2+bx+c 的圖象》。如果零售單價(jià)每降價(jià)0.1元 , 月銷售量就要增加5把.
(1) 欣欣日用品零售商店以零售單價(jià)14元出售時(shí),一個(gè)月的利潤(rùn)為多少元?
(2) 欣欣日用品零售商店為了擴(kuò)大銷售記錄,現(xiàn)實(shí)行降價(jià)銷售,問分別降價(jià)0.2元、0.8元、1.2元、1.6元、2.4元、3元時(shí)的利潤(rùn)是多少?
(3) 欣欣日用品零售商店實(shí)行降價(jià)銷售后,問降價(jià)多少元時(shí)利潤(rùn)最大?最大利潤(rùn)為多少元?
(4) 現(xiàn)在該公司的批發(fā)部為了再次擴(kuò)大這種雨傘的銷售量,給零售商制定如下優(yōu)惠措施:如果零售商每月從批發(fā)部購(gòu)進(jìn)雨傘的數(shù)量超過100把,其超過100把的部分每把按原價(jià)九五折(即百分之95)付費(fèi),但零售價(jià)每把不能低于10元。欣欣日用品零售商店應(yīng)將這種雨傘的零售單價(jià)定為每把多少元出售時(shí),才能使這種雨傘的月銷售利潤(rùn)最大?最大月銷售利潤(rùn)是多少元?(銷售利潤(rùn)=銷售款額—進(jìn)貨款額)
解:(1)(14—8) (元)
。2)638元、728元、748元、792元、792元、750元。
(3)設(shè)降價(jià) 元時(shí)利潤(rùn)最大,最大利潤(rùn)為 元
=
=
=
∴ 當(dāng) 時(shí), 有最大值
元
。4)設(shè)降價(jià) 元時(shí)利潤(rùn)最大,利潤(rùn)為 元
。ㄆ渲 )。
化簡(jiǎn),得 。
,
∴ 當(dāng) 時(shí), 有最大值。
∴ 。
數(shù)學(xué)教案-二次函數(shù)y=ax2+bx+c 的圖象
二次函數(shù)數(shù)學(xué)教案12
一、教材分析:
《34.4二次函數(shù)的應(yīng)用》選自義務(wù)教育課程標(biāo)準(zhǔn)試驗(yàn)教科書《數(shù)學(xué)》(冀教版)九年級(jí)上冊(cè)第三十四章第四節(jié),這節(jié)課是在學(xué)生學(xué)習(xí)了二次函數(shù)的概念、圖象及性質(zhì)的基礎(chǔ)上,讓學(xué)生繼續(xù)探索二次函數(shù)與一元二次方程的關(guān)系,教材通過小球飛行這樣的實(shí)際情境,創(chuàng)設(shè)三個(gè)問題,這三個(gè)問題對(duì)應(yīng)了一元二次方程有兩個(gè)不等實(shí)根、有兩個(gè)相等實(shí)根、沒有實(shí)根的三種情況。這樣,學(xué)生結(jié)合問題實(shí)際意義就能對(duì)二次函數(shù)與一元二次方程的關(guān)系有很好的體會(huì);從而得出用二次函數(shù)的圖象求一元二次方程的方法。這也突出了課標(biāo)的要求:注重知識(shí)與實(shí)際問題的聯(lián)系。
本節(jié)教學(xué)時(shí)間安排1課時(shí)
二、教學(xué)目標(biāo):
知識(shí)技能:
1.經(jīng)歷探索二次函數(shù)與一元二次方程的關(guān)系的過程,體會(huì)方程與函數(shù)之間的聯(lián)系.
2.理解拋物線交x軸的點(diǎn)的個(gè)數(shù)與一元二次方程的根的個(gè)數(shù)之間的關(guān)系,理解何時(shí)方程有兩個(gè)不等的實(shí)根、兩個(gè)相等的實(shí)數(shù)和沒有實(shí)根.
3.能夠利用二次函數(shù)的圖象求一元二次方程的近似根。
數(shù)學(xué)思考:
1.經(jīng)歷探索二次函數(shù)與一元二次方程的關(guān)系的過程,培養(yǎng)學(xué)生的探索能力和創(chuàng)新精神.
2.經(jīng)歷用圖象法求一元二次方程的近似根的過程,獲得用圖象法求方程近似根的體驗(yàn).
