狠狠操网,91中文字幕在线观看,精品久久香蕉国产线看观看亚洲,亚洲haose在线观看

高中數(shù)學(xué)推理與證明知識點(diǎn)總結(jié) (菁選2篇)

高中數(shù)學(xué)推理與證明知識點(diǎn)總結(jié)1

  一、考點(diǎn)(限考)概要:

  1、推理:

  (1)合情推理:歸納推理和類比推理都是根據(jù)已有事實(shí),經(jīng)過觀察、分析、比較、聯(lián)想,在進(jìn)行歸納、類比,然后提出猜想的推理,稱為合情推理。

  ①歸納推理:

 、《x:由某類食物的部分對象具有某些特征,推出該類事物的全部對象都具有這些特征的推理,或者有個(gè)別事實(shí)概括出一般結(jié)論的推理,稱為歸納推理,簡稱歸納。

  ⅱ特點(diǎn):

  *歸納是依據(jù)特殊現(xiàn)象推斷一般現(xiàn)象,因而,由歸納所得的結(jié)論超越了前提所包容的范圍;

  *歸納是依據(jù)若干已知的、沒有窮盡的現(xiàn)象推斷尚屬未知的現(xiàn)象,因而結(jié)論具有猜測性;

  *歸納的前提是特殊的情況,因而歸納是立足于觀察、經(jīng)驗(yàn)和實(shí)驗(yàn)的基礎(chǔ)之上;

  *歸納是立足于觀察、經(jīng)驗(yàn)、實(shí)驗(yàn)和對有限資料分析的基礎(chǔ)上,提出帶有規(guī)律性的結(jié)論。

 、2襟E:

  *對有限的資料進(jìn)行觀察、分析、歸納整理;

  *提出帶有規(guī)律性的結(jié)論,即猜想;

  *檢驗(yàn)猜想。

 、陬惐韧评恚

 、《x:由兩類對象具有類似和其中一類對象的某些已知特征,推出另一類對象也具有這些特征的推理,稱為類比推理,簡稱類比。

  ⅱ特點(diǎn):

  *類比是從人們已經(jīng)掌握了的事物的屬性,推測正在研究的事物的屬性,是以舊有的認(rèn)識為基礎(chǔ),類比出新的結(jié)果;

  *類比是從一種事物的特殊屬性推測另一種事物的特殊屬性;

  *類比的結(jié)果是猜測性的不一定可靠,單它卻有發(fā)現(xiàn)的功能。

 、2襟E:

  *找出兩類對象之間可以確切表述的相似特征;

  *用一類對象的已知特征去推測另一類對象的特征,從而得出一個(gè)猜想;

  *檢驗(yàn)猜想。

  (2)演繹推理:

 、俣x:從一般的原理出發(fā),推出某個(gè)特殊情況下的結(jié)論,這種推理叫演繹推理。

 、谘堇[推理是由一般到特殊的推理;

 、邸叭握摗笔茄堇[推理的一般模式,包括:

  大前提——已知的`一般結(jié)論;

  小前提——所研究的特殊情況;

  結(jié) 論——根據(jù)一般原理,對特殊情況得出的判斷。

 、堋叭握摗蓖评淼囊罁(jù),用集合的觀點(diǎn)來理解:

  若集合M的所有元素都具有性質(zhì)P,S是M的一個(gè)子集,那么S中所有元素也都具有性質(zhì)P。

  (3)合情推理與演繹推理的區(qū)別與聯(lián)系:

 、贇w納是由特殊到一般的推理;

  ②類比是由特殊到特殊的推理;

 、垩堇[推理是由一般到特殊的推理.

 、軓耐评淼慕Y(jié)論來看,合情推理的結(jié)論不一定正確,有待證明;演繹推理得到的結(jié)論一定正確。

 、菅堇[推理是證明數(shù)學(xué)結(jié)論、建立數(shù)學(xué)體系的重要思維過程;而數(shù)學(xué)結(jié)論、證明思路的發(fā)現(xiàn),主要靠合情推理.

高中數(shù)學(xué)推理與證明知識點(diǎn)總結(jié)2

  (1)直接證明:

  ①綜合法:利用已知條件和某些數(shù)學(xué)定義、定理、公理等,經(jīng)過一系列的推理論證,最后推導(dǎo)出所要證明的結(jié)論成立,這種證明方法叫做綜合法。綜合法又叫順推法,其特點(diǎn)是:“由因?qū)Ч薄?/p>

 、诜治龇ǎ簭囊C明的結(jié)論出發(fā),逐步尋求使它成立的充分條件,直至最后,把要證明的結(jié)論歸結(jié)為判定一個(gè)明顯成立的條件(已知條件、定義、定理、公理等),這種證明的方法叫分析法。分析法又叫逆推證法,其特點(diǎn)是:“執(zhí)果索因”。

 、蹟(shù)學(xué)歸納法:

  ⅰ數(shù)學(xué)歸納法公理:

  如果①當(dāng)n取第一個(gè)值

  (例如

  等)時(shí)結(jié)論正確;

 、诩僭O(shè)當(dāng)

  時(shí)結(jié)論正確,證明當(dāng)n=k+1時(shí)結(jié)論也正確;

  那么,命題對于從

  開始的所有正整數(shù)n都成立。

 、⒄f明:

  *數(shù)學(xué)歸納法的兩個(gè)步驟缺一不可,用數(shù)學(xué)歸納法證明問題時(shí)必須嚴(yán)格按步驟進(jìn)行;

  *數(shù)學(xué)歸納法公理是證明有關(guān)自然數(shù)命題的依據(jù)。

  (2)間接證明(反證法、歸謬法):假設(shè)原命題不成立,經(jīng)過正確的推理,最后得出矛盾,因此說明假設(shè)錯(cuò)誤,從而證明原命題成立,這種證明方法叫反證法。

  用反證法證明一個(gè)命題常采用以下步驟:

  ①假定命題的結(jié)論不成立;

 、谶M(jìn)行推理,在推理中出現(xiàn)下列情況之一:與已知條件矛盾;與公理或定理矛盾;

 、塾捎谏鲜雒艿某霈F(xiàn),可以斷言,原來的假定“結(jié)論不成立”是錯(cuò)誤的;

 、芸隙ㄔ瓉砻}的結(jié)論是正確的。

  即“反設(shè)——?dú)w謬——結(jié)論”


高中數(shù)學(xué)推理與證明知識點(diǎn)總結(jié) (菁選2篇)擴(kuò)展閱讀


高中數(shù)學(xué)推理與證明知識點(diǎn)總結(jié) (菁選2篇)(擴(kuò)展1)

——高中數(shù)學(xué)推理與證明知識點(diǎn)歸納 (菁選2篇)

高中數(shù)學(xué)推理與證明知識點(diǎn)歸納1

  數(shù)學(xué)推理與證明知識點(diǎn)總結(jié):

  推理與證明:①推理是中學(xué)的主要內(nèi)容,是重點(diǎn)考察的內(nèi)容之一,題型為選擇題、填空題或解答題,難度為中、低檔題。利用歸納和類比等方法進(jìn)行簡單的推理的選擇題或填空題在近幾年的中考中都有所體現(xiàn)。②推理論證能力是中考考查的基本能力之一,它有機(jī)的滲透到初中課程的各個(gè)章節(jié),對本節(jié)的學(xué)習(xí),應(yīng)先掌握其基本概念、基本原理,在此基礎(chǔ)上通過其他章節(jié)的學(xué)習(xí),逐步提高自己的推理論證能力。第一講 推理與證明

  1.知識方法梳理

  一、考綱解讀:

  本部分內(nèi)容主要包括:合情推理和演繹推理、直接證明與間接證明、數(shù)學(xué)歸納法等內(nèi)容,其中推理中的合情推理、演繹推理幾乎涉及數(shù)學(xué)的方方面面的知識,**研究性命題的發(fā)展趨勢。新課標(biāo)考試大綱將抽象概括作為一種能力提出,進(jìn)一步強(qiáng)化了合情推理與演繹推理的要求,因此在復(fù)習(xí)中要重視合情推理與演繹推理。高考對直接證明與間接證明的考查主要以直接證明中的綜合法為主,結(jié)合不等式進(jìn)行考查。

  二、要點(diǎn)梳理:

  1.歸納推理的一般步驟:(1)通過觀察個(gè)別事物,發(fā)現(xiàn)某些相同的性質(zhì);(2)從已知的相同性質(zhì)中推出一個(gè)明確表述的一般性命題。

  2.類比推理的一般步驟:

  (1)找出兩類事物之間的相似性或一致性;(2)用一類事物的性質(zhì)去推測另一類事物的性質(zhì),得出一個(gè)明確的命題(猜想)。

  3.演繹推理

  三段論及其一般模式:①大前提——已知的一般原理;②小前提——所研究的特殊情況;③結(jié)論——根據(jù)一般原理,對特殊情況作出判斷。

  4.直接證明與間接證明

  ①綜合法:利用某些已經(jīng)證明過的不等式和不等式的性質(zhì)推導(dǎo)出所要證明的不等式成立,這種證明方法通常叫做綜合法。綜合法的思維特點(diǎn)是:由因?qū)Ч,即由已知條件出發(fā),利用已知的數(shù)學(xué)定理、性質(zhì)和公式,推出結(jié)論。

 、诜治龇ǎ鹤C明不等式時(shí),有時(shí)可以從求證的不等式出發(fā),分析使這個(gè)不等式成立的條件,把證明不等式轉(zhuǎn)化為判定這些條件是否具備的問題,如果能夠肯定這些條件都已具備,那么就可以斷定原不等式成立,這種方法通常叫做分析法。分析法的思維特點(diǎn)是:執(zhí)果索因。

 、鄯醋C法:要證明某一結(jié)論A是正確的,但不直接證明,而是先去證明A的反面(非A)是錯(cuò)誤的,從而斷定A是正確的,即為反證法。一般地,結(jié)論中出現(xiàn)“至多”“至少”“唯一”等詞語,或結(jié)論以否定語句出現(xiàn),或要討論的情況復(fù)雜時(shí),?紤]使用反證法。

 、軘(shù)學(xué)歸納法:

高中數(shù)學(xué)推理與證明知識點(diǎn)歸納2

  教學(xué)目標(biāo):

  一、通過觀察、猜測等活動(dòng),讓學(xué)生經(jīng)歷簡單的.推理過程,理解邏輯推理的含義。初步獲得一些簡單的推理經(jīng)驗(yàn)。

  二、能借助連線、列表等方式整理信息,并按一定的方法進(jìn)行推理。

  三、在簡單的推理過程中,培養(yǎng)學(xué)生初步的觀察、分析、推理和有有條理的進(jìn)行數(shù)學(xué)表達(dá)的能力。

  四、使學(xué)生感受推理在生活中的廣泛運(yùn)用,初步培養(yǎng)學(xué)生有順序的全面的思考問題的意識。

  教學(xué)重點(diǎn):

  理解邏輯推理的含義,經(jīng)歷簡單的推理過程,初步獲得一些簡單的推理經(jīng)驗(yàn)。

  教學(xué)難點(diǎn):

  初步培養(yǎng)學(xué)生有序的,全面的思考問題及數(shù)學(xué)表達(dá)的能力。

  教學(xué)過程:

  課前交流:

  師:孩子們,你們知道老師姓什么嗎?你是怎么知道的?

  師:你們可以怎樣稱呼我呢?[直呼其名,看來你已經(jīng)把我看作朋友了。]

  師:還可以怎樣稱呼我呢?[你是個(gè)有禮貌的孩子。)

  師:孩子們,可以上課了嗎?(可以了)上課!(師生問好)

  一、喚起與生成

  (一)游戲?qū)?/p>

  師:孩子們,你們喜歡玩游戲嗎?(喜歡)

  師:那我們就來玩一個(gè)猜一猜的游戲。猜一猜老師的年齡。先有學(xué)生亂猜到給學(xué)生提供信息去猜。

  (二)引出課題

  師:對于剛才的游戲,你想說什么?(生答。)

  師:是啊,在猜測的時(shí)候,不能隨便亂猜,而是要根據(jù)所給的條件來猜。像這樣根據(jù)已經(jīng)知道的條件逐步推出結(jié)論的過程,在數(shù)學(xué)上叫做推理。今天這節(jié)課我們就來進(jìn)行一些簡單的推理。(板書課題:數(shù)學(xué)廣角——推理)

  二、探究與解決

  (一)分析問題

  師:孩子們,請看大屏幕。(播放課件,出示例1)有語文、數(shù)學(xué)和品德與生活三本書,下面三人各拿一本,小紅說,我拿的是語文書,小麗說,我拿的不是數(shù)學(xué)書。你能判斷出小剛拿的是什么書?小麗拿的是什么書嗎?

  師:從題目中,你知道了什么?(生答)[你的眼睛真亮。](課件同步突出小紅、小麗的話。)

  師:要解決的問題是什么?(生答)[你有一雙亮眼睛。]

  師:“有語文,數(shù)學(xué)和品德與生活三本書,下面三人各拿一本”這句話是什么意思?(課件用紅色圈出)(生答)[你分析的很透徹。]

  師:他們?nèi)朔謩e拿的是什么書呢?請孩子們先想一想,然后把解決問題的過程用自己喜歡的方式記錄在老師發(fā)給你的這張紙上,(出示)完成后把你的想法在小組內(nèi)交流一下,F(xiàn)在開始吧。

  生活動(dòng),師巡視指導(dǎo)。

  (二)展示交流

  師:他們?nèi)四玫氖鞘裁磿?誰先來匯報(bào)。

  預(yù)設(shè)一、語言描述法(小紅拿的是語文書,那小麗和小剛拿的就是數(shù)學(xué)書和品德與生活書。小麗又說她沒拿數(shù)學(xué)書,他肯定拿的就是品德與生活書,剩下的小剛拿的就是數(shù)學(xué)書了。)[語言是思維的外殼,只有想得清,才能說得明。]用文字來描述的的請舉手。(生舉手。)(把學(xué)生作業(yè)貼在黑板上,課件同步出示重點(diǎn)講解語言描述法。)

  預(yù)設(shè)二、連線法(把人名和書名寫成兩行,再根據(jù)每一個(gè)條件分別連線:小紅拿的是語文書,就直接把小紅和語文書連上線;剩下的小麗和小剛就只能連數(shù)學(xué)書和品德與生活書了,小麗又說她沒拿數(shù)學(xué)書,那小剛拿的就是數(shù)學(xué)書了,再連上線,最后把品德與生活連上線。)[你的方法很有創(chuàng)意,看來你認(rèn)真思考了。](把學(xué)生作業(yè)貼在黑板上,課件同步出示)用連線法的請舉手。(生舉手。)

  預(yù)設(shè)三、列表法[你的記錄方式很簡潔,老師為你驕傲。](把學(xué)生作業(yè)貼在黑板上,課件同步出示)用列表法的請舉手。(生舉手。)


高中數(shù)學(xué)推理與證明知識點(diǎn)總結(jié) (菁選2篇)(擴(kuò)展2)

——高中數(shù)學(xué)數(shù)列知識點(diǎn) (菁選2篇)

高中數(shù)學(xué)數(shù)列知識點(diǎn)1


  1.定義:如果一個(gè)數(shù)列,從第二項(xiàng)開始它的每一項(xiàng)與前一項(xiàng)之差都等于同一常數(shù),這個(gè)數(shù)列就叫等差數(shù)列, 這個(gè)常數(shù)叫做等差數(shù)列的公差,通常用字母d來表示。同樣為數(shù)列的等比數(shù)列的性質(zhì)與等差數(shù)列也有相通之處。

  2.數(shù)列為等差數(shù)列的充要條件是:數(shù)列的前n項(xiàng)和S 可以寫成S = an^2 + bn的形式(其中a、b為常數(shù)).等差數(shù)列練習(xí)題

  3.性質(zhì)1:公差為d的等差數(shù)列,各項(xiàng)同乘以常數(shù)k所得數(shù)列仍是等差數(shù)列,其公差為kd.