3.通過觀察二次函數(shù)圖象與x軸的交點(diǎn)個(gè)數(shù),討論一元二次方程的根的情況,進(jìn)一步培養(yǎng)學(xué)生的數(shù)形結(jié)合思想。
解決問題:
1.經(jīng)歷探索二次函數(shù)與一元二次方程的關(guān)系的過程,體驗(yàn)數(shù)學(xué)活動(dòng)充滿著探索與創(chuàng)造,感受數(shù)學(xué)的嚴(yán)謹(jǐn)性以及數(shù)學(xué)結(jié)論的確定性。
2.通過利用二次函數(shù)的圖象估計(jì)一元二次方程的根,進(jìn)一步掌握二次函數(shù)圖象與x軸的交點(diǎn)坐標(biāo)和一元二次方程的根的關(guān)系,提高估算能力。
情感態(tài)度:
1.從學(xué)生感興趣的問題入手,讓學(xué)生親自體會(huì)學(xué)習(xí)數(shù)學(xué)的價(jià)值,從而提高學(xué)生學(xué)習(xí)數(shù)學(xué)的'好奇心和求知欲。
2.通過學(xué)生共同觀察和討論,培養(yǎng)大家的合作交流意識(shí)。
三、教學(xué)重點(diǎn)、難點(diǎn):
教學(xué)重點(diǎn):
1.體會(huì)方程與函數(shù)之間的聯(lián)系。
2.能夠利用二次函數(shù)的圖象求一元二次方程的近似根。
教學(xué)難點(diǎn):
1.探索方程與函數(shù)之間關(guān)系的過程。
2.理解二次函數(shù)與x軸交點(diǎn)的個(gè)數(shù)與一元二次方程的根的個(gè)數(shù)之間的關(guān)系。
四、教學(xué)方法:?jiǎn)l(fā)引導(dǎo) 合作交流
五:教具、學(xué)具:課件
六、教學(xué)過程:
[活動(dòng)1] 檢查預(yù)習(xí) 引出課題
預(yù)習(xí)作業(yè):
1.解方程:(1)x2+x-2=0; (2) x2-6x+9=0; (3) x2-x+1=0; (4) x2-2x-2=0.
2. 回顧一次函數(shù)與一元一次方程的關(guān)系,利用函數(shù)的圖象求方程3x-4=0的解.
師生行為:教師展示預(yù)習(xí)作業(yè)的內(nèi)容,指名回答,師生共同回顧舊知,教師做出適當(dāng)總結(jié)和評(píng)價(jià)。
教師重點(diǎn)關(guān)注:學(xué)生回答問題結(jié)論準(zhǔn)確性,能否把前后知識(shí)聯(lián)系起來,2題的格式要規(guī)范。
設(shè)計(jì)意圖:這兩道預(yù)習(xí)題目是對(duì)舊知識(shí)的回顧,為本課的教學(xué)起到鋪墊的作用,1題中的三個(gè)方程是課本中觀察欄目中的三個(gè)函數(shù)式的變式,這三個(gè)方程把二次方程的根的三種情況體現(xiàn)出來,讓學(xué)生回顧二次方程的相關(guān)知識(shí);2題是一次函數(shù)與一元一次方程的關(guān)系的問題,這題的設(shè)計(jì)是讓學(xué)生用學(xué)過的熟悉的知識(shí)類比探究本課新知識(shí)。
[活動(dòng)2] 創(chuàng)設(shè)情境 探究新知
問題
1. 課本P94 問題.
2. 結(jié)合圖形指出,為什么有兩個(gè)時(shí)間球的高度是15m或0m?為什么只在一個(gè)時(shí)間球的高度是20m?
3. 結(jié)合預(yù)習(xí)題1,完成課本P94 觀察中的題目。
師生行為:教師提出問題1,給學(xué)生**思考的時(shí)間,教師可適當(dāng)引導(dǎo),對(duì)學(xué)生的解題思路和格式進(jìn)行梳理和規(guī)范;問題2學(xué)生**思考指名回答,注重?cái)?shù)形結(jié)合思想的滲透;問題3是由學(xué)生分組探究的,這個(gè)問題的探究稍有難度,活動(dòng)中教師要深入到各個(gè)小組中進(jìn)行點(diǎn)撥,引導(dǎo)學(xué)生總結(jié)歸納出正確結(jié)論。
二次函數(shù)y=ax2+bx+c的圖象和x軸交點(diǎn)的坐標(biāo)與一元二次方程ax2+bx+c=0的根有什么關(guān)系?