  4.性質(zhì)2:公差為d的等差數(shù)列,各項(xiàng)同加一數(shù)所得數(shù)列仍是等差數(shù)列,其公差仍為d.

  5.性質(zhì)3:當(dāng)公差d>0時(shí),等差數(shù)列中的數(shù)隨項(xiàng)數(shù)的增大而增大;當(dāng)d<0時(shí),等差數(shù)列中的數(shù)隨項(xiàng)數(shù)的減少而減;d=0時(shí),等差數(shù)列中的數(shù)等于一個(gè)常數(shù).

高中數(shù)學(xué)數(shù)列知識點(diǎn)2

  一般地,如果一個(gè)數(shù)列從第2項(xiàng)起,每一項(xiàng)與它的前一項(xiàng)的差等于同一個(gè)常數(shù),那么這個(gè)數(shù)列就叫做等差數(shù)列,這個(gè)常數(shù)叫做公差,用符號語言表示為an+1-an=d。

  等差數(shù)列的性質(zhì):

 。1)若公差d>0,則為遞增等差數(shù)列;若公差d<0,則為遞減等差數(shù)列;若公差d=0,則為常數(shù)列;

 。2)有窮等差數(shù)列中,與首末兩端“等距離”的兩項(xiàng)和相等,并且等于首末兩項(xiàng)之和;

 。3)m,n∈N*,則am=an+(m-n)d;

  (4)若s,t,p,q∈N*,且s+t=p+q,則as+at=ap+aq,其中as,at,ap,aq是數(shù)列中的項(xiàng),特別地,當(dāng)s+t=2p時(shí),高一,有as+at=2ap;

  (5)若數(shù)列{an},{bn}均是等差數(shù)列,則數(shù)列{man+kbn}仍為等差數(shù)列,其中m,k均為常數(shù)。

  (6)從第二項(xiàng)開始起,每一項(xiàng)是與它相鄰兩項(xiàng)的等差中項(xiàng),也是與它等距離的前后兩項(xiàng)的等差中項(xiàng),即

  對等差數(shù)列定義的理解:

 、偃绻粋(gè)數(shù)列不是從第2項(xiàng)起,而是從第3項(xiàng)或某一項(xiàng)起,每一項(xiàng)與它前一項(xiàng)的差是同一個(gè)常數(shù),那么此數(shù)列不是等差數(shù)列,但可以說從第2項(xiàng)或某項(xiàng)開始是等差數(shù)列.

 、谇蠊頳時(shí),因?yàn)閐是這個(gè)數(shù)列的'后一項(xiàng)與前一項(xiàng)的差,故有 還有

 、酃頳∈R,當(dāng)d=0時(shí),數(shù)列為常數(shù)列(也是等差數(shù)列);當(dāng)d>0時(shí),數(shù)列為遞增數(shù)列;當(dāng)d<0時(shí),數(shù)列為遞減數(shù)列;

 、 是證明或判斷一個(gè)數(shù)列是否為等差數(shù)列的依據(jù);

 、葑C明一個(gè)數(shù)列是等差數(shù)列,只需證明an+1-an是一個(gè)與n無關(guān)的常數(shù)即可。

  等差數(shù)列求解與證明的基本方法:

  (1)學(xué)會(huì)運(yùn)用函數(shù)與方程思想解題;

  (2)抓住首項(xiàng)與公差是解決等差數(shù)列問題的關(guān)鍵;

  (3)等差數(shù)列的通項(xiàng)公式、前n項(xiàng)和公式涉及五個(gè)量:a1,d,n,an,Sn,知道其中任意三個(gè)就可以列方程組求出另外兩個(gè)(俗稱“知三求二’).


高中數(shù)學(xué)推理與證明知識點(diǎn)總結(jié) (菁選2篇)(擴(kuò)展3)

——高中數(shù)學(xué)知識點(diǎn)總結(jié)菁選

高中數(shù)學(xué)知識點(diǎn)總結(jié)15篇

  總結(jié)是在某一特定時(shí)間段對學(xué)習(xí)和工作生活或其完成情況,包括取得的成績、存在的問題及得到的經(jīng)驗(yàn)和教訓(xùn)加以回顧和分析的書面材料,寫總結(jié)有利于我們學(xué)習(xí)和工作能力的提高,不如我們來制定一份總結(jié)吧?偨Y(jié)怎么寫才是正確的呢?下面是小編幫大家整理的高中數(shù)學(xué)知識點(diǎn)總結(jié),希望對大家有所幫助。

高中數(shù)學(xué)知識點(diǎn)總結(jié)1

  一、圓及圓的相關(guān)量的定義

  1.*面上到定點(diǎn)的距離等于定長的所有點(diǎn)組成的圖形叫做圓。定點(diǎn)稱為圓心,定長稱為半徑。

  2.圓**意兩點(diǎn)間的部分叫做圓弧,簡稱弧。大于半圓的弧稱為優(yōu)弧,小于半圓的弧稱為劣弧。連接圓**意兩點(diǎn)的線段叫做弦。經(jīng)過圓心的弦叫

  做直徑。

  3.頂點(diǎn)在圓心上的角叫做圓心角。頂點(diǎn)在圓周上,且它的兩邊分別與圓有另一個(gè)交點(diǎn)的角叫做圓周角。

  4.過三角形的三個(gè)頂點(diǎn)的圓叫做三角形的外接圓,其圓心叫做三角形的外心。和三角形三邊都相切的圓叫做這個(gè)三角形的內(nèi)切圓,其圓心稱為內(nèi)心。

  5.直線與圓有3種位置關(guān)系:無公共點(diǎn)為相離;有2個(gè)公共點(diǎn)為相交;圓與直線有唯一公共點(diǎn)為相切,這條直線叫做圓的切線,這個(gè)唯一的公共點(diǎn)叫做切點(diǎn)。

  6.兩圓之間有5種位置關(guān)系:無公共點(diǎn)的,一圓在另一圓之外叫外離,在之內(nèi)叫內(nèi)含;有唯一公共點(diǎn)的,一圓在另一圓之外叫外切,在之內(nèi)叫內(nèi)切;有2個(gè)公共點(diǎn)的叫相交。兩圓圓心之間的距離叫做圓心距。

  7.在圓上,由2條半徑和一段弧圍成的圖形叫做扇形。圓錐側(cè)面展開圖是一個(gè)扇形。這個(gè)扇形的半徑成為圓錐的母線。

  二、有關(guān)圓的字母表示方法

  圓--⊙ 半徑—r 弧--⌒ 直徑—d

  扇形弧長/圓錐母線—l 周長—C 面積—S三、有關(guān)圓的基本性質(zhì)與定理(27個(gè))

  1.點(diǎn)P與圓O的位置關(guān)系(設(shè)P是一點(diǎn),則PO是點(diǎn)到圓心的距離):

  P在⊙O外,PO>r;P在⊙O上,PO=r;P在⊙O內(nèi),PO

  2.圓是軸對稱圖形,其對稱軸是任意一條過圓心的直線。圓也是中心對稱圖形,其對稱中心是圓心。

  3.垂徑定理:垂直于弦的直徑*分這條弦,并且*分弦所對的弧。逆定

  理:*分弦(不是直徑)的直徑垂直于弦,并且*分弦所對的弧。

  4.在同圓或等圓中,如果2個(gè)圓心角,2個(gè)圓周角,2條弧,2條弦中有一組量相等,那么他們所對應(yīng)的其余各組量都分別相等。

  5.一條弧所對的圓周角等于它所對的圓心角的一半。

  6.直徑所對的圓周角是直角。90度的圓周角所對的弦是直徑。

  7.不在同一直線上的3個(gè)點(diǎn)確定一個(gè)圓。

  8.一個(gè)三角形有唯一確定的外接圓和內(nèi)切圓。外接圓圓心是三角形各邊垂直*分線的.交點(diǎn),到三角形3個(gè)頂點(diǎn)距離相等;內(nèi)切圓的圓心是三角形各內(nèi)角*分線的交點(diǎn),到三角形3邊距離相等。

  9.直線AB與圓O的位置關(guān)系(設(shè)OP⊥AB于P,則PO是AB到圓心的距

  離):

  AB與⊙O相離,PO>r;AB與⊙O相切,PO=r;AB與⊙O相交,PO

  10.圓的切線垂直于過切點(diǎn)的直徑;經(jīng)過直徑的一端,并且垂直于這條直徑的直線,是這個(gè)圓的切線。

  11.圓與圓的位置關(guān)系(設(shè)兩圓的半徑分別為R和r,且R≥r,圓心距為P):

  外離P>R+r;外切P=R+r;相交R-r

  三、有關(guān)圓的計(jì)算公式

  1.圓的周長C=2πr=πd

  2.圓的面積S=s=πr?

  3.扇形弧長l=nπr/180

  4.扇形面積S=nπr? /360=rl/2

  5.圓錐側(cè)面積S=πrl

  四、圓的方程

  1.圓的標(biāo)準(zhǔn)方程

  在*面直角坐標(biāo)系中,以點(diǎn)O(a,b)為圓心,以r為半徑的圓的標(biāo)準(zhǔn)方程是

 。▁-a)^2+(y-b)^2=r^2

  2.圓的一般方程

  把圓的標(biāo)準(zhǔn)方程展開,移項(xiàng),合并同類項(xiàng)后,可得圓的一般方程是

  x^2+y^2+Dx+Ey+F=0

  和標(biāo)準(zhǔn)方程對比,其實(shí)D=-2a,E=-2b,F=a^2+b^2

  相關(guān)知識:圓的離心率e=0.在圓**意一點(diǎn)的曲率半徑都是r.

  五、圓與直線的位置關(guān)系判斷

  *面內(nèi),直線Ax+By+C=O與圓x^2+y^2+Dx+Ey+F=0的位置關(guān)系判斷一般方法是

  討論如下2種情況:

 。1)由Ax+By+C=O可得y=(-C-Ax)/B,[其中B不等于0],

  代入x^2+y^2+Dx+Ey+F=0,即成為一個(gè)關(guān)于x的一元二次方程f(x)=0.

  利用判別式b^2-4ac的符號可確定圓與直線的位置關(guān)系如下:

  如果b^2-4ac>0,則圓與直線有2交點(diǎn),即圓與直線相交

  如果b^2-4ac=0,則圓與直線有1交點(diǎn),即圓與直線相切

  如果b^2-4ac<0,則圓與直線有0交點(diǎn),即圓與直線相離

 。2)如果B=0即直線為Ax+C=0,即x=-C/A.它*行于y軸(或垂直于x軸)

  將x^2+y^2+Dx+Ey+F=0化為(x-a)^2+(y-b)^2=r^2

  令y=b,求出此時(shí)的兩個(gè)x值x1,x2,并且我們規(guī)定x1

  當(dāng)x=-C/Ax2時(shí),直線與圓相離

  當(dāng)x1

  當(dāng)x=-C/A=x1或x=-C/A=x2時(shí),直線與圓相切

  圓的定理:

  1.不在同一直線上的三點(diǎn)確定一個(gè)圓。

  2.垂徑定理 垂直于弦的直徑*分這條弦并且*分弦所對的兩條弧

  推論1.①*分弦(不是直徑)的直徑垂直于弦,并且*分弦所對的兩條弧

  ②弦的垂直*分線經(jīng)過圓心,并且*分弦所對的兩條弧

  ③*分弦所對的一條弧的直徑,垂直*分弦,并且*分弦所對的另一條弧

  推論2.圓的兩條*行弦所夾的弧相等

  3.圓是以圓心為對稱中心的中心對稱圖形

  4.圓是定點(diǎn)的距離等于定長的點(diǎn)的集合

  5.圓的內(nèi)部可以看作是圓心的距離小于半徑的點(diǎn)的集合

  6.圓的外部可以看作是圓心的距離大于半徑的點(diǎn)的集合

  7.同圓或等圓的半徑相等

  8.到定點(diǎn)的距離等于定長的點(diǎn)的軌跡,是以定點(diǎn)為圓心,定長為半徑的圓

  9.定理 在同圓或等圓中,相等的圓心角所對的弧相等,所對的弦 相等,所對的弦的弦心距相等

  10.推論 在同圓或等圓中,如果兩個(gè)圓心角、兩條弧、兩條弦或兩 弦的弦心距中有一組量相等那么它們所對應(yīng)的其余各組量都相等

  11.定理 圓的內(nèi)接四邊形的對角互補(bǔ),并且任何一個(gè)外角都等于它 的內(nèi)對角

  12.①直線L和⊙O相交 d

 、谥本L和⊙O相切 d=r

  ③直線L和⊙O相離 d>r

  13.切線的判定定理 經(jīng)過半徑的外端并且垂直于這條半徑的直線是圓的切線

  14.切線的性質(zhì)定理 圓的切線垂直于經(jīng)過切點(diǎn)的半徑

  15.推論1 經(jīng)過圓心且垂直于切線的直線必經(jīng)過切點(diǎn)

  16.推論2 經(jīng)過切點(diǎn)且垂直于切線的直線必經(jīng)過圓心

  17.切線長定理 從圓外一點(diǎn)引圓的兩條切線,它們的切線長相等, 圓心和這一點(diǎn)的連線*分兩條切線的夾角

  18.圓的外切四邊形的兩組對邊的和相等 外角等于內(nèi)對角

  19.如果兩個(gè)圓相切,那么切點(diǎn)一定在連心線上

  20.①兩圓外離 d>R+r ②兩圓外切 d=R+r

 、蹆蓤A相交 R-rr)

  ④兩圓內(nèi)切 d=R-r(R>r) ⑤兩圓內(nèi)含dr)

  21.定理 相交兩圓的連心線垂直*分兩圓的公共弦

  22.定理 把圓分成n(n≥3):

 。1)依次連結(jié)各分點(diǎn)所得的多邊形是這個(gè)圓的內(nèi)接正n邊形

 。2)經(jīng)過各分點(diǎn)作圓的切線,以相鄰切線的交點(diǎn)為頂點(diǎn)的多邊形是這個(gè)圓的外切正n邊形

  23.定理 任何正多邊形都有一個(gè)外接圓和一個(gè)內(nèi)切圓,這兩個(gè)圓是同心圓

  24.正n邊形的每個(gè)內(nèi)角都等于(n-2)×180°/n

  25.定理 正n邊形的半徑和邊心距把正n邊形分成2n個(gè)全等的直角三角形

  26.正n邊形的面積Sn=pnrn/2 p表示正n邊形的周長

  27.正三角形面積√3a/4 a表示邊長

  28.如果在一個(gè)頂點(diǎn)周圍有k個(gè)正n邊形的角,由于這些角的和應(yīng)為 360°,因此k×(n-2)180°/n=360°化為(n-2)(k-2)=4

  29.弧長計(jì)算公式:L=n兀R/180

  30.扇形面積公式:S扇形=n兀R^2/360=LR/2

  31.內(nèi)公切線長= d-(R-r) 外公切線長= d-(R+r)