教師重點(diǎn)關(guān)注:
1.學(xué)生能否把實(shí)際問題準(zhǔn)確地轉(zhuǎn)化為數(shù)學(xué)問題;
2.學(xué)生在思考問題時(shí)能否注重?cái)?shù)形結(jié)合思想的應(yīng)用;
3.學(xué)生在探究問題的過程中,能否經(jīng)歷**思考、認(rèn)真傾聽、獲得信息、梳理歸納的過程,使解決問題的方法更準(zhǔn)確。
設(shè)計(jì)意圖:由現(xiàn)實(shí)中的實(shí)際問題入手給學(xué)生創(chuàng)設(shè)熟悉的問題情境,促使學(xué)生能積極地參與到數(shù)學(xué)活動(dòng)中去,體會(huì)二次函數(shù)與實(shí)際問題的關(guān)系;學(xué)生通過小組合作分析、交流,探求二次函數(shù)與一元二次方程的關(guān)系,培養(yǎng)學(xué)生的合作精神,積累學(xué)習(xí)經(jīng)驗(yàn)。
[活動(dòng)3] 例題學(xué)習(xí) 鞏固提高
問題
例 利用函數(shù)圖象求方程x2-2x-2=0的實(shí)數(shù)根(精確到0.1).
師生行為:教師提出問題,引導(dǎo)學(xué)生根據(jù)預(yù)習(xí)題2**完成,師生互相訂正。
教師關(guān)注:(1)學(xué)生在解題過程中格式是否規(guī)范;(2)學(xué)生所畫圖象是否準(zhǔn)確,估算方法是否得當(dāng)。
設(shè)計(jì)意圖:通過預(yù)習(xí)題2的鋪墊,同學(xué)們已經(jīng)從舊知識(shí)中尋找到新知識(shí)的生長(zhǎng)點(diǎn),很容易明確例題的解題思路和方法,這樣既降低難點(diǎn)且突出重點(diǎn)。
[活動(dòng)4] 練習(xí)反饋 鞏固新知
二次函數(shù)數(shù)學(xué)教案13
二次函數(shù)的教學(xué)設(shè)計(jì)
教學(xué)內(nèi)容:人教版九年義務(wù)教育初中第三冊(cè)第108頁
教學(xué)目標(biāo):
1。 1。 理解二次函數(shù)的意義;會(huì)用描點(diǎn)法畫出函數(shù)y=ax2的圖象,知道拋物線的有關(guān)概念;
2。 2。 通過變式教學(xué),培養(yǎng)學(xué)生思維的敏捷性、廣闊性、深刻性;
3。 3。 通過二次函數(shù)的教學(xué)讓學(xué)生進(jìn)一步體會(huì)研究函數(shù)的一般方法;加深對(duì)于數(shù)形結(jié)合思想認(rèn)識(shí)。
教學(xué)重點(diǎn):二次函數(shù)的意義;會(huì)畫二次函數(shù)圖象。
教學(xué)難點(diǎn):描點(diǎn)法畫二次函數(shù)y=ax2的圖象,數(shù)與形相互聯(lián)系。
教學(xué)過程設(shè)計(jì):
一 創(chuàng)設(shè)情景、建模引入
我們已學(xué)習(xí)了正比例函數(shù)及一次函數(shù),現(xiàn)在來看看下面幾個(gè)例子:
1。寫出圓的半徑是R(CM),它的面積S(CM2)與R的關(guān)系式
答:S=πR2。 ①
2。寫出用總長(zhǎng)為60M的籬笆圍成矩形場(chǎng)地,矩形面積S(M2)與矩形一邊長(zhǎng)L(M)之間的關(guān)系
答:S=L(30-L)=30L-L2 ②
分析:①②兩個(gè)關(guān)系式中S與R、L之間是否存在函數(shù)關(guān)系?
S是否是R、L的一次函數(shù)?
由于①②兩個(gè)關(guān)系式中S不是R、L的一次函數(shù),那么S是R、L的什么函數(shù)呢?這樣的函數(shù)大家能不能猜想一下它叫什么函數(shù)呢?
答:二次函數(shù)。
這一節(jié)課我們將研究二次函數(shù)的有關(guān)知識(shí)。(板書課題)
二 歸納抽象、形成概念
一般地,如果y=ax2+bx+c(a,b,c是常數(shù),a≠0) ,
那么,y叫做x的.二次函數(shù)。
注意:(1)必須a≠0,否則就不是二次函數(shù)了。而b,c兩數(shù)可以是零。(2) 由于二次函數(shù)的解析式是整式的形式,所以x的取值范圍是任意實(shí)數(shù)。
練習(xí):1。舉例子:請(qǐng)同學(xué)舉一些二次函數(shù)的例子,全班同學(xué)判斷是否正確。
2。出難題:請(qǐng)同學(xué)給大家出示一個(gè)函數(shù),請(qǐng)同學(xué)判斷是否是二次函數(shù)。
。ㄈ魧W(xué)生考慮不全,教師給予補(bǔ)充。如:;;; 的形式。)
。ㄍㄟ^學(xué)生觀察、歸納定義加深對(duì)概念的理解,既培養(yǎng)了學(xué)生的實(shí)踐能力,有培養(yǎng)了學(xué)生的探究精神。并通過開放性的練習(xí)培養(yǎng)學(xué)生思維的發(fā)散性、開放性。題目用了一些人性化的詞語,也增添了課堂的趣味性。)
由前面一次函數(shù)的學(xué)習(xí),我們已經(jīng)知道研究函數(shù)一般應(yīng)按照定義、圖象、性質(zhì)、求解析式幾個(gè)方面進(jìn)行研究。二次函數(shù)我們也會(huì)按照定義、圖象、性質(zhì)、求解析式幾個(gè)方面進(jìn)行研究。
(在這里指出學(xué)習(xí)函數(shù)的一般方法,旨在及時(shí)進(jìn)行學(xué)法指導(dǎo);并將此方法形成技能,以指導(dǎo)今后的學(xué)習(xí);進(jìn)一步培養(yǎng)終身學(xué)習(xí)的能力。)
三 嘗試模仿、鞏固提高
讓我們先從最簡(jiǎn)單的二次函數(shù)y=ax2入手展開研究
1。 1。 嘗試:大家知道一次函數(shù)的圖象是一條直線,那么二次函數(shù)的圖象是什么呢?