  32.定理 一條弧所對的圓周角等于它所對的圓心角的一半

  33.推論1 同弧或等弧所對的圓周角相等;同圓或等圓中,相等的圓周角所對的弧也相等

  34.推論2 半圓(或直徑)所對的圓周角是直角;90°的圓周角所 對的弦是直徑

  35.弧長公式 l=a*r a是圓心角的弧度數(shù)r >0 扇形面積公式 s=1/2*l*r

高中數(shù)學(xué)知識點(diǎn)總結(jié)2

  1.有關(guān)*行與垂直(線線、線面及面面)的問題,是在解決立體幾何問題的過程中,大量的、反復(fù)遇到的,而且是以各種各樣的問題(包括論證、計(jì)算角、與距離等)中不可缺少的內(nèi)容,因此在主體幾何的總復(fù)習(xí)中,首先應(yīng)從解決*行與垂直的有關(guān)問題著手,通過較為基本問題,熟悉公理、定理的內(nèi)容和功能,通過對問題的分析與概括,掌握立體幾何中解決問題的規(guī)律--充分利用線線*行(垂直)、線面*行(垂直)、面面*行(垂直)相互轉(zhuǎn)化的思想,以提高邏輯思維能力和空間想象能力。

  2. 判定兩個(gè)*面*行的方法:

  (1)根據(jù)定義--證明兩*面沒有公共點(diǎn);

  (2)判定定理--證明一個(gè)*面內(nèi)的兩條相交直線都*行于另一個(gè)*面;

  (3)證明兩*面同垂直于一條直線。

  3.兩個(gè)*面*行的主要性質(zhì):

  (1)由定義知:兩*行*面沒有公共點(diǎn)。

  (2)由定義推得:兩個(gè)*面*行,其中一個(gè)*面內(nèi)的直線必*行于另一個(gè)*面。

  (3)兩個(gè)*面*行的性質(zhì)定理:如果兩個(gè)*行*面同時(shí)和第三個(gè)*面相交,那么它們的交線*行。

  (4)一條直線垂直于兩個(gè)*行*面中的一個(gè)*面,它也垂直于另一個(gè)*面。

  (5)夾在兩個(gè)*行*面間的*行線段相等。

  (6)經(jīng)過*面外一點(diǎn)只有一個(gè)*面和已知*面*行。

  以上性質(zhì)(2)、(3)、(5)、(6)在課文中雖未直接列為性質(zhì)定理,但在解題過程中均可直接作為性質(zhì)定理引用。

  數(shù)學(xué)必修單元知識點(diǎn)

  第一,函數(shù)與導(dǎo)數(shù)。主要考查集合運(yùn)算、函數(shù)的有關(guān)概念定義域、值域、解析式、函數(shù)的極限、連續(xù)、導(dǎo)數(shù)。

  第二,*面向量與三角函數(shù)、三角變換及其應(yīng)用。這一部分是高考的重點(diǎn)但不是難點(diǎn),主要出一些基礎(chǔ)題或中檔題。

  第三,數(shù)列及其應(yīng)用。這部分是高考的重點(diǎn)而且是難點(diǎn),主要出一些綜合題。

  第四,不等式。主要考查不等式的求解和證明,而且很少單獨(dú)考查,主要是在解答題中比較大小。是高考的重點(diǎn)和難點(diǎn)

  第五,概率和統(tǒng)計(jì)。這部分和我們的生活聯(lián)系比較大,屬應(yīng)用題。

  第六,空間位置關(guān)系的定性與定量分析,主要是證明*行或垂直,求角和距離。

  第七,解析幾何。是高考的難點(diǎn),運(yùn)算量大,一般含參數(shù)。

  高中數(shù)學(xué)知識點(diǎn)梳理

  函數(shù)與導(dǎo)數(shù)

  第一、求函數(shù)定義域題忽視細(xì)節(jié)函數(shù)的定義域是使函數(shù)有意義的自變量的.取值范圍,考生想要在考場上準(zhǔn)確求出定義域,就要根據(jù)函數(shù)解析式把各種情況下的自變量的限制條件找出來,列成不等式組,不等式組的解集就是該函數(shù)的定義域。

  在求一般函數(shù)定義域時(shí),要注意以下幾點(diǎn):分母不為0;偶次被開放式非負(fù);真數(shù)大于0以及0的0次冪無意義。函數(shù)的定義域是非空的數(shù)集,在解答函數(shù)定義域類的題時(shí)千萬別忘了這一點(diǎn)。復(fù)合函數(shù)要注意外層函數(shù)的定義域由內(nèi)層函數(shù)的值域決定。

  第二、帶絕對值的函數(shù)單調(diào)性判斷錯(cuò)誤帶絕對值的函數(shù)實(shí)質(zhì)上就是分段函數(shù),判斷分段函數(shù)的單調(diào)性有兩種方法:第一,在各個(gè)段上根據(jù)函數(shù)的解析式所表示的函數(shù)的單調(diào)性求出單調(diào)區(qū)間,然后對各個(gè)段上的單調(diào)區(qū)間進(jìn)行整合;第二,畫出這個(gè)分段函數(shù)的圖象,結(jié)合函數(shù)圖象、性質(zhì)能夠進(jìn)行直觀的判斷。函數(shù)題離不開函數(shù)圖象,而函數(shù)圖象反應(yīng)了函數(shù)的所有性質(zhì),考生在解答函數(shù)題時(shí),要第一時(shí)間在腦海中畫出函數(shù)圖象,從圖象上分析問題,解決問題。

  對于函數(shù)不同的單調(diào)遞增(減)區(qū)間,千萬記住,不要使用并集,指明這幾個(gè)區(qū)間是該函數(shù)的單調(diào)遞增(減)區(qū)間即可。

  第三、求函數(shù)奇偶性的常見錯(cuò)誤求函數(shù)奇偶性類的題最常見的錯(cuò)誤有求錯(cuò)函數(shù)定義域或忽視函數(shù)定義域,對函數(shù)具有奇偶性的前提條件不清,對分段函數(shù)奇偶性判斷方法不當(dāng)?shù)鹊。判斷函?shù)的奇偶性,首先要考慮函數(shù)的定義域,一個(gè)函數(shù)具備奇偶性的必要條件是這個(gè)函數(shù)的定義域區(qū)間關(guān)于原點(diǎn)對稱,如果不具備這個(gè)條件,函數(shù)一定是非奇非偶的函數(shù)。在定義域區(qū)間關(guān)于原點(diǎn)對稱的前提下,再根據(jù)奇偶函數(shù)的定義進(jìn)行判斷。

  在用定義進(jìn)行判斷時(shí),要注意自變量在定義域區(qū)間內(nèi)的任意性。

  第四、抽象函數(shù)推理不嚴(yán)謹(jǐn)很多抽象函數(shù)問題都是以抽象出某一類函數(shù)的共同特征而設(shè)計(jì)的,在解答此類問題時(shí),考生可以通過類比這類函數(shù)中一些具體函數(shù)的性質(zhì)去解決抽象函數(shù)。多用特殊賦值法,通過特殊賦可以找到函數(shù)的不變性質(zhì),這往往是問題的突破口。

  抽象函數(shù)性質(zhì)的證明屬于代數(shù)推理,和幾何推理證明一樣,考生在作答時(shí)要注意推理的嚴(yán)謹(jǐn)性。每一步都要有充分的條件,別漏掉條件,更不能臆造條件,推理過程層次分明,還要注意書寫規(guī)范。

  第五、函數(shù)零點(diǎn)定理使用不當(dāng)若函數(shù)y=f(x)在區(qū)間[a,b]上的圖象是連續(xù)不斷的一條曲線,且有f(a)f(b)0。那么函數(shù)y=f(x)在區(qū)間(a,b)內(nèi)有零點(diǎn),即存在c(a,b),使得f(c)=0。這個(gè)c也可以是方程f(c)=0的根,稱之為函數(shù)的零點(diǎn)定理,分為變號零點(diǎn)和不變號零點(diǎn),而對于不變號零點(diǎn),函數(shù)的零點(diǎn)定理是**為力的,在解決函數(shù)的零點(diǎn)時(shí),考生需格外注意這類問題。

  第六、混淆兩類切線曲線上一點(diǎn)處的切線是指以該點(diǎn)為切點(diǎn)的曲線的切線,這樣的切線只有一條;曲線的過一個(gè)點(diǎn)的切線是指過這個(gè)點(diǎn)的曲線的所有切線,這個(gè)點(diǎn)如果在曲線上當(dāng)然包括曲線在該點(diǎn)處的切線,曲線的過一個(gè)點(diǎn)的切線可能不止一條。

  因此,考生在求解曲線的切線問題時(shí),首先要區(qū)分是什么類型的切線。

  第七、混淆導(dǎo)數(shù)與單調(diào)性的關(guān)系一個(gè)函數(shù)在某個(gè)區(qū)間上是增函數(shù)的這類題型,如果考生認(rèn)為函數(shù)的導(dǎo)函數(shù)在此區(qū)間上恒大于0,很容易就會(huì)出錯(cuò)。

  解答函數(shù)的單調(diào)性與其導(dǎo)函數(shù)的關(guān)系時(shí)一定要注意,一個(gè)函數(shù)的導(dǎo)函數(shù)在某個(gè)區(qū)間上單調(diào)遞增(減)的充要條件是這個(gè)函數(shù)的導(dǎo)函數(shù)在此區(qū)間上恒大(小)于等于0,且導(dǎo)函數(shù)在此區(qū)間的任意子區(qū)間上都不恒為零。

  第八、導(dǎo)數(shù)與極值關(guān)系不清考生在使用導(dǎo)數(shù)求函數(shù)極值類問題時(shí),容易出現(xiàn)的錯(cuò)誤就是求出使導(dǎo)函數(shù)等于0的點(diǎn),卻沒有對這些點(diǎn)左右兩側(cè)導(dǎo)函數(shù)的符號進(jìn)行判斷,誤以為使導(dǎo)函數(shù)等于0的點(diǎn)就是函數(shù)的極值點(diǎn),往往就會(huì)出錯(cuò),出錯(cuò)原因就是考生對導(dǎo)數(shù)與極值關(guān)系沒搞清楚。

高中數(shù)學(xué)知識點(diǎn)總結(jié)3

  1.一些基本概念:

  (1)向量:既有大小,又有方向的量.

  (2)數(shù)量:只有大小,沒有方向的量.

  (3)有向線段的三要素:起點(diǎn)、方向、長度.

  (4)零向量:長度為0的向量.

  (5)單位向量:長度等于1個(gè)單位的'向量.

  (6)*行向量(共線向量):方向相同或相反的非零向量.

  ※零向量與任一向量*行.

  (7)相等向量:長度相等且方向相同的向量.

  2.向量加法運(yùn)算:

  ⑴三角形法則的特點(diǎn):首尾相連.

 、*行四邊形法則的特點(diǎn):共起點(diǎn)

高中數(shù)學(xué)知識點(diǎn)總結(jié)4

  第一講相似三角形的判定及有關(guān)性質(zhì)1.*行線等分線段定理

  *行線等分線段定理:如果一組*行線在一條直線上截得的線段相等,那么在其他直線上截得的線段也相等。

  推理1:經(jīng)過三角形一邊的中點(diǎn)與另一邊*行的直線必*分第三邊。推理2:經(jīng)過梯形一腰的中點(diǎn),且與底邊*行的直線*分另一腰。

  2.*分線分線段成比例定理

  *分線分線段成比例定理:三條*行線截兩條直線,所得的對應(yīng)線段成比例。

  推論:*行于三角形一邊的直線截其他兩邊(或兩邊的延長線)所得的對應(yīng)線段成比例。

  3.相似三角形的判定及性質(zhì)

  相似三角形的判定:

  定義:對應(yīng)角相等,對應(yīng)邊成比例的兩個(gè)三角形叫做相似三角形。相似三角形對應(yīng)邊的比值叫做相似比(或相似系數(shù))。

  由于從定義出發(fā)判斷兩個(gè)三角形是否相似,需考慮6個(gè)元素,即三組對應(yīng)角是否分別相等,三組對應(yīng)邊是否分別成比例,顯然比較麻煩。所以我們曾經(jīng)給出過如下幾個(gè)判定兩個(gè)三角形相似的簡單方法:

 。1)兩角對應(yīng)相等,兩三角形相似;

 。2)兩邊對應(yīng)成比例且夾角相等,兩三角形相似;(3)三邊對應(yīng)成比例,兩三角形相似。

  預(yù)備定理:*行于三角形一邊的直線和其他兩邊(或兩邊的延長線)相交,所構(gòu)成的三角形與三角形相似。

  判定定理1:對于任意兩個(gè)三角形,如果一個(gè)三角形的兩個(gè)角與另一個(gè)三角形的兩個(gè)角對應(yīng)相等,那么這兩個(gè)三角形相似。簡述為:兩角對應(yīng)相等,兩三角形相似。

  判定定理2:對于任意兩個(gè)三角形,如果一個(gè)三角形的兩邊和另一個(gè)三角形的兩邊對應(yīng)成比例,并且夾角相等,那么這兩個(gè)三角形相似。簡述為:兩邊對應(yīng)成比例且夾角相等,兩三角形相似。

  判定定理3:對于任意兩個(gè)三角形,如果一個(gè)三角形的三條邊和另一個(gè)三角形的三條邊對應(yīng)成比例,那么這兩個(gè)三角形相似。簡述為:三邊對應(yīng)成比例,兩三角形相似。

  引理:如果一條直線截三角形的兩邊(或兩邊的延長線)所得的對應(yīng)線段成比例,那么這條直線*行于三角形的第三邊。定理:(1)如果兩個(gè)直角三角形有一個(gè)銳角對應(yīng)相等,那么它們相似;

 。2)如果兩個(gè)直角三角形的兩條直角邊對應(yīng)成比例,那么它們相似。

  定理:如果一個(gè)直角三角形的斜邊和一條直角邊與另一個(gè)三角形的斜邊和直角邊對應(yīng)成比例,那么這兩個(gè)直角三角形相似。相似三角形的性質(zhì):

 。1)相似三角形對應(yīng)高的比、對應(yīng)中線的比和對應(yīng)*分線的比都等于相似比;(2)相似三角形周長的.比等于相似比;

 。3)相似三角形面積的比等于相似比的*方。

  相似三角形外接圓的直徑比、周長比等于相似比,外接圓的面積比等于相似比的*方。

  4.直角三角形的射影定理

  射影定理:直角三角形斜邊上的高是兩直角邊在斜邊上射影的比例中項(xiàng);兩直角邊分別是它們在斜邊上射影與斜邊的比例中項(xiàng)。

  第二講直線與圓的位置關(guān)系1.圓周定理

  圓周角定理:圓上一條弧所對的圓周角等于它所對的圓周角的一半。圓心角定理:圓心角的度數(shù)等于它所對弧的度數(shù)。

  推論1:同弧或等弧所對的圓周角相等;同圓或等圓中,相等的圓周角所對的弧相等。推論2:半圓(或直徑)所對的圓周角是直角;90°的圓周角所對的弦是直徑。

  2.圓內(nèi)接四邊形的性質(zhì)與判定定理

  定理1:圓的內(nèi)接四邊形的對角互補(bǔ)。

  定理2:圓內(nèi)接四邊形的外角等于它的內(nèi)角的對角。

  圓內(nèi)接四邊形判定定理:如果一個(gè)四邊形的對角互補(bǔ),那么這個(gè)四邊形的四個(gè)頂點(diǎn)共圓。推論:如果四邊形的一個(gè)外角等于它的內(nèi)角的對角,那么這個(gè)四邊形的四個(gè)頂點(diǎn)共圓。

  3.圓的切線的性質(zhì)及判定定理

  切線的性質(zhì)定理:圓的切線垂直于經(jīng)過切點(diǎn)的半徑。推論1:經(jīng)過圓心且垂直于切線的直線必經(jīng)過切點(diǎn)。推論2:經(jīng)過切點(diǎn)且垂直于切線的直線必經(jīng)過圓心。

  切線的判定定理:經(jīng)過半徑的外端并且垂直于這條半徑的直線是圓的切線。

  4.弦切角的性質(zhì)

  弦切角定理:弦切角等于它所夾的弧所對的圓周角。

  5.與圓有關(guān)的比例線段

  相交弦定理:圓內(nèi)的兩條相交弦,被交點(diǎn)分成的兩條線段長的積相等。

  割線定理:從園外一點(diǎn)引圓的兩條割線,這一點(diǎn)到每條割線與圓的交點(diǎn)的兩條線段長的積相等。

  切割線定理:從圓外一點(diǎn)引圓的切線和割線,切線長是這點(diǎn)到割線與圓交點(diǎn)的兩條線段長的比例中項(xiàng)。

  切線長定理:從圓外一點(diǎn)引圓的兩條切線,它們的切線長相等,圓心和這一點(diǎn)的連線*分兩條切線的夾角。

  6.垂徑定理

  垂直于弦的直徑*分這條弦,并且*分弦所對的兩條弧。

  7.三角形的五心

  (1)內(nèi)心:三條角*分線的交點(diǎn),也是三角形內(nèi)切圓的圓心。性質(zhì):到三邊距離相等。(2)外心:三條中垂線的交點(diǎn),也是三角形外接圓的圓心。性質(zhì):到三個(gè)頂點(diǎn)距離相等。(3)重心:三條中線的交點(diǎn)。性質(zhì):三條中線的三等分點(diǎn),到頂點(diǎn)距離為到對邊中點(diǎn)距離的2倍。

  (4)垂心:三條高所在直線的交點(diǎn)。

  (5)旁心:三角形任意兩角的外角*分線和第三個(gè)角的內(nèi)角*分線的交點(diǎn)。性質(zhì):到三邊的

  距離相等

  第三講圓錐曲線性質(zhì)的探究1.*面與圓柱面的截線:

  當(dāng)*面與圓柱的兩底面*行時(shí),截面是個(gè)圓;當(dāng)*面與圓柱的兩底面不*行時(shí),截面是個(gè)橢

  圓;定理1:圓柱形物體的斜截口是橢圓。

  定理2:在空間中,取直線l為軸,直線l’與l相交于O點(diǎn),夾角為α,l’圍繞l旋轉(zhuǎn)得

  到以O(shè)為頂點(diǎn),l’為母線的圓錐面,任取*面π,若它與軸l的夾角為β(當(dāng)π與l*行時(shí),記β=0),則截面不過頂點(diǎn)時(shí):

  (1)β>α,*面π與圓錐的交線為橢圓;(2)β=α,*面π與圓錐的交線為拋物線;(3)

  β<α,*面π與圓錐的交線為雙曲線;截面過頂點(diǎn)時(shí):(1)截面和圓錐面只相交于頂點(diǎn),交線為一個(gè)點(diǎn)。

  (2)截面和圓錐面相交于兩條母線,交線為兩條相交曲線。(3)截面和圓錐面相切,交線為兩

高中數(shù)學(xué)知識點(diǎn)總結(jié)5

  什么是不等式?

  一般地,用純粹的大于號“>”、小于號“<”連接的不等式稱為嚴(yán)格不等式,用不小于號(大于或等于號)“≥”、不大于號(小于或等于號)“≤”連接的不等式稱為非嚴(yán)格不等式,或稱廣義不等式?偟膩碚f,用不等號(<,>,≥,≤,≠)連接的式子叫做不等式。

  通常不等式中的數(shù)是實(shí)數(shù),字母也**實(shí)數(shù),不等式的一般形式為F(x,y,……,z)≤G(x,y,……,z)(其中不等號也可以為<,≤,≥,>中某一個(gè)),兩邊的解析式的公共定義域稱為不等式的定義域,不等式既可以表達(dá)一個(gè)命題,也可以表示一個(gè)問題。

  數(shù)學(xué)知識點(diǎn)1、不等式性質(zhì)比較大小方法:

 。1)作差比較法(2)作商比較法

  不等式的基本性質(zhì)

 、賹ΨQ性:a > b,b > a

 、趥鬟f性:a > b,b > ca > c

 、劭杉有裕篴 > b a + c > b + c

  ④可積性:a > b,c > 0,ac > bc

 、菁臃ǚ▌t:a > b,c > d,a + c > b + d

 、蕹朔ǚ▌t:a > b > 0,c > d > 0,ac > bd

 、叱朔椒▌t:a > b > 0,an > bn(n∈N)

  ⑧開方法則:a > b > 0

  數(shù)學(xué)知識點(diǎn)2、算術(shù)*均數(shù)與幾何*均數(shù)定理:

  (1)如果a、b∈R,那么a2 + b2 ≥2ab;(當(dāng)且僅當(dāng)a=b時(shí)等號)

  (2)如果a、b∈R+,那么(當(dāng)且僅當(dāng)a=b時(shí)等號)推廣:

  如果為實(shí)數(shù),則重要結(jié)論

 。1)如果積xy是定值P,那么當(dāng)x=y時(shí),和x+y有最小值2;

  (2)如果和x+y是定值S,那么當(dāng)x=y時(shí),和xy有最大值S2/4。

  數(shù)學(xué)知識點(diǎn)3、證明不等式的常用方法:

  比較法:比較法是最基本、最重要的方法。

  當(dāng)不等式的兩邊的.差能分解因式或能配成*方和的形式,則選擇作差比較法;當(dāng)不等式的兩邊都是正數(shù)且它們的商能與1比較大小,則選擇作商比較法;碰到絕對值或根式,我們還可以考慮作*方差。

  綜合法:從已知或已證明過的不等式出發(fā),根據(jù)不等式的性質(zhì)推導(dǎo)出欲證的不等式。綜合法的放縮經(jīng)常用到均值不等式。

  分析法:不等式兩邊的聯(lián)系不夠清楚,通過尋找不等式成立的充分條件,逐步將欲證的不等式轉(zhuǎn)化,直到尋找到易證或已知成立的結(jié)論。

高中數(shù)學(xué)知識點(diǎn)總結(jié)6

  導(dǎo)數(shù)及其應(yīng)用

  一.導(dǎo)數(shù)概念的引入

  1.導(dǎo)數(shù)的物理意義:瞬時(shí)速率。一般的,函數(shù)yf(x)在xx0處的瞬時(shí)變化率是

  x0limf(x0x)f(x0),

  x我們稱它為函數(shù)yf(x)在xx0處的導(dǎo)數(shù),記作f(x0)或y|xx0,即f(x0)=limx0f(x0x)f(x0)

  x例1.在高臺跳水運(yùn)動(dòng)中,運(yùn)動(dòng)員相對于水面的高度h(單位:m)與起跳后的時(shí)間t(單位:

  s)存在函數(shù)關(guān)系

  h(t)4.9t26.5t10

  運(yùn)動(dòng)員在t=2s時(shí)的瞬時(shí)速度是多少?解:根據(jù)定義

  vh(2)limh(2x)h(2)13.1

  x0x即該運(yùn)動(dòng)員在t=2s是13.1m/s,符號說明方向向下

  2.導(dǎo)數(shù)的幾何意義:曲線的切線.通過圖像,我們可以看出當(dāng)點(diǎn)Pn趨近于P時(shí),直線PT與

  曲線相切。容易知道,割線PPn的斜率是knf(xn)f(x0),當(dāng)點(diǎn)Pn趨近于P時(shí),

  xnx0函數(shù)yf(x)在xx0處的導(dǎo)數(shù)就是切線PT的斜率k,即klimx0f(xn)f(x0)f(x0)

  xnx03.導(dǎo)函數(shù):當(dāng)x變化時(shí),f(x)便是x的一個(gè)函數(shù),我們稱它為f(x)的導(dǎo)函數(shù).yf(x)的導(dǎo)函數(shù)有時(shí)也記作y,即f(x)lim

  二.導(dǎo)數(shù)的計(jì)算

  1.函數(shù)yf(x)c的導(dǎo)數(shù)2.函數(shù)yf(x)x的導(dǎo)數(shù)3.函數(shù)yf(x)x的導(dǎo)數(shù)

  2x0f(xx)f(x)

  x

  4.函數(shù)yf(x)1的導(dǎo)數(shù)x基本初等函數(shù)的導(dǎo)數(shù)公式:

  1若f(x)c(c為常數(shù)),則f(x)0;

  2若f(x)x,則f(x)x1;

  3若f(x)sinx,則f(x)cosx

  4若f(x)cosx,則f(x)sinx;

  5若f(x)ax,則f(x)axlna6若f(x)e,則f(x)e

  xx1xlna18若f(x)lnx,則f(x)

  xx7若f(x)loga,則f(x)導(dǎo)數(shù)的運(yùn)算法則

  1.[f(x)g(x)]f(x)g(x)

  2.[f(x)g(x)]f(x)g(x)f(x)g(x)

  3.[f(x)f(x)g(x)f(x)g(x)]g(x)[g(x)]

  2復(fù)合函數(shù)求導(dǎo)

  yf(u)和ug(x),稱則y可以表示成為x的函數(shù),即yf(g(x))為一個(gè)復(fù)合函數(shù)yf(g(x))g(x)

  三.導(dǎo)數(shù)在研究函數(shù)中的應(yīng)用

  1.函數(shù)的單調(diào)性與導(dǎo)數(shù):

  一般的,函數(shù)的單調(diào)性與其導(dǎo)數(shù)的**有如下關(guān)系:

  在某個(gè)區(qū)間(a,b)內(nèi),如果f(x)0,那么函數(shù)yf(x)在這個(gè)區(qū)間單調(diào)遞增;如果f(x)0,那么函數(shù)yf(x)在這個(gè)區(qū)間單調(diào)遞減.2.函數(shù)的極值與導(dǎo)數(shù)

  極值反映的是函數(shù)在某一點(diǎn)附近的大小情況.求函數(shù)yf(x)的極值的方法是:

  (1)如果在x0附近的左側(cè)f(x)0,右側(cè)f(x)0,那么f(x0)是極大值;

  (2)如果在x0附近的左側(cè)f(x)0,右側(cè)f(x)0,那么f(x0)是極小值;

  4.函數(shù)的`最大(小)值與導(dǎo)數(shù)

  函數(shù)極大值與最大值之間的關(guān)系.

  求函數(shù)yf(x)在[a,b]上的最大值與最小值的步驟

 。1)求函數(shù)yf(x)在(a,b)內(nèi)的極值;

 。2)將函數(shù)yf(x)的各極值與端點(diǎn)處的函數(shù)值f(a),f(b)比較,其中最大的是一個(gè)最大值,最小的是最小值.

  四.生活中的優(yōu)化問題

  利用導(dǎo)數(shù)的知識,求函數(shù)的最大(小)值,從而解決實(shí)際問題

  第二章推理與證明

  考點(diǎn)一合情推理與類比推理

  根據(jù)一類事物的部分對象具有某種性質(zhì),退出這類事物的所有對象都具有這種性質(zhì)的推理,叫做歸納推理,歸納是從特殊到一般的過程,它屬于合情推理

  根據(jù)兩類不同事物之間具有某些類似(或一致)性,推測其中一類事物具有與另外一類事物類似的性質(zhì)的推理,叫做類比推理.

  類比推理的一般步驟:

  (1)找出兩類事物的相似性或一致性;

  (2)用一類事物的性質(zhì)去推測另一類事物的性質(zhì),得出一個(gè)明確的命題(猜想);

  (3)一般的,事物之間的各個(gè)性質(zhì)并不是孤立存在的,而是相互制約的如果兩個(gè)事物在某些性質(zhì)上相同或相似,那么他們在另一寫性質(zhì)上也可能相同或類似,類比的結(jié)論可能是真的

  (4)一般情況下,如果類比的相似性越多,相似的性質(zhì)與推測的性質(zhì)之間越相關(guān),那么類比得出的命題越可靠.

  考點(diǎn)二演繹推理(俗稱三段論)

  由一般性的命題推出特殊命題的過程,這種推理稱為演繹推理.

  考點(diǎn)三數(shù)學(xué)歸納法

  1.它是一個(gè)遞推的數(shù)學(xué)論證方法.

  2.步驟:A.命題在n=1(或n0)時(shí)成立,這是遞推的基礎(chǔ);B.假設(shè)在n=k時(shí)命題成立C.證明n=k+1時(shí)命題也成立,

  完成這兩步,就可以斷定對任何自然數(shù)(或n>=n0,且nN)結(jié)論都成立。

  考點(diǎn)三證明

  1.反證法:

  2.分析法:

  3.綜合法:

  第一章數(shù)系的擴(kuò)充和復(fù)數(shù)的概念考點(diǎn)一:復(fù)數(shù)的概念

  (1)復(fù)數(shù):形如abi(aR,bR)的數(shù)叫做復(fù)數(shù),a和b分別叫它的實(shí)部和虛部.

  (2)分類:復(fù)數(shù)abi(aR,bR)中,當(dāng)b0,就是實(shí)數(shù);b0,叫做虛數(shù);當(dāng)a0,b0時(shí),叫做純虛數(shù).

  (3)復(fù)數(shù)相等:如果兩個(gè)復(fù)數(shù)實(shí)部相等且虛部相等就說這兩個(gè)復(fù)數(shù)相等.

  (4)共軛復(fù)數(shù):當(dāng)兩個(gè)復(fù)數(shù)實(shí)部相等,虛部互為相反數(shù)時(shí),這兩個(gè)復(fù)數(shù)互為共軛復(fù)數(shù).