請(qǐng)同學(xué)們畫出函數(shù)y=x2的圖象。
。▽W(xué)生分別畫圖,教師巡視了解情況。)
2。 2。 模仿鞏固:教師將了解到的各種不同圖象用實(shí)物投影向大家展示,到底哪一個(gè)對(duì)呢?下面師生共同畫出函數(shù)y=x2的圖象。
解:一、列表:
x
-3
-2
-1
0
1
2
3
Y=x2
9
4
1
0
1
4
9
二、描點(diǎn)、連線: 按照表格,描出各點(diǎn)。然后用光滑的曲線,按照x(點(diǎn)的橫坐標(biāo))由小到大的順序把各點(diǎn)連結(jié)起來。
對(duì)照教師畫的圖象一一分析學(xué)生所畫圖象的正誤及原因,從而得到畫二次函數(shù)圖象的幾點(diǎn)注意。
練習(xí):畫出函數(shù);的圖象(請(qǐng)兩個(gè)同學(xué)板演)
X
-3
-2
-1
0
1
2
3
Y=0。5X2
4。5
2
0。5
0
0。5
02
4。5
Y=-X2
-9
-4
-1
0
-1
-4
-9
畫好之后教師根據(jù)情況講評(píng),并引導(dǎo)學(xué)生觀察圖象形狀得出:二次函數(shù) y=ax2的圖象是一條拋物線。
。ㄟ@里,教師在學(xué)生自己探索嘗試的基礎(chǔ)上,示范畫圖象的方法和過程,希望學(xué)生學(xué)會(huì)畫圖象的方法;并及時(shí)安排練習(xí)鞏固剛剛學(xué)到的新知識(shí),通過觀察,感悟拋物線名稱的由來。)
三 運(yùn)用新知、變式探究
畫出函數(shù) y=5x2圖象
學(xué)生在畫圖象的過程當(dāng)中遇到函數(shù)值較大的困難,不知如何是好。
x
-0。5
-0。4
-0。3
-0。2
-0。1
0
0。1
0。2
0。3
0。4
0。5
Y=5x2
1。25
0。8
0。45
0。2
0。05
0
0。05
0。2
0。45
0。8
1。25
教師出示已畫好的圖象讓學(xué)生觀察
注意:1。 畫圖象應(yīng)描7個(gè)左右的點(diǎn),描的點(diǎn)越多圖象越準(zhǔn)確。
2。 自變量X的取值應(yīng)注意關(guān)于Y軸對(duì)稱。
3。 對(duì)于不同的二次函數(shù)自變量X的取值應(yīng)更加靈活,例如可以取分?jǐn)?shù)。
四。 四。 歸納小結(jié)、延續(xù)探究
教師引導(dǎo)學(xué)生觀察表格及圖象,歸納y=ax2的性質(zhì),學(xué)生們暢所欲言,各抒己見;互相改進(jìn),互相完善。最終得到如下性質(zhì):
一般的,二次函數(shù)y=ax2的圖象是一條拋物線,對(duì)稱軸是Y軸,頂點(diǎn)是坐標(biāo)原點(diǎn);當(dāng)a>0時(shí),圖象的開口向上,最低點(diǎn)為(0,0);當(dāng)a<0時(shí),圖象的開口向下,最高點(diǎn)為(0,0)。
五 回顧反思、總結(jié)收獲
在這一環(huán)節(jié)中,教師請(qǐng)同學(xué)們回顧一節(jié)課的學(xué)習(xí)暢談自己的收獲或多、或少、或幾點(diǎn)、或全面,總之是人人有所得,個(gè)個(gè)有提高。這也正是新課標(biāo)中所倡導(dǎo)的新的理念——不同的人在數(shù)學(xué)上得到不同的發(fā)展。
(在整個(gè)一節(jié)課上,基本上是學(xué)生講為主,教師講為輔。一些較為困難的問題,我也鼓勵(lì)學(xué)生大膽思考,積極嘗試,不怕困難,一個(gè)人完不成,講不透,第二個(gè)人、第三個(gè)人補(bǔ)充,直到完成整個(gè)例題。這樣上課氣氛非;钴S,學(xué)生之間常會(huì)因?yàn)槟硞(gè)觀點(diǎn)的不同而爭(zhēng)論,這就給教師提出了更高的要求,一方面要**好整節(jié)課的節(jié)奏,另一方面又要察言觀色,適時(shí)地對(duì)某些觀點(diǎn)作出判斷,或與學(xué)生一同討論。)
二次函數(shù)數(shù)學(xué)教案14
通過學(xué)生的討論,使學(xué)生更清楚以下事實(shí):
(1)分解因式與整式的乘法是一種互逆關(guān)系;