  (5)復(fù)*面:建立直角坐標(biāo)系來表示復(fù)數(shù)的*面叫做復(fù)*面,x軸叫做實(shí)軸,y軸除去原點(diǎn)的部分叫做虛軸。

  (6)兩個(gè)實(shí)數(shù)可以比較大小,但兩個(gè)復(fù)數(shù)如果不全是實(shí)數(shù)就不能比較大小。

高中數(shù)學(xué)知識點(diǎn)總結(jié)7

  高中數(shù)學(xué)(文)包含5本必修、2本選修,(理)包含5本必修、3本選修,每學(xué)期學(xué)**兩本書。

  必修一:1、集合與函數(shù)的概念 (這部分知識抽象,較難理解)2、基本的初等函數(shù)(指數(shù)函數(shù)、對數(shù)函數(shù))3、函數(shù)的性質(zhì)及應(yīng)用 (比較抽象,較難理解)

  必修二:1、立體幾何(1)、證明:垂直(多考查面面垂直)、*行(2)、求解:主要是夾角問題,包括線面角和面面角

  這部分知識是高一學(xué)生的難點(diǎn),比如:一個(gè)角實(shí)際上是一個(gè)銳角,但是在圖中顯示的鈍角等等一些問題,需要學(xué)生的立體意識較強(qiáng)。這部分知識高考占22---27分

  2、直線方程:高考時(shí)不單獨(dú)命題,易和圓錐曲線結(jié)合命題

  3、圓方程:

  必修三:1、算法初步:高考必考內(nèi)容,5分(選擇或填空)2、統(tǒng)計(jì):3、概率:高考必考內(nèi)容,09年理科占到15分,文科數(shù)學(xué)占到5分

  必修四:1、三角函數(shù):(圖像、性質(zhì)、高中重難點(diǎn),)必考大題:15---20分,并且經(jīng)常和其他函數(shù)混合起來考查

  2、*面向量:高考不單獨(dú)命題,易和三角函數(shù)、圓錐曲線結(jié)合命題。09年理科占到5分,文科占到13分

  必修五:1、解三角形:(正、余弦定理、三角恒等變換)高考中理科占到22分左右,文科數(shù)學(xué)占到13分左右2、數(shù)列:高考必考,17---22分3、不等式:(線性規(guī)劃,聽課時(shí)易理解,但做題較復(fù)雜,應(yīng)掌握技巧。高考必考5分)不等式不單獨(dú)命題,一般和函數(shù)結(jié)合求最值、解集。

  文科:選修1—1、1—2

  選修1--1:重點(diǎn):高考占30分

  1、邏輯用語:一般不考,若考也是和集合放一塊考2、圓錐曲線:3、導(dǎo)數(shù)、導(dǎo)數(shù)的應(yīng)用(高考必考)

  選修1--2:1、統(tǒng)計(jì):2、推理證明:一般不考,若考會(huì)是填空題3、復(fù)數(shù):(新課標(biāo)比老課本難的多,高考必考內(nèi)容)

  理科:選修2—1、2—2、2—3

  選修2--1:1、邏輯用語2、圓錐曲線3、空間向量:(利用空間向量可以把立體幾何做題簡便化)

  選修2--2:1、導(dǎo)數(shù)與微積分2、推理證明:一般不考3、復(fù)數(shù)

  選修2--3:1、計(jì)數(shù)原理:(排列組合、二項(xiàng)式定理)掌握這部分知識點(diǎn)需要大量做題找規(guī)律,無技巧。高考必考,10分2、隨機(jī)變量及其分布:不單獨(dú)命題3、統(tǒng)計(jì):

  高考的知識板塊

  集合與簡單邏輯:5分或不考

  函數(shù):高考60分:①、指數(shù)函數(shù) ②對數(shù)函數(shù) ③二次函數(shù) ④三次函數(shù) ⑤三角函數(shù) ⑥抽象函數(shù)(無函數(shù)表達(dá)式,不易理解,難點(diǎn))

  *面向量與解三角形

  立體幾何:22分左右

  不等式:(線性規(guī)則)5分必考

  數(shù)列:17分 (一道大題+一道選擇或填空)易和函數(shù)結(jié)合命題

  *面解析幾何:(30分左右)

  計(jì)算原理:10分左右

  概率統(tǒng)計(jì):12分----17分

  復(fù)數(shù):5分

  推理證明

  一般高考大題分布

  1、17題:三角函數(shù)

  2、18、19、20 三題:立體幾何 、概率 、數(shù)列

  3、21、22 題:函數(shù)、圓錐曲線

  成績不理想一般是以下幾種情況:

  做題不細(xì)心,(會(huì)做,做不對)

  基礎(chǔ)知識沒有掌握

  解決問題不全面,知識的運(yùn)用沒有系統(tǒng)化(如:一道題綜合了多個(gè)知識點(diǎn))

  心理素質(zhì)不好

  總之學(xué)**數(shù)學(xué)一定要掌握科學(xué)的學(xué)**方法:1、筆記:記老師講的課本上沒有的知識點(diǎn),尤其是數(shù)列性質(zhì),課本上沒有,但做題經(jīng)常用到 2、錯(cuò)題收集、歸納總結(jié)

  高一年級

  必修一

  第一章 集合與函數(shù)概念

  第二章 基本初等函數(shù)(Ⅰ)

  第三章 函數(shù)的應(yīng)用

  必修二

  第一章 空間幾何體

  第二章 點(diǎn)、直線、*面之間的位置關(guān)系

  第三章 直線與方程

  必修三

  第一章 算法初步

  第二章 統(tǒng)計(jì)

  第三章 概率

  必修四

  第一章 三角函數(shù)

  第二章 *面向量

  第三章 三角恒等變換

  (二)教學(xué)要求

  在教學(xué)中,由于集合、函數(shù)等內(nèi)容比較抽象,三角函數(shù)在高考中占據(jù)重要地位,*面向量又是高考中數(shù)學(xué)必考內(nèi)容,教師在備課組協(xié)作的基礎(chǔ)上應(yīng)注意對各章知識的重難點(diǎn)的講解和釋疑,減輕學(xué)生自學(xué)的壓力,增強(qiáng)學(xué)生學(xué)好數(shù)學(xué)的信心。

  首先,在高中數(shù)學(xué)中,集合的初步知識以及與其它內(nèi)容的密切聯(lián)系。它們是學(xué)**、掌握和使用數(shù)學(xué)語言的基礎(chǔ),是高中數(shù)學(xué)學(xué)**的出發(fā)點(diǎn)。在教學(xué)中,應(yīng)注重引導(dǎo)學(xué)生更好的理解數(shù)學(xué)中出現(xiàn)的集合語言,使學(xué)生更好的使用集合語言表述數(shù)學(xué)問題,并且可以使學(xué)生運(yùn)用集合的觀點(diǎn),研究、處理數(shù)學(xué)問題。因此集合的基本概念、函數(shù)等有關(guān)內(nèi)容是教師重點(diǎn)講解的內(nèi)容。

  其次,函數(shù)作為中學(xué)數(shù)學(xué)中最重要的基本概念之一,教師應(yīng)注意運(yùn)用有關(guān)的概念和函數(shù)的性質(zhì),培養(yǎng)學(xué)生的思維能力;通過指數(shù)與對數(shù),指數(shù)函數(shù)與對數(shù)函數(shù)之間的'內(nèi)在聯(lián)系,對學(xué)生進(jìn)行辯證唯物**觀點(diǎn)的教育;通過聯(lián)系實(shí)際的引入問題和解決帶有實(shí)際意義的某些問題,培養(yǎng)學(xué)生的實(shí)踐能力和創(chuàng)新意識。

  第三,通過對三角函數(shù)的學(xué)**,學(xué)生將進(jìn)一步了解符號與變元、集合與對應(yīng)、數(shù)形結(jié)合等基本的數(shù)學(xué)思想在研究三角函數(shù)時(shí)所起的重要作用,在式子與圖形的變化中,教師應(yīng)引導(dǎo)學(xué)生通過分析、探索、劃歸、類比、*行移動(dòng)、伸長和縮短等常用的基本方法的學(xué)**,使學(xué)生在學(xué)**數(shù)學(xué)和應(yīng)用數(shù)學(xué)方面達(dá)到一個(gè)新的層次。

  第四,學(xué)***面向量,不但應(yīng)注意*面向量基本知識的講解,更要充分挖掘*面向量的工具作用,提高學(xué)生應(yīng)用數(shù)學(xué)知識解決實(shí)際問題的能力和實(shí)際操作的能力,使學(xué)生學(xué)會(huì)提出問題,明確研究方向,使學(xué)生學(xué)會(huì)交流,體驗(yàn)數(shù)學(xué)活動(dòng)的過程,培養(yǎng)創(chuàng)新精神和應(yīng)用能力。

  第五、在學(xué)**空間幾何體、點(diǎn)、直線、*面之間的位置關(guān)系時(shí),重點(diǎn)要幫助學(xué)生逐步形成空間想象能力,嚴(yán)格遵循從整體到局部,從具體到抽象的原則,逐步掌握解決空間幾何體的相關(guān)問題。

  第六、要在*面解析幾何初步教學(xué)中,幫助學(xué)生經(jīng)歷如下的過程:首先將幾何問題代數(shù)化,用代數(shù)的語言描述幾何要素及其關(guān)系,進(jìn)而將幾何問題轉(zhuǎn)化為代數(shù)問題;處理代數(shù)問題;分析代數(shù)結(jié)果的幾何含義,最終解決幾何問題。這種思想應(yīng)貫穿*面解析幾何教學(xué)的始終,幫助學(xué)生不斷地體會(huì)“數(shù)形結(jié)合”的思想方法。

  第七、在學(xué)**算法初步、統(tǒng)計(jì)等內(nèi)容的時(shí)候,要注意順序漸進(jìn),不可追求一步到位,特別要注意其思想的重要性。

  高二年級

  必修五

  第一章 解三角形

  第二章 數(shù)列

  第三章 不等式

  選修1-1

  第一章 常用邏輯用語

  第二章 圓錐曲線與方程

  第三章 導(dǎo)數(shù)及其應(yīng)用

  選修1-2

  第一章 統(tǒng)計(jì)案例

  第二章 推理與證明

  第三章 數(shù)系的擴(kuò)充與復(fù)數(shù)的引入

  第四章 框圖

  選修2-1

  第一章 常用邏輯用語

  第二章 圓錐曲線與方程

  第三章 空間向量與立體幾何

  選修2-2

  第一章 導(dǎo)數(shù)及其應(yīng)用

  第二章 推理與證明

  第三章 數(shù)系的擴(kuò)充與復(fù)數(shù)的引入

  選修2-3

  第一章 計(jì)數(shù)原理

  第二章 隨機(jī)變量及其分布

  第三章 統(tǒng)計(jì)案例

  (二)教學(xué)要求

  高二上

  必修5

  學(xué)生將在已有知識的基礎(chǔ)上,通過對任意三角形邊角關(guān)系的探究,發(fā)現(xiàn)并掌握三角形中的邊長與角度之間的數(shù)量關(guān)系,并認(rèn)識到運(yùn)用它們可以解決一些與測量和幾何計(jì)算有關(guān)的實(shí)際問題。

  數(shù)列作為一種特殊的函數(shù),是反映自然規(guī)律的基本數(shù)學(xué)模型。在本模塊中,學(xué)生將通過對日常生活中大量實(shí)際問題的分析,建立等差數(shù)列和等比數(shù)列這兩種數(shù)列模型,探索并掌握它們的一些基本數(shù)量關(guān)系,感受這兩種數(shù)列模型的廣泛應(yīng)用,并利用它們解決一些實(shí)際問題。

  不等關(guān)系與相等關(guān)系都是客觀事物的基本數(shù)量關(guān)系,是數(shù)學(xué)研究的重要內(nèi)容。建立不等觀念、處理不等關(guān)系與處理等量問題是同樣重要的。在本模塊中,學(xué)生將通過具體情境,感受在現(xiàn)實(shí)世界和日常生活中存在著大量的不等關(guān)系,理解不等式(組)對于刻畫不等關(guān)系的意義和價(jià)值;掌握求解一元二次不等式的基本方法,并能解決一些實(shí)際問題;能用二元一次不等式組表示*面區(qū)域,并嘗試解決一些簡單的二元線性規(guī)劃問題;認(rèn)識基本不等式及其簡單應(yīng)用;體會(huì)不等式、方程及函數(shù)之間的聯(lián)系。

  選修1—1(文科)

  在本模塊中,學(xué)生將在義務(wù)教育階段的基礎(chǔ)上,學(xué)**常用邏輯用語,體會(huì)邏輯用語在表述和論證中的作用,利用這些邏輯用語準(zhǔn)確地表達(dá)數(shù)學(xué)內(nèi)容,更好地進(jìn)行交流。

  在必修課程學(xué)***面解析幾何初步的基礎(chǔ)上,在本模塊中,學(xué)生將學(xué)**圓錐曲線與方程,了解圓錐曲線與二次方程的關(guān)系,掌握圓錐曲線的基本幾何性質(zhì),感受圓錐曲線在刻畫現(xiàn)實(shí)世界和解決實(shí)際問題中的作用,進(jìn)一步體會(huì)數(shù)形結(jié)合的思想。

  在本模塊中,學(xué)生將通過大量實(shí)例,經(jīng)歷由*均變化率到瞬時(shí)變化率的過程,刻畫現(xiàn)實(shí)問題,理解導(dǎo)數(shù)的含義,體會(huì)導(dǎo)數(shù)的思想及其內(nèi)涵;應(yīng)用導(dǎo)數(shù)探索函數(shù)的單調(diào)、極值等性質(zhì)及其在實(shí)際中的應(yīng)用,感受導(dǎo)數(shù)在解決數(shù)學(xué)問題和實(shí)際問題中的作用,體會(huì)微積分的產(chǎn)生對人類文化發(fā)展的價(jià)值。

  選修2-1(理科)

  在本模塊中,學(xué)生將學(xué)**常用邏輯用語、圓錐曲線與方程、空間中的向量(簡稱空間向量)與立體幾何。

  在本模塊中,學(xué)生將在義務(wù)教育階段的基礎(chǔ)上,學(xué)**常用邏輯用語,體會(huì)邏輯用語在表述和論證中的作用,利用這些邏輯用語準(zhǔn)確地表達(dá)數(shù)學(xué)內(nèi)容,從而更好地進(jìn)行交流。

  在必修階段學(xué)***面解析幾何初步的基礎(chǔ)上,在本模塊中,學(xué)生將學(xué)**圓錐曲線與方程,了解圓錐曲線與二次方程的關(guān)系,掌握圓錐曲線的基本幾何性質(zhì),感受圓錐曲線在刻畫現(xiàn)實(shí)世界和解決實(shí)際問題中的作用。結(jié)合已學(xué)過的曲線及其方程的實(shí)例,了解曲線與方程的對應(yīng)關(guān)系,進(jìn)一步體會(huì)數(shù)形結(jié)合的思想。

  在本模塊中,學(xué)生將在學(xué)***面向量的基礎(chǔ)上,把*面向量及其運(yùn)算推廣到空間,運(yùn)用空間向量解決有關(guān)直線、*面位置關(guān)系的問題,體會(huì)向量方法在研究幾何圖形中的作用,進(jìn)一步發(fā)展空間想像能力和幾何直觀能力。

高中數(shù)學(xué)知識點(diǎn)總結(jié)8

  一、求導(dǎo)數(shù)的方法

  (1)基本求導(dǎo)公式

 。2)導(dǎo)數(shù)的四則運(yùn)算

 。3)復(fù)合函數(shù)的導(dǎo)數(shù)

  設(shè)在點(diǎn)x處可導(dǎo),y=在點(diǎn)處可導(dǎo),則復(fù)合函數(shù)在點(diǎn)x處可導(dǎo),且即

  二、關(guān)于極限

  1、數(shù)列的極限:

  粗略地說,就是當(dāng)數(shù)列的項(xiàng)n無限增大時(shí),數(shù)列的項(xiàng)無限趨向于A,這就是數(shù)列極限的描述性定義。記作:=A。如:

  2、函數(shù)的極限:

  當(dāng)自變量x無限趨近于常數(shù)時(shí),如果函數(shù)無限趨近于一個(gè)常數(shù),就說當(dāng)x趨近于時(shí),函數(shù)的極限是,記作

  三、導(dǎo)數(shù)的概念

  1、在處的導(dǎo)數(shù)。

  2、在的導(dǎo)數(shù)。

  3。函數(shù)在點(diǎn)處的.導(dǎo)數(shù)的幾何意義:

  函數(shù)在點(diǎn)處的導(dǎo)數(shù)是曲線在處的切線的斜率,

  即k=,相應(yīng)的切線方程是

  注:函數(shù)的導(dǎo)函數(shù)在時(shí)的函數(shù)值,就是在處的導(dǎo)數(shù)。

  例、若=2,則=()A—1B—2C1D

  四、導(dǎo)數(shù)的綜合運(yùn)用

 。ㄒ唬┣的切線

  函數(shù)y=f(x)在點(diǎn)處的導(dǎo)數(shù),就是曲線y=(x)在點(diǎn)處的切線的斜率。由此,可以利用導(dǎo)數(shù)求曲線的切線方程。具體求法分兩步:

 。1)求出函數(shù)y=f(x)在點(diǎn)處的導(dǎo)數(shù),即曲線y=f(x)在點(diǎn)處的切線的斜率k=

 。2)在已知切點(diǎn)坐標(biāo)和切線斜率的條件下,求得切線方程為x。

高中數(shù)學(xué)知識點(diǎn)總結(jié)9

  1.多動(dòng)腦思考

  2.強(qiáng)化自己學(xué)習(xí)訓(xùn)練

  要是想學(xué)好高中數(shù)學(xué),必須做的一件事就是做大量的題,數(shù)學(xué)不一定好,因襲要提高解題的效率,做題的目的在于檢查你學(xué)的知識,方法是否掌握得很好。如果你掌握得不準(zhǔn),甚至有偏差,那么多做題的結(jié)果,反而鞏固了你的缺欠,因此,要在準(zhǔn)確地把握住基本知識和方法的.基礎(chǔ)上做一定量的定式訓(xùn)練是必要的。盡管復(fù)習(xí)時(shí)間緊張,但我們?nèi)匀灰⒁饣貧w課本。要抓綱悟本,對著課本目錄回憶和梳理知識,把重點(diǎn)放在掌握例題涵蓋的知識及解題方法上,選擇一些針對性極強(qiáng)的題目進(jìn)行強(qiáng)化訓(xùn)練、復(fù)習(xí)才有實(shí)效。

  3.養(yǎng)成良好的學(xué)**慣

  學(xué)習(xí)高三數(shù)學(xué)必須養(yǎng)成良好的審解題解題習(xí)慣,如仔細(xì)閱讀題目,看清數(shù)字,規(guī)范解題格式,做到審題要慢解題要快,注重過程,書寫不規(guī)范,在正規(guī)考試中即使答案對了,由于過程不完整被扣分較多,導(dǎo)致“會(huì)而不對”,或是為了保證正確率,反復(fù)驗(yàn)算,浪費(fèi)很多時(shí)間,影響整體得分。這些問題都很難在短時(shí)間得以解決,必須在*時(shí)下功夫努力改正。其實(shí)這是一種不良的學(xué)**慣,必須在第一輪復(fù)習(xí)中逐步克服,否則,后患無窮。可結(jié)合*時(shí)解題中存在的具體問題,逐題找出原因,看其是行為習(xí)慣方面的原因,還是知識方面的缺陷,再有針對性加以解決。必要時(shí)作些記錄,也就是錯(cuò)題本,每位學(xué)生必備的,以便以后查詢。

高中數(shù)學(xué)知識點(diǎn)總結(jié)10

  1過兩點(diǎn)有且只有一條直線2兩點(diǎn)之間線段最短3同角或等角的補(bǔ)角相等?4同角或等角的余角相等

  5過一點(diǎn)有且只有一條直線和已知直線垂直6直線外一點(diǎn)與直線上各點(diǎn)連接的所有線段中,垂線段最短7*行公理經(jīng)過直線外一點(diǎn),有且只有一條直線與這條直線*行8如果兩條直線都和第三條直線*行,這兩條直線也互相*行9同位角相等,兩直線*行10內(nèi)錯(cuò)角相等,兩直線*行11同旁內(nèi)角互補(bǔ),兩直線*行12兩直線*行,同位角相等13兩直線*行,內(nèi)錯(cuò)角相等14兩直線*行,同旁內(nèi)角互補(bǔ)

  15定理三角形兩邊的和大于第三邊16推論三角形兩邊的差小于第三邊17三角形內(nèi)角和定理三角形三個(gè)內(nèi)角的和等于180°18推論1直角三角形的兩個(gè)銳角互余19推論2三角形的一個(gè)外角等于和它不相鄰的兩個(gè)內(nèi)角的和20推論3三角形的一個(gè)外角大于任何一個(gè)和它不相鄰的內(nèi)角21全等三角形的對應(yīng)邊、對應(yīng)角相等

  22邊角邊公理(SAS)有兩邊和它們的夾角對應(yīng)相等的兩個(gè)三角形全等23角邊角公理(ASA)有兩角和它們的夾邊對應(yīng)相等的兩個(gè)三角形全等24推論(AAS)有兩角和其中一角的對邊對應(yīng)相等的兩個(gè)三角形全等25邊邊邊公理(SSS)有三邊對應(yīng)相等的兩個(gè)三角形全等26斜邊、直角邊公理(HL)有斜邊和一條直角邊對應(yīng)相等的兩個(gè)直角三角形全等27定理1在角的*分線上的點(diǎn)到這個(gè)角的兩邊的距離相等

  28定理2到一個(gè)角的兩邊的距離相同的點(diǎn),在這個(gè)角的*分線上29角的*分線是到角的兩邊距離相等的所有點(diǎn)的集合

  30等腰三角形的性質(zhì)定理等腰三角形的兩個(gè)底角相等(即等邊對等角)31推論1等腰三角形頂角的*分線*分底邊并且垂直于底邊

  32等腰三角形的頂角*分線、底邊上的中線和底邊上的高互相重合33推論3等邊三角形的各角都相等,并且每一個(gè)角都等于60°34等腰三角形的判定定理如果一個(gè)三角形有兩個(gè)角相等,那么這兩個(gè)角所對的邊也相等(等角對等邊)35推論1三個(gè)角都相等的三角形是等邊三角形36推論2有一個(gè)角等于60°的等腰三角形是等邊三角形

  37在直角三角形中,如果一個(gè)銳角等于30°那么它所對的直角邊等于斜邊的一半38直角三角形斜邊上的中線等于斜邊上的一半

  39定理線段垂直*分線上的點(diǎn)和這條線段兩個(gè)端點(diǎn)的距離相等

  40逆定理和一條線段兩個(gè)端點(diǎn)距離相等的點(diǎn),在這條線段的垂直*分線上41線段的垂直*分線可看作和線段兩端點(diǎn)距離相等的所有點(diǎn)的集合42定理1關(guān)于某條直線對稱的兩個(gè)圖形是全等形43定理2如果兩個(gè)圖形關(guān)于某直線對稱,那么對稱軸是對應(yīng)點(diǎn)連線的'垂直*分線44定理3兩個(gè)圖形關(guān)于某直線對稱,如果它們的對應(yīng)線段或延長線相交,那么交點(diǎn)在對稱軸上45逆定理如果兩個(gè)圖形的對應(yīng)點(diǎn)連線被同一條直線垂直*分,那么這兩個(gè)圖形關(guān)于這條直線對稱46勾股定理直角三角形兩直角邊a、b的*方和、等于斜邊c的*方,即a^2+b^2=c^247勾股定理的逆定理如果三角形的三邊長a、b、c有關(guān)系a^2+b^2=c^2,那么這個(gè)三角形是直角三角形48定理四邊形的內(nèi)角和等于360°49四邊形的外角和等于360°

  50多邊形內(nèi)角和定理n邊形的內(nèi)角的和等于(n-2)×180°51推論任意多邊的外角和等于360°52*行四邊形性質(zhì)定理1*行四邊形的對角相等53*行四邊形性質(zhì)定理2*行四邊形的對邊相等54推論夾在兩條*行線間的*行線段相等55*行四邊形性質(zhì)定理3*行四邊形的對角線互相*分

  56*行四邊形判定定理1兩組對角分別相等的四邊形是*行四邊形57*行四邊形判定定理2兩組對邊分別相等的四邊形是*行四邊形58*行四邊形判定定理3對角線互相*分的四邊形是*行四邊形59*行四邊形判定定理4一組對邊*行相等的四邊形是*行四邊形

  60矩形性質(zhì)定理1矩形的四個(gè)角都是直角61矩形性質(zhì)定理2矩形的對角線相等

  62矩形判定定理1有三個(gè)角是直角的四邊形是矩形63矩形判定定理2對角線相等的*行四邊形是矩形64菱形性質(zhì)定理1菱形的四條邊都相等

  65菱形性質(zhì)定理2菱形的對角線互相垂直,并且每一條對角線*分一組對角66菱形面積=對角線乘積的一半,即S=(a×b)÷267菱形判定定理1四邊都相等的四邊形是菱形

  68菱形判定定理2對角線互相垂直的*行四邊形是菱形

  69正方形性質(zhì)定理1正方形的四個(gè)角都是直角,四條邊都相等

  70正方形性質(zhì)定理2正方形的兩條對角線相等,并且互相垂直*分,每條對角線*分一組對角71定理1關(guān)于中心對稱的兩個(gè)圖形是全等的

  72定理2關(guān)于中心對稱的兩個(gè)圖形,對稱點(diǎn)連線都經(jīng)過對稱中心,并且被對稱中心*分73逆定理如果兩個(gè)圖形的對應(yīng)點(diǎn)連線都經(jīng)過某一點(diǎn),并且被這一點(diǎn)*分,那么這兩個(gè)圖形關(guān)于這一點(diǎn)對稱74等腰梯形性質(zhì)定理等腰梯形在同一底上的兩個(gè)角相等75等腰梯形的兩條對角線相等

  76等腰梯形判定定理在同一底上的兩個(gè)角相等的梯形是等腰梯形77對角線相等的梯形是等腰梯形

  78*行線等分線段定理如果一組*行線在一條直線上截得的線段相等,那么在其他直線上截得的線段也相等

  79推論1經(jīng)過梯形一腰的中點(diǎn)與底*行的直線,必*分另一腰

  80推論2經(jīng)過三角形一邊的中點(diǎn)與另一邊*行的直線,必*分第三邊81三角形中位線定理三角形的中位線*行于第三邊,并且等于它的一半82梯形中位線定理梯形的中位線*行于兩底,并且等于兩底和的一半L=(a+b)÷2S=L×h

  83(1)比例的基本性質(zhì)如果a:b=c:d,那么ad=bc如果ad=bc,那么a:b=c:dwc/S??

  84(2)合比性質(zhì)如果a/b=c/d,那么(a±b)/b=(c±d)/d85(3)等比性質(zhì)如果a/b=c/d=…=m/n(b+d+…+n≠0),那么(a+c+…+m)/(b+d+…+n)=a/b

  86*行線分線段成比例定理三條*行線截兩條直線,所得的對應(yīng)線段成比例87推論*行于三角形一邊的直線截其他兩邊(或兩邊的延長線),所得的對應(yīng)線段成比例

  88定理如果一條直線截三角形的兩邊(或兩邊的延長線)所得的對應(yīng)線段成比例,那么這條直線*行于三角形的第三邊

  89*行于三角形的一邊,并且和其他兩邊相交的直線,所截得的三角形的三邊與原三角形三邊對應(yīng)成比例90定理*行于三角形一邊的直線和其他兩邊(或兩邊的延長線)相交,所構(gòu)成的三角形與原三角形相似

  91相似三角形判定定理1兩角對應(yīng)相等,兩三角形相似(ASA)92直角三角形被斜邊上的高分成的兩個(gè)直角三角形和原三角形相似93判定定理2兩邊對應(yīng)成比例且夾角相等,兩三角形相似(SAS)94判定定理3三邊對應(yīng)成比例,兩三角形相似(SSS)

  95定理如果一個(gè)直角三角形的斜邊和一條直角邊與另一個(gè)直角三角形的斜邊和一條直角邊對應(yīng)成比例,那么這兩個(gè)直角三角形相似

  96性質(zhì)定理1相似三角形對應(yīng)高的比,對應(yīng)中線的比與對應(yīng)角*分線的比都等于相似比

  97性質(zhì)定理2相似三角形周長的比等于相似比

  98性質(zhì)定理3相似三角形面積的比等于相似比的*方99任意銳角的正弦值等于它的余角的余弦值,任意銳角的余弦值等于它的余角的正弦值

  100任意銳角的正切值等于它的余角的余切值,任意銳角的余切值等于它的余角的正切值

  101圓是定點(diǎn)的距離等于定長的點(diǎn)的集合

  102圓的內(nèi)部可以看作是圓心的距離小于半徑的點(diǎn)的集合103圓的外部可以看作是圓心的距離大于半徑的點(diǎn)的集合104同圓或等圓的半徑相等

  105到定點(diǎn)的距離等于定長的點(diǎn)的軌跡,是以定點(diǎn)為圓心,定長為半徑的圓106和已知線段兩個(gè)端點(diǎn)的距離相等的點(diǎn)的軌跡,是著條線段的垂直*分線107到已知角的兩邊距離相等的點(diǎn)的軌跡,是這個(gè)角的*分線

  108到兩條*行線距離相等的點(diǎn)的軌跡,是和這兩條*行線*行且距離相等的一條直線

  109定理不在同一直線上的三點(diǎn)確定一個(gè)圓。

  110垂徑定理垂直于弦的直徑*分這條弦并且*分弦所對的兩條弧

  111推論1①*分弦(不是直徑)的直徑垂直于弦,并且*分弦所對的兩條、谙业拇怪*分線經(jīng)過圓心,并且*分弦所對的兩條弧

  ③*分弦所對的一條弧的直徑,垂直*分弦,并且*分弦所對的另一條弧112推論2圓的兩條*行弦所夾的弧相等113圓是以圓心為對稱中心的中心對稱圖形

  114定理在同圓或等圓中,相等的圓心角所對的弧相等,所對的弦相等,所對的弦的弦心距相等

  115推論在同圓或等圓中,如果兩個(gè)圓心角、兩條弧、兩條弦或兩弦的弦心距中有一組量相等那么它們所對應(yīng)的其余各組量都相等

  116定理一條弧所對的圓周角等于它所對的圓心角的一半117推論1同弧或等弧所對的圓周角相等;同圓或等圓中,相等的圓周角所對的弧也相等

  118推論2半圓(或直徑)所對的圓周角是直角;90°的圓周角所對的弦是直徑

  119推論3如果三角形一邊上的中線等于這邊的一半,那么這個(gè)三角形是直角三角形

  120定理圓的內(nèi)接四邊形的對角互補(bǔ),并且任何一個(gè)外角都等于它的內(nèi)對角121①直線L和⊙O相交d<r②直線L和⊙O相切d=r③直線L和⊙O相離d>r

  122切線的判定定理經(jīng)過半徑的外端并且垂直于這條半徑的直線是圓的切線123切線的性質(zhì)定理圓的切線垂直于經(jīng)過切點(diǎn)的半徑124推論1經(jīng)過圓心且垂直于切線的直線必經(jīng)過切點(diǎn)125推論2經(jīng)過切點(diǎn)且垂直于切線的直線必經(jīng)過圓心

  126切線長定理從圓外一點(diǎn)引圓的兩條切線,它們的切線長相等,圓心和這一點(diǎn)的連線*分兩條切線的夾角

  127圓的外切四邊形的兩組對邊的和相等

  128弦切角定理弦切角等于它所夾的弧對的圓周角

  129推論如果兩個(gè)弦切角所夾的弧相等,那么這兩個(gè)弦切角也相等

  130相交弦定理圓內(nèi)的兩條相交弦,被交點(diǎn)分成的兩條線段長的積相等131推論如果弦與直徑垂直相交,那么弦的一半是它分直徑所成的兩條線段的比例中項(xiàng)

  132切割線定理從圓外一點(diǎn)引圓的切線和割線,切線長是這點(diǎn)到割線與圓交點(diǎn)的兩條線段長的比例中項(xiàng)