(2)分解因式的結(jié)果要以積的形式表示;
(3)每個(gè)因式必須是整式,且每個(gè)因式的次數(shù)都必須低于原來的多項(xiàng)式 的次數(shù);
(4)必須分解到每個(gè)多項(xiàng)式不能再分解為止。
活動(dòng)5:應(yīng)用新知
例題學(xué)習(xí):
P166例1、例2(略)
在教師的引導(dǎo)下,學(xué)生應(yīng)用提公因式法共同完成例題。
讓學(xué)生進(jìn)一步理解提公因式法進(jìn)行因式分解。
活動(dòng)6:課堂練習(xí)
1.P167練習(xí);
2. 看誰連得準(zhǔn)
x2-y2 (x+1)2
9-25 x 2 y(x -y)
x 2+2x+1 (3-5 x)(3+5 x)
xy-y2 (x+y)(x-y)
3.下列哪些變形是因式分解,為什么?
(1)(a+3)(a -3)= a 2-9
(2)a 2-4=( a +2)( a -2)
(3)a 2-b2+1=( a +b)( a -b)+1
(4)2πR+2πr=2π(R+r)
學(xué)生自主完成練習(xí)。
通過學(xué)生的反饋練習(xí),使教師能全面了解學(xué)生對(duì)因式分解意義的理解是否到位,以便教師能及時(shí)地進(jìn)行查缺補(bǔ)漏。
活動(dòng)7:課堂小結(jié)
從今天的課程中,你學(xué)到了哪些知識(shí)?掌握了哪些方法?明白了哪些道理?
學(xué)生發(fā)言。
通過學(xué)生的回顧與反思,強(qiáng)化學(xué)生對(duì)因式分解意義的理解,進(jìn)一步清楚地了解分解因式與整式的乘法的'互逆關(guān)系,加深對(duì)類比的數(shù)學(xué)思想的理解。
活動(dòng)8:課后作業(yè)
課本P170習(xí)題的第1、4大題。
學(xué)生自主完成
通過作業(yè)的鞏固對(duì)因式分解,特別是提公因式法理解并學(xué)會(huì)應(yīng)用。
板書設(shè)計(jì)(需要一直留在黑板上主板書)
15.4.1提公因式法 例題
1.因式分解的定義
2.提公因式法
二次函數(shù)數(shù)學(xué)教案15
在整個(gè)中學(xué)數(shù)學(xué)知識(shí)體系中,二次函數(shù)占據(jù)極其關(guān)鍵且重要的地位,二次函數(shù)不僅是中高考數(shù)學(xué)的重要考點(diǎn),也是線性數(shù)學(xué)知識(shí)的基礎(chǔ)。那老師應(yīng)該怎么教呢?今天,小編給大家?guī)沓跞龜?shù)學(xué)二次函數(shù)教案教學(xué)方法。
一、 重視每一堂復(fù)習(xí)課 數(shù)學(xué)復(fù)習(xí)課不比新課,講的都是已經(jīng)學(xué)過的東西,我想許多老師都和我有相同的體會(huì),那就是復(fù)習(xí)課比新課難上。
二、 重視每一個(gè)學(xué)生 學(xué)生是課堂的主體,離開學(xué)生談?wù)n堂效率肯定是行不通的。而我校的學(xué)生數(shù)學(xué)基礎(chǔ)大多不太好,上課的積極性普遍不高,對(duì)學(xué)習(xí)的熱情也不是很高,這些都是十分現(xiàn)實(shí)的事情,既然現(xiàn)狀無法更改,那么我們只能去適應(yīng)它,這就對(duì)我們老師提出了更高的要求
三、做好課外與學(xué)生的溝通,學(xué)生對(duì)你教學(xué)理念認(rèn)同和教學(xué)常規(guī)配合與否,功夫往往在課外,只有在課外與學(xué)生多進(jìn)行交流和溝通,和學(xué)生建立起比較深厚的師生情誼,那么最頑皮的學(xué)生也能在他喜歡的老師的課堂上聽進(jìn)一點(diǎn)
四、要多了解學(xué)生。你對(duì)學(xué)生的了解更有助于你的教學(xué),特別是在初三總復(fù)習(xí)間斷,及時(shí)了解每個(gè)學(xué)生的復(fù)習(xí)情況有助于你更好的制定復(fù)習(xí)計(jì)劃和備下一堂課,也有利于你更好的改進(jìn)教學(xué)方法。
2二次函數(shù)教學(xué)方法一