  133推論從圓外一點(diǎn)引圓的兩條割線,這一點(diǎn)到每條割線與圓的交點(diǎn)的兩條線段長的積相等

  134如果兩個(gè)圓相切,那么切點(diǎn)一定在連心線上135①兩圓外離d>R+r②兩圓外切d=R+r③兩圓相交R-r<d<R+r(R>r)

 、軆蓤A內(nèi)切d=R-r(R>r)⑤兩圓內(nèi)含d<R-r(R>r)136定理相交兩圓的連心線垂直*分兩圓的公*弦137定理把圓分成n(n≥3):

 、乓来芜B結(jié)各分點(diǎn)所得的多邊形是這個(gè)圓的內(nèi)接正n邊形⑵經(jīng)過各分點(diǎn)作圓的切線,以相鄰切線的交點(diǎn)為頂點(diǎn)的多邊形是這個(gè)圓的外切正n邊形

  138定理任何正多邊形都有一個(gè)外接圓和一個(gè)內(nèi)切圓,這兩個(gè)圓是同心圓139正n邊形的每個(gè)內(nèi)角都等于(n-2)×180°/n

  140定理正n邊形的半徑和邊心距把正n邊形分成2n個(gè)全等的直角三角形141正n邊形的面積Sn=pnrn/2p表示正n邊形的周長142正三角形面積√3a/4a表示邊長

  143如果在一個(gè)頂點(diǎn)周圍有k個(gè)正n邊形的角,由于這些角的和應(yīng)為360°,因此k×(n-2)180°/n=360°化為(n-2)(k-2)=4144弧長撲愎劍=n兀R/180

  145扇形面積公式:S扇形=n兀R^2/360=LR/2146內(nèi)公切線長=d-(R-r)外公切線長=d-(R+r)(還有一些,大家?guī)脱a(bǔ)充吧)實(shí)用工具:常用數(shù)學(xué)公式公式分類公式表達(dá)式

  乘法與因式分解a^2-b^2=(a+b)(a-b)a^3+b^3=(a+b)(a^2-ab+b^2)a^3-b^3=(a-b(a^2+ab+b^2)

  三角不等式|a+b|≤|a|+|b||a-b|≤|a|+|b||a|≤b-b≤a≤b|a-b|≥|a|-|b|-|a|≤a≤|a|

  一元二次方程的解-b+√(b^2-4ac)/2a-b-√(b^2-4ac)/2a根與系數(shù)的關(guān)系X1+X2=-b/aX1*X2=c/a注:韋達(dá)定理判別式

  b^2-4ac=0注:方程有兩個(gè)相等的實(shí)根b^2-4ac>0注:方程有兩個(gè)不等的實(shí)根b^2-4ac拋物線標(biāo)準(zhǔn)方程y^2=2pxy^2=-2pxx^2=2pyx^2=-2py直棱柱側(cè)面積S=c*h斜棱柱側(cè)面積S=c"*h

  正棱錐側(cè)面積S=1/2c*h"正棱臺側(cè)面積S=1/2(c+c")h"圓臺側(cè)面積S=1/2(c+c")l=pi(R+r)l球的表面積S=4pi*r2圓柱側(cè)面積S=c*h=2pi*h圓錐側(cè)面積S=1/2*c*l=pi*r*l

  弧長公式l=a*ra是圓心角的弧度數(shù)r>0扇形面積公式s=1/2*l*r錐體體積公式V=1/3*S*H圓錐體體積公式V=1/3*pi*r2h斜棱柱體積V=S"L注:其中,S"是直截面面積,L是側(cè)棱長柱體體積公式V=s*h圓柱體V=pi*r2h

高中數(shù)學(xué)知識點(diǎn)總結(jié)11

  1、命題的四種形式及其相互關(guān)系是什么?

  (互為逆否關(guān)系的命題是等價(jià)命題。)

  原命題與逆否命題同真、同假;逆命題與否命題同真同假。

  2、對映射的`概念了解嗎?映射f:A→B,是否注意到A中元素的任意性和B中與之對應(yīng)元素的唯一性,哪幾種對應(yīng)能構(gòu)成映射?

 。ㄒ粚σ,多對一,允許B中有元素?zé)o原象。)

  3、函數(shù)的三要素是什么?如何比較兩個(gè)函數(shù)是否相同?

 。ǘx域、對應(yīng)法則、值域)

  4、反函數(shù)存在的條件是什么?

 。ㄒ灰粚(yīng)函數(shù))

  求反函數(shù)的步驟掌握了嗎?

 。á俜唇鈞;②互換x、y;③注明定義域)

  5、反函數(shù)的性質(zhì)有哪些?

 、倩榉春瘮(shù)的圖象關(guān)于直線y=x對稱;

 、诒4媪嗽瓉砗瘮(shù)的單調(diào)性、奇函數(shù)性;

  6、函數(shù)f(x)具有奇偶性的必要(非充分)條件是什么?

 。╢(x)定義域關(guān)于原點(diǎn)對稱)

高中數(shù)學(xué)知識點(diǎn)總結(jié)12

  有界性

  設(shè)函數(shù)f(x)在區(qū)間X上有定義,如果存在M>0,對于一切屬于區(qū)間X上的x,恒有|f(x)|≤M,則稱f(x)在區(qū)間X上有界,否則稱f(x)在區(qū)間上**.

  單調(diào)性

  設(shè)函數(shù)f(x)的定義域?yàn)镈,區(qū)間I包含于D.如果對于區(qū)間**意兩點(diǎn)x1及x2,當(dāng)x1f(x2),則稱函數(shù)f(x)在區(qū)間I上是單調(diào)遞減的.單調(diào)遞增和單調(diào)遞減的函數(shù)統(tǒng)稱為單調(diào)函數(shù).

  奇偶性

  設(shè)為一個(gè)實(shí)變量實(shí)值函數(shù),若有f(—x)=—f(x),則f(x)為奇函數(shù).

  幾何上,一個(gè)奇函數(shù)關(guān)于原點(diǎn)對稱,亦即其圖像在繞原點(diǎn)做180度旋轉(zhuǎn)后不會(huì)改變.

  奇函數(shù)的例子有x、sin(x)、sinh(x)和erf(x).

  設(shè)f(x)為一實(shí)變量實(shí)值函數(shù),若有f(x)=f(—x),則f(x)為偶函數(shù).

  幾何上,一個(gè)偶函數(shù)關(guān)于y軸對稱,亦即其圖在對y軸映射后不會(huì)改變.

  偶函數(shù)的例子有|x|、x2、cos(x)和cosh(x).

  偶函數(shù)不可能是個(gè)雙射映射.

  連續(xù)性

  在數(shù)學(xué)中,連續(xù)是函數(shù)的一種屬性.直觀上來說,連續(xù)的函數(shù)就是當(dāng)輸入值的變化足夠小的時(shí)候,輸出的變化也會(huì)隨之足夠小的函數(shù).如果輸入值的.某種微小的變化會(huì)產(chǎn)生輸出值的一個(gè)突然的跳躍甚至無法定義,則這個(gè)函數(shù)被稱為是不連續(xù)的函數(shù)(或者說具有不連續(xù)性).

高中數(shù)學(xué)知識點(diǎn)總結(jié)13

  若A1、A2、B1、B2都不為零。

  注意:若A2或B2中含有字母,應(yīng)注意討論字母=0與0的情況。

  兩條直線的交點(diǎn):兩條直線的交點(diǎn)的個(gè)數(shù)取決于這兩條直線的方程組成的`方程組的解的個(gè)數(shù)。

  5.直線方程的五種形式

  確定直線方程需要有兩個(gè)互相**的條件,確定直線方程的形式很多,但必須注意各種形式的直線方程的適用范圍。

  直線的點(diǎn)斜式與斜截式不能表示斜率不存在(垂直于x軸)的直線;兩點(diǎn)式不能表示*行或重合兩坐標(biāo)軸的直線;截距式不能表示*行或重合兩坐標(biāo)軸的直線及過原點(diǎn)的直線。

  6.直線的交點(diǎn)坐標(biāo)與距離公式

  (1)兩直線的交點(diǎn)坐標(biāo)

  一般地,將兩條直線的方程聯(lián)立,得方程組

  若方程組有唯一解,則兩條直線相交,解即為交點(diǎn)的坐標(biāo);若方程組無解,則兩條直線無公共點(diǎn),此時(shí)兩條直線*行。

  (2)兩點(diǎn)間距離

  兩點(diǎn)P1(x1,y1),P2(x2,y2)間的距離公式

  特別地:軸,則、軸,則

  (3)點(diǎn)到直線的距離公式

  點(diǎn)到直線的距離為:

  (4)兩*行線間的距離公式:

  若,則:

  注意點(diǎn):x,y對應(yīng)項(xiàng)系數(shù)應(yīng)相等。

高中數(shù)學(xué)知識點(diǎn)總結(jié)14

  一、高中數(shù)列基本公式:

  1、一般數(shù)列的通項(xiàng)an與前n項(xiàng)和Sn的關(guān)系:an=

  2、等差數(shù)列的通項(xiàng)公式:an=a1+(n-1)d an=ak+(n-k)d (其中a1為首項(xiàng)、ak為已知的第k項(xiàng)) 當(dāng)d≠0時(shí),an是關(guān)于n的一次式;當(dāng)d=0時(shí),an是一個(gè)常數(shù)。

  3、等差數(shù)列的前n項(xiàng)和公式:Sn=

  Sn=

  Sn=

  當(dāng)d≠0時(shí),Sn是關(guān)于n的二次式且常數(shù)項(xiàng)為0;當(dāng)d=0時(shí)(a1≠0),Sn=na1是關(guān)于n的正比例式。

  4、等比數(shù)列的'通項(xiàng)公式: an= a1qn-1an= akqn-k

  (其中a1為首項(xiàng)、ak為已知的第k項(xiàng),an≠0)

  5、等比數(shù)列的前n項(xiàng)和公式:當(dāng)q=1時(shí),Sn=n a1 (是關(guān)于n的正比例式);

  當(dāng)q≠1時(shí),Sn=

  Sn=

  二、高中數(shù)學(xué)中有關(guān)等差、等比數(shù)列的結(jié)論

  1、等差數(shù)列{an}的任意連續(xù)m項(xiàng)的和構(gòu)成的數(shù)列Sm、S2m-Sm、S3m-S2m、S4m- S3m、……仍為等差數(shù)列。

  2、等差數(shù)列{an}中,若m+n=p+q,則

  3、等比數(shù)列{an}中,若m+n=p+q,則

  4、等比數(shù)列{an}的任意連續(xù)m項(xiàng)的和構(gòu)成的數(shù)列Sm、S2m-Sm、S3m-S2m、S4m- S3m、……仍為等比數(shù)列。

  5、兩個(gè)等差數(shù)列{an}與{bn}的和差的數(shù)列{an+bn}、{an-bn}仍為等差數(shù)列。

  6、兩個(gè)等比數(shù)列{an}與{bn}的積、商、倒數(shù)組成的數(shù)列仍為等比數(shù)列。

  7、等差數(shù)列{an}的任意等距離的項(xiàng)構(gòu)成的數(shù)列仍為等差數(shù)列。

  8、等比數(shù)列{an}的任意等距離的項(xiàng)構(gòu)成的數(shù)列仍為等比數(shù)列。

  9、三個(gè)數(shù)成等差數(shù)列的設(shè)法:a-d,a,a+d;四個(gè)數(shù)成等差的設(shè)法:a-3d,a-d,,a+d,a+3d

  10、三個(gè)數(shù)成等比數(shù)列的設(shè)法:a/q,a,aq;

  四個(gè)數(shù)成等比的錯(cuò)誤設(shè)法:a/q3,a/q,aq,aq3 (為什么?)

高中數(shù)學(xué)知識點(diǎn)總結(jié)15

  等比數(shù)列公式性質(zhì)知識點(diǎn)

  1.等比數(shù)列的有關(guān)概念

  (1)定義:

  如果一個(gè)數(shù)列從第2項(xiàng)起,每一項(xiàng)與它的前一項(xiàng)的比等于同一個(gè)常數(shù)(不為零),那么這個(gè)數(shù)列就叫做等比數(shù)列.這個(gè)常數(shù)叫做等比數(shù)列的公比,通常用字母q表示,定義的表達(dá)式為an+1/an=q(n∈N_,q為非零常數(shù)).

  (2)等比中項(xiàng):

  如果a、G、b成等比數(shù)列,那么G叫做a與b的等比中項(xiàng).即:G是a與b的等比中項(xiàng)a,G,b成等比數(shù)列G2=ab.

  2.等比數(shù)列的有關(guān)公式

  (1)通項(xiàng)公式:an=a1qn-1.

  3.等比數(shù)列{an}的常用性質(zhì)

  (1)在等比數(shù)列{an}中,若m+n=p+q=2r(m,n,p,q,r∈N_),則am·an=ap·aq=a.

  特別地,a1an=a2an-1=a3an-2=….

  (2)在公比為q的等比數(shù)列{an}中,數(shù)列am,am+k,am+2k,am+3k,…仍是等比數(shù)列,公比為qk;數(shù)列Sm,S2m-Sm,S3m-S2m,…仍是等比數(shù)列(此時(shí)q≠-1);an=amqn-m.

  4.等比數(shù)列的特征

  (1)從等比數(shù)列的定義看,等比數(shù)列的任意項(xiàng)都是非零的',公比q也是非零常數(shù).

  (2)由an+1=qan,q≠0并不能立即斷言{an}為等比數(shù)列,還要驗(yàn)證a1≠0.

  5.等比數(shù)列的前n項(xiàng)和Sn

  (1)等比數(shù)列的前n項(xiàng)和Sn是用錯(cuò)位相減法求得的,注意這種思想方法在數(shù)列求和中的運(yùn)用.

  (2)在運(yùn)用等比數(shù)列的前n項(xiàng)和公式時(shí),必須注意對q=1與q≠1分類討論,防止因忽略q=1這一特殊情形導(dǎo)致解題失誤.