一、 立足教材,夯實(shí)雙基:進(jìn)行中考數(shù)學(xué)復(fù)習(xí)的時(shí)候,要立足于教材,重新梳理教材中的典例和習(xí)題,就顯得尤為重要、并且要讓學(xué)生在掌握的基礎(chǔ)上,能夠做到知識(shí)的延伸和遷移,讓解題方法、技巧在學(xué)生遇到相似問題時(shí),能在頭腦中再現(xiàn)
二、 立足課堂,提高效率:做到教師入題海,學(xué)生出題海、教師應(yīng)多做題、多研究近幾年的中考試題,并根據(jù)本班學(xué)生的實(shí)際情況,從眾多復(fù)習(xí)資料中,選擇適合本班學(xué)生的最佳練習(xí),也可通過對(duì)題目的重組。
三、教師在設(shè)計(jì)教學(xué)目標(biāo)時(shí),要做到胸中有書,目中有人,讓每一節(jié)課都給學(xué)生留有時(shí)間,讓他們有**思考、合作探究交流的過程,最大限度的調(diào)動(dòng)學(xué)生的參與度,激發(fā)他們的學(xué)習(xí)興趣,達(dá)到最佳的復(fù)習(xí)效果、
四、激發(fā)興趣,提高質(zhì)量:興趣是學(xué)習(xí)最好的動(dòng)力,在上復(fù)習(xí)課時(shí)尤為重要、因此,我們?cè)谑谡n的過程中,在關(guān)注知識(shí)復(fù)習(xí)的同時(shí),也要關(guān)注學(xué)生的學(xué)習(xí)欲望和學(xué)習(xí)效果,要讓學(xué)生在學(xué)習(xí)的過程中體驗(yàn)成功的快感、這樣他們才會(huì)更有興趣的學(xué)習(xí)下去、
3二次函數(shù)教學(xué)方法二
1、質(zhì)疑問難是學(xué)生自主學(xué)習(xí)的重要表現(xiàn),優(yōu)化課堂結(jié)構(gòu),激活學(xué)生的主體意識(shí),必須鼓勵(lì)學(xué)生質(zhì)疑問難。教師要?jiǎng)?chuàng)造**融合的課堂氣氛,允許學(xué)生隨時(shí)“插嘴”、**、爭(zhēng)辯,甚至提出與教師不同的看法。
2、二次函數(shù)是初中階段繼一次函數(shù)、反比例函數(shù)之后,學(xué)生要學(xué)習(xí)的最后一類重要的代數(shù)函數(shù),它也是描述現(xiàn)實(shí)世界變量之間關(guān)系的重要的數(shù)學(xué)模型。
3、學(xué)生有疑而問、質(zhì)疑問難,是用心思考、自主學(xué)習(xí)、主動(dòng)探究的可貴表現(xiàn),理應(yīng)得到老師的熱情鼓勵(lì)和贊揚(yáng),F(xiàn)在對(duì)學(xué)生的隨時(shí)“插嘴”,提出的各種疑難問題,應(yīng)抱歡迎、鼓勵(lì)的態(tài)度給與肯定,并做出正確的解釋。
4、初中階段主要研究二次函數(shù)的概念、圖像和性質(zhì),用二次函數(shù)的觀點(diǎn)審視一元二次方程,用二次函數(shù)的相關(guān)知識(shí)分析和解決簡(jiǎn)單的實(shí)際問題。
4二次函數(shù)教學(xué)方法三
1、教學(xué)案例、教學(xué)設(shè)計(jì)、教學(xué)實(shí)錄、教學(xué)敘事的'區(qū)別:教學(xué)案例與教案:教案(教學(xué)設(shè)計(jì))是事先設(shè)想的教育教學(xué)思路,是對(duì)準(zhǔn)備實(shí)施的教育措施的簡(jiǎn)要說明,反映的是教學(xué)預(yù)期;而教學(xué)案例則是對(duì)已發(fā)生的教育教學(xué)過程的描述,反映的是教學(xué)結(jié)果。
2、教學(xué)案例與教學(xué)實(shí)錄:它們同樣是對(duì)教育教學(xué)情境的描述,但教學(xué)實(shí)錄是有聞必錄(事實(shí)判斷),而教學(xué)案例是根據(jù)目的和功能選擇內(nèi)容,并且必須有作者的反思(價(jià)值判斷)。
3、教學(xué)案例與敘事研究的聯(lián)系與區(qū)別:從“情景故事”的意義上講,教育敘事研究報(bào)告也是一種“教育案例”,但“教學(xué)案例”特指有典型意義的、包含疑難問題的、多角度描述的經(jīng)過研究并加上作者反思(或自我點(diǎn)評(píng))的教學(xué)敘事;
4、教學(xué)案例必須從教學(xué)任務(wù)分析的目標(biāo)出發(fā),有意識(shí)地選擇有關(guān)信息,必須事先進(jìn)行實(shí)地作業(yè),因此日常教育敘事日志可以作為寫作教學(xué)案例的素材積累。
對(duì)數(shù)函數(shù)教案 (菁選3篇)(擴(kuò)展10)
——二次函數(shù)數(shù)學(xué)教案菁選
二次函數(shù)數(shù)學(xué)教案范文
作為一名教學(xué)工作者,常常需要準(zhǔn)備教案,通過教案準(zhǔn)備可以更好地根據(jù)具體情況對(duì)教學(xué)進(jìn)程做適當(dāng)?shù)谋匾恼{(diào)整。那么你有了解過教案嗎?下面是小編整理的二次函數(shù)數(shù)學(xué)教案范文,希望能夠幫助到大家。
在整個(gè)中學(xué)數(shù)學(xué)知識(shí)體系中,二次函數(shù)占據(jù)極其關(guān)鍵且重要的地位,二次函數(shù)不僅是中高考數(shù)學(xué)的重要考點(diǎn),也是線性數(shù)學(xué)知識(shí)的基礎(chǔ)。那老師應(yīng)該怎么教呢?今天,小編給大家?guī)沓跞龜?shù)學(xué)二次函數(shù)教案教學(xué)方法。
一、 重視每一堂復(fù)習(xí)課 數(shù)學(xué)復(fù)習(xí)課不比新課,講的都是已經(jīng)學(xué)過的東西,我想許多老師都和我有相同的體會(huì),那就是復(fù)習(xí)課比新課難上。
二、 重視每一個(gè)學(xué)生 學(xué)生是課堂的主體,離開學(xué)生談?wù)n堂效率肯定是行不通的。而我校的學(xué)生數(shù)學(xué)基礎(chǔ)大多不太好,上課的積極性普遍不高,對(duì)學(xué)習(xí)的熱情也不是很高,這些都是十分現(xiàn)實(shí)的事情,既然現(xiàn)狀無法更改,那么我們只能去適應(yīng)它,這就對(duì)我們老師提出了更高的要求
三、做好課外與學(xué)生的溝通,學(xué)生對(duì)你教學(xué)理念認(rèn)同和教學(xué)常規(guī)配合與否,功夫往往在課外,只有在課外與學(xué)生多進(jìn)行交流和溝通,和學(xué)生建立起比較深厚的師生情誼,那么最頑皮的學(xué)生也能在他喜歡的老師的課堂上聽進(jìn)一點(diǎn)
四、要多了解學(xué)生。你對(duì)學(xué)生的了解更有助于你的教學(xué),特別是在初三總復(fù)習(xí)間斷,及時(shí)了解每個(gè)學(xué)生的復(fù)習(xí)情況有助于你更好的制定復(fù)習(xí)計(jì)劃和備下一堂課,也有利于你更好的改進(jìn)教學(xué)方法。
2二次函數(shù)教學(xué)方法一
一、 立足教材,夯實(shí)雙基:進(jìn)行中考數(shù)學(xué)復(fù)習(xí)的時(shí)候,要立足于教材,重新梳理教材中的典例和習(xí)題,就顯得尤為重要、并且要讓學(xué)生在掌握的基礎(chǔ)上,能夠做到知識(shí)的延伸和遷移,讓解題方法、技巧在學(xué)生遇到相似問題時(shí),能在頭腦中再現(xiàn)
二、 立足課堂,提高效率:做到教師入題海,學(xué)生出題海、教師應(yīng)多做題、多研究近幾年的中考試題,并根據(jù)本班學(xué)生的實(shí)際情況,從眾多復(fù)習(xí)資料中,選擇適合本班學(xué)生的最佳練習(xí),也可通過對(duì)題目的重組。
三、教師在設(shè)計(jì)教學(xué)目標(biāo)時(shí),要做到胸中有書,目中有人,讓每一節(jié)課都給學(xué)生留有時(shí)間,讓他們有**思考、合作探究交流的過程,最大限度的調(diào)動(dòng)學(xué)生的參與度,激發(fā)他們的學(xué)習(xí)興趣,達(dá)到最佳的復(fù)習(xí)效果、
四、激發(fā)興趣,提高質(zhì)量:興趣是學(xué)習(xí)最好的動(dòng)力,在上復(fù)習(xí)課時(shí)尤為重要、因此,我們?cè)谑谡n的過程中,在關(guān)注知識(shí)復(fù)習(xí)的同時(shí),也要關(guān)注學(xué)生的學(xué)習(xí)欲望和學(xué)習(xí)效果,要讓學(xué)生在學(xué)習(xí)的過程中體驗(yàn)成功的快感、這樣他們才會(huì)更有興趣的學(xué)習(xí)下去、
3二次函數(shù)教學(xué)方法二
1、質(zhì)疑問難是學(xué)生自主學(xué)習(xí)的重要表現(xiàn),優(yōu)化課堂結(jié)構(gòu),激活學(xué)生的主體意識(shí),必須鼓勵(lì)學(xué)生質(zhì)疑問難。教師要?jiǎng)?chuàng)造**融合的課堂氣氛,允許學(xué)生隨時(shí)“插嘴”、**、爭(zhēng)辯,甚至提出與教師不同的看法。
2、二次函數(shù)是初中階段繼一次函數(shù)、反比例函數(shù)之后,學(xué)生要學(xué)習(xí)的最后一類重要的代數(shù)函數(shù),它也是描述現(xiàn)實(shí)世界變量之間關(guān)系的重要的數(shù)學(xué)模型。
3、學(xué)生有疑而問、質(zhì)疑問難,是用心思考、自主學(xué)習(xí)、主動(dòng)探究的可貴表現(xiàn),理應(yīng)得到老師的熱情鼓勵(lì)和贊揚(yáng),F(xiàn)在對(duì)學(xué)生的隨時(shí)“插嘴”,提出的各種疑難問題,應(yīng)抱歡迎、鼓勵(lì)的態(tài)度給與肯定,并做出正確的解釋。
4、初中階段主要研究二次函數(shù)的概念、圖像和性質(zhì),用二次函數(shù)的觀點(diǎn)審視一元二次方程,用二次函數(shù)的相關(guān)知識(shí)分析和解決簡(jiǎn)單的實(shí)際問題。
4二次函數(shù)教學(xué)方法三
1、教學(xué)案例、教學(xué)設(shè)計(jì)、教學(xué)實(shí)錄、教學(xué)敘事的區(qū)別:教學(xué)案例與教案:教案(教學(xué)設(shè)計(jì))是事先設(shè)想的教育教學(xué)思路,是對(duì)準(zhǔn)備實(shí)施的教育措施的簡(jiǎn)要說明,反映的是教學(xué)預(yù)期;而教學(xué)案例則是對(duì)已發(fā)生的教育教學(xué)過程的描述,反映的是教學(xué)結(jié)果。
2、教學(xué)案例與教學(xué)實(shí)錄:它們同樣是對(duì)教育教學(xué)情境的描述,但教學(xué)實(shí)錄是有聞必錄(事實(shí)判斷),而教學(xué)案例是根據(jù)目的和功能選擇內(nèi)容,并且必須有作者的反思(價(jià)值判斷)。
3、教學(xué)案例與敘事研究的聯(lián)系與區(qū)別:從“情景故事”的意義上講,教育敘事研究報(bào)告也是一種“教育案例”,但“教學(xué)案例”特指有典型意義的、包含疑難問題的、多角度描述的經(jīng)過研究并加上作者反思(或自我點(diǎn)評(píng))的教學(xué)敘事;
4、教學(xué)案例必須從教學(xué)任務(wù)分析的目標(biāo)出發(fā),有意識(shí)地選擇有關(guān)信息,必須事先進(jìn)行實(shí)地作業(yè),因此日常教育敘事日志可以作為寫作教學(xué)案例的素材積累。
版權(quán)聲明:本文內(nèi)容由互聯(lián)網(wǎng)用戶自發(fā)貢獻(xiàn),該文觀點(diǎn)僅代表作者本人。本站僅提供信息存儲(chǔ)空間服務(wù),不擁有所有權(quán),不承擔(dān)相關(guān)法律責(zé)任。如發(fā)現(xiàn)本站有涉嫌抄襲侵權(quán)/違法違規(guī)的內(nèi)容, 請(qǐng)發(fā)送郵件至 yyfangchan@163.com (舉報(bào)時(shí)請(qǐng)帶上具體的網(wǎng)址) 舉報(bào),一經(jīng)查實(shí),本站將立刻刪除