  等比數(shù)列知識點(diǎn)

  1.等比中項(xiàng)

  如果在a與b中間插入一個(gè)數(shù)G,使a,G,b成等比數(shù)列,那么G叫做a與b的等比中項(xiàng)。

  有關(guān)系:

  注:兩個(gè)非零同號的實(shí)數(shù)的等比中項(xiàng)有兩個(gè),它們互為相反數(shù),所以G2=ab是a,G,b三數(shù)成等比數(shù)列的必要不充分條件。

  2.等比數(shù)列通項(xiàng)公式

  an=a1_q’(n-1)(其中首項(xiàng)是a1,公比是q)

  an=Sn-S(n-1)(n≥2)

  前n項(xiàng)和

  當(dāng)q≠1時(shí),等比數(shù)列的前n項(xiàng)和的公式為

  Sn=a1(1-q’n)/(1-q)=(a1-a1_q’n)/(1-q)(q≠1)

  當(dāng)q=1時(shí),等比數(shù)列的前n項(xiàng)和的`公式為

  Sn=na1

  3.等比數(shù)列前n項(xiàng)和與通項(xiàng)的關(guān)系

  an=a1=s1(n=1)

  an=sn-s(n-1)(n≥2)

  4.等比數(shù)列性質(zhì)

  (1)若m、n、p、q∈N_,且m+n=p+q,則am·an=ap·aq;

  (2)在等比數(shù)列中,依次每k項(xiàng)之和仍成等比數(shù)列。

  (3)從等比數(shù)列的定義、通項(xiàng)公式、前n項(xiàng)和公式可以推出:a1·an=a2·an-1=a3·an-2=…=ak·an-k+1,k∈{1,2,…,n}

  (4)等比中項(xiàng):q、r、p成等比數(shù)列,則aq·ap=ar2,ar則為ap,aq等比中項(xiàng)。

  記πn=a1·a2…an,則有π2n-1=(an)2n-1,π2n+1=(an+1)2n+1

  另外,一個(gè)各項(xiàng)均為正數(shù)的等比數(shù)列各項(xiàng)取同底指數(shù)冪后構(gòu)成一個(gè)等差數(shù)列;反之,以任一個(gè)正數(shù)C為底,用一個(gè)等差數(shù)列的各項(xiàng)做指數(shù)構(gòu)造冪Can,則是等比數(shù)列。在這個(gè)意義下,我們說:一個(gè)正項(xiàng)等比數(shù)列與等差數(shù)列是“同構(gòu)”的。

  (5)等比數(shù)列前n項(xiàng)之和Sn=a1(1-q’n)/(1-q)

  (6)任意兩項(xiàng)am,an的關(guān)系為an=am·q’(n-m)

  (7)在等比數(shù)列中,首項(xiàng)a1與公比q都不為零。

  注意:上述公式中a’n表示a的n次方。

  等比數(shù)列知識點(diǎn)總結(jié)

  等比數(shù)列:如果一個(gè)數(shù)列從第2項(xiàng)起,每一項(xiàng)與它的前一項(xiàng)的比等于同一個(gè)常數(shù),這個(gè)數(shù)列就叫做等比數(shù)列。這個(gè)常數(shù)叫做等比數(shù)列的公比,公比通常用字母q表示(q≠0)。

  1:等比數(shù)列通項(xiàng)公式:an=a1_q^(n-1);推廣式:an=am·q^(n-m);

  2:等比數(shù)列求和公式:等比求和:Sn=a1+a2+a3+.......+an

 、佼(dāng)q≠1時(shí),Sn=a1(1-q^n)/(1-q)或Sn=(a1-an×q)÷(1-q)

 、诋(dāng)q=1時(shí),Sn=n×a1(q=1)記πn=a1·a2…an,則有π2n-1=(an)2n-1,π2n+1=(an+1)2n+1

  3:等比中項(xiàng):aq·ap=ar^2,ar則為ap,aq等比中項(xiàng)。

  4:性質(zhì):

  ①若m、n、p、q∈N,且m+n=p+q,則am·an=ap_aq;

 、谠诘缺葦(shù)列中,依次每k項(xiàng)之和仍成等比數(shù)列.

  例題:設(shè)ak,al,am,an是等比數(shù)列中的第k、l、m、n項(xiàng),若k+l=m+n,求證:ak_al=am_an

  證明:設(shè)等比數(shù)列的首項(xiàng)為a1,公比為q,則ak=a1·q^(k-1),al=a1·q^(l-1),am=a1·q^(m-1),an=a1·q^(n-1)

  所以:ak_al=a^2_q^(k+l-2),am_an=a^2_q(m+n-2),故:ak_al=am_an

  說明:這個(gè)例題是等比數(shù)列的一個(gè)重要性質(zhì),它在解題中常常會(huì)用到。它說明等比數(shù)列中距離兩端(首末兩項(xiàng))距離等遠(yuǎn)的兩項(xiàng)的乘積等于首末兩項(xiàng)的乘積,即:a(1+k)·a(n-k)=a1·an

  對于等差數(shù)列,同樣有:在等差數(shù)列中,距離兩端等這的兩項(xiàng)之和等于首末兩項(xiàng)之和。即:a(1+k)+a(n-k)=a1+an


高中數(shù)學(xué)推理與證明知識點(diǎn)總結(jié) (菁選2篇)(擴(kuò)展4)

——高中數(shù)學(xué)必修三知識點(diǎn)3篇

高中數(shù)學(xué)必修三知識點(diǎn)1

  一、集合有關(guān)概念

  1、集合的含義:某些指定的對象集在一起就成為一個(gè)集合,其中每一個(gè)對象叫元素。

  2、集合中元素的三個(gè)特性:

  1.元素的確定性;

  2.元素的互異性;

  3.元素的無序性

  說明:

  (1)對于一個(gè)給定的集合,集合中的元素是確定的,任何一個(gè)對象或者是或者不是這個(gè)給定的集合的元素。

  (2)任何一個(gè)給定的集合中,任何兩個(gè)元素都是不同的對象,相同的對象歸入一個(gè)集合時(shí),僅算一個(gè)元素。

  (3)集合中的元素是*等的,沒有先后順序,因此判定兩個(gè)集合是否一樣,僅需比較它們的元素是否一樣,不需考查排列順序是否一樣。

  (4)集合元素的三個(gè)特性使集合本身具有了確定性和整體性。

  3、集合的表示:{…}如{我校的籃球隊(duì)員},{太*洋,大西洋,印度洋,北冰洋}

  1.用拉丁字母表示集合:A={我校的籃球隊(duì)員},B={1,2,3,4,5}

  2.集合的表示方法:列舉法與描述法。

  注意:常用數(shù)集及其記法:

  非負(fù)整數(shù)集(即自然數(shù)集)記作:N

  正整數(shù)集N_或N+整數(shù)集Z有理數(shù)集Q實(shí)數(shù)集R

  關(guān)于“屬于”的概念

  集合的元素通常用小寫的拉丁字母表示,如:a是集合A的元素,就說a屬于集合A記作a∈A,相反,a不屬于集合A記作a?A

  列舉法:把集合中的元素一一列舉出來,然后用一個(gè)大括號括上。

  描述法:將集合中的元素的公共屬性描述出來,寫在大括號內(nèi)表示集合的方法。用確定的條件表示某些對象是否屬于這個(gè)集合的方法。

  ①語言描述法:例:{不是直角三角形的三角形}

 、跀(shù)學(xué)式子描述法:例:不等式x-3>2的解集是{x?Rx-3>2}或{x x-3>2}

  4、集合的分類:

  1.有限集含有有限個(gè)元素的集合

  2.無限集含有無限個(gè)元素的集合

  3.空集不含任何元素的集合例:{x x2=-5}

  二、集合間的基本關(guān)系

  1.“包含”關(guān)系—子集

  注意:有兩種可能

  (1)A是B的一部分。

  (2)A與B是同一集合。

  反之:集合A不包含于集合B,或集合B不包含集合A,記作AB或BA

  2.“相等”關(guān)系(5≥5,且5≤5,則5=5)

  實(shí)例:設(shè)A={x x2-1=0}B={-1,1}“元素相同”

  結(jié)論:對于兩個(gè)集合A與B,如果集合A的任何一個(gè)元素都是集合B的元素,同時(shí),集合B的任何一個(gè)元素都是集合A的元素,我們就說集合A等于集合B,即:A=B

 、偃魏我粋(gè)集合是它本身的子集。AíA

 、谡孀蛹:如果AíB,且A1B那就說集合A是集合B的真子集,記作AB(或BA)

  ③如果AíB,BíC,那么AíC

 、苋绻鸄íB同時(shí)BíA那么A=B

  3.不含任何元素的集合叫做空集,記為Φ

高中數(shù)學(xué)必修三知識點(diǎn)2

  1、柱、錐、臺、球的結(jié)構(gòu)特征

  (1)棱柱:

  定義:有兩個(gè)面互相*行,其余各面都是四邊形,且每相鄰兩個(gè)四邊形的公共邊都互相*行,由這些面所圍成的幾何體。

  分類:以底面多邊形的邊數(shù)作為分類的標(biāo)準(zhǔn)分為三棱柱、四棱柱、五棱柱等。

  表示:用各頂點(diǎn)字母,如五棱柱或用對角線的端點(diǎn)字母,如五棱柱。

  幾何特征:兩底面是對應(yīng)邊*行的全等多邊形;側(cè)面、對角面都是*行四邊形;側(cè)棱*行且相等;*行于底面的截面是與底面全等的多邊形。

  (2)棱錐

  定義:有一個(gè)面是多邊形,其余各面都是有一個(gè)公共頂點(diǎn)的三角形,由這些面所圍成的幾何體。

  分類:以底面多邊形的邊數(shù)作為分類的標(biāo)準(zhǔn)分為三棱錐、四棱錐、五棱錐等

  表示:用各頂點(diǎn)字母,如五棱錐

  幾何特征:側(cè)面、對角面都是三角形;*行于底面的截面與底面相似,其相似比等于頂點(diǎn)到截面距離與高的比的*方。

  (3)棱臺:

  定義:用一個(gè)*行于棱錐底面的*面去截棱錐,截面和底面之間的部分。

  分類:以底面多邊形的邊數(shù)作為分類的標(biāo)準(zhǔn)分為三棱態(tài)、四棱臺、五棱臺等

  表示:用各頂點(diǎn)字母,如五棱臺

  幾何特征:

 、偕舷碌酌媸窍嗨频*行多邊形

 、趥(cè)面是梯形

  ③側(cè)棱交于原棱錐的.頂點(diǎn)

  (4)圓柱:

  定義:以矩形的一邊所在的直線為軸旋轉(zhuǎn),其余三邊旋轉(zhuǎn)所成的曲面所圍成的幾何體。

  幾何特征:

 、俚酌媸侨鹊膱A;

  ②母線與軸*行;

 、圯S與底面圓的半徑垂直;

  ④側(cè)面展開圖是一個(gè)矩形。

  (5)圓錐:

  定義:以直角三角形的一條直角邊為旋轉(zhuǎn)軸,旋轉(zhuǎn)一周所成的曲面所圍成的幾何體。

  幾何特征:

  ①底面是一個(gè)圓;

 、谀妇交于圓錐的頂點(diǎn);

  ③側(cè)面展開圖是一個(gè)扇形。

  (6)圓臺:

  定義:用一個(gè)*行于圓錐底面的*面去截圓錐,截面和底面之間的部分

  幾何特征:

  ①上下底面是兩個(gè)圓;

 、趥(cè)面母線交于原圓錐的頂點(diǎn);

 、蹅(cè)面展開圖是一個(gè)弓形。

  (7)球體:

  定義:以半圓的直徑所在直線為旋轉(zhuǎn)軸,半圓面旋轉(zhuǎn)一周形成的幾何體

  幾何特征:

 、偾虻慕孛媸菆A;

 、谇蛎**意一點(diǎn)到球心的距離等于半徑。

  2、空間幾何體的三視圖

  定義三視圖:正視圖(光線從幾何體的前面向后面正投影);側(cè)視圖(從左向右)、俯視圖(從上向下)

  注:正視圖反映了物體上下、左右的位置關(guān)系,即反映了物體的高度和長度;

  俯視圖反映了物體左右、前后的位置關(guān)系,即反映了物體的長度和寬度;

  側(cè)視圖反映了物體上下、前后的位置關(guān)系,即反映了物體的高度和寬度。

  3、空間幾何體的直觀圖——斜二測畫法

  斜二測畫法特點(diǎn):

 、僭瓉砼cx軸*行的線段仍然與x*行且長度不變;

  ②原來與y軸*行的線段仍然與y*行,長度為原來的一半。

高中數(shù)學(xué)必修三知識點(diǎn)3

  1、直線方程形式

  一般式:Ax+By+C=0(AB≠0)

  斜截式:y=kx+b(k是斜率b是x軸截距)

  點(diǎn)斜式:y-y1=k(x-x1)(直線過定點(diǎn)(x1,y1))

  兩點(diǎn)式:(y-y1)/(x-x1)=(y-y2)/(x-x2)(直線過定點(diǎn)(x1,y1),(x2,y2))

  截距式:x/a+y/b=1(a是x軸截距,b是y軸截距)

  做題過程中,點(diǎn)斜式和斜截式用的最多(兩種合占90%以上),一般式屬于中間過渡形態(tài)。

  在與圓及圓錐曲線結(jié)合的過程中,還要用到點(diǎn)到直線距離公式。

  2、直線方程的局限性

  各種不同形式的直線方程的局限性:

  (1)點(diǎn)斜式和斜截式都不能表示斜率不存在的直線;

  (2)兩點(diǎn)式不能表示與坐標(biāo)軸*行的直線;

  (3)截距式不能表示與坐標(biāo)軸*行或過原點(diǎn)的直線;

  (4)直線方程的一般式中系數(shù)A、B不能同時(shí)為零。

  數(shù)學(xué)直線和圓知識點(diǎn)

  1、直線傾斜角與斜率的存在性及其取值范圍;直線方向向量的意義(或)及其直線方程的向量式((為直線的方向向量))、應(yīng)用直線方程的點(diǎn)斜式、斜截式設(shè)直線方程時(shí),一般可設(shè)直線的斜率為k,但你是否注意到直線垂直于x軸時(shí),即斜率k不存在的情況?

  2、知直線縱截距,常設(shè)其方程為或;知直線橫截距,常設(shè)其方程為(直線斜率k存在時(shí),為k的倒數(shù))或知直線過點(diǎn),常設(shè)其方程為

  (2)直線在坐標(biāo)軸上的截距可正、可負(fù)、也可為0、直線兩截距相等直線的斜率為-1或直線過原點(diǎn);直線兩截距互為相反數(shù)直線的斜率為1或直線過原點(diǎn);直線兩截距絕對值相等直線的斜率為或直線過原點(diǎn)

  (3)在解析幾何中,研究兩條直線的位置關(guān)系時(shí),有可能這兩條直線重合,而在立體幾何中一般提到的兩條直線可以理解為它們不重合

  3、相交兩直線的夾角和兩直線間的到角是兩個(gè)不同的概念:夾角特指相交兩直線所成的較小角,范圍是。而其到角是帶有方向的角,范圍是

  4、線性規(guī)劃中幾個(gè)概念:約束條件、可行解、可行域、目標(biāo)函數(shù)、最優(yōu)解

  5、圓的方程:最簡方程;標(biāo)準(zhǔn)方程;

  6、解決直線與圓的關(guān)系問題有“函數(shù)方程思想”和“數(shù)形結(jié)合思想”兩種思路,等價(jià)轉(zhuǎn)化求解,重要的是發(fā)揮“圓的*面幾何性質(zhì)(如半徑、半弦長、弦心距構(gòu)成直角三角形,切線長定理、割線定理、弦切角定理等等)的作用!”

  (1)過圓上一點(diǎn)圓的切線方程

  過圓上一點(diǎn)圓的切線方程

  過圓上一點(diǎn)圓的切線方程

  如果點(diǎn)在圓外,那么上述直線方程表示過點(diǎn)兩切線上兩切點(diǎn)的“切點(diǎn)弦”方程

  如果點(diǎn)在圓內(nèi),那么上述直線方程表示與圓相離且垂直于(為圓心)的直線方程,(為圓心到直線的距離)

  7、曲線與的交點(diǎn)坐標(biāo)方程組的解;

  過兩圓交點(diǎn)的圓(公共弦)系為,當(dāng)且僅當(dāng)無*方項(xiàng)時(shí),為兩圓公共弦所在直線方程


高中數(shù)學(xué)推理與證明知識點(diǎn)總結(jié) (菁選2篇)(擴(kuò)展5)

——高中數(shù)學(xué)橢圓知識點(diǎn) (菁選3篇)

高中數(shù)學(xué)橢圓知識點(diǎn)1

  正弦定理a/sinA=b/sinB=c/sinC=2R注:其中R表示三角形的外接圓半徑

  余弦定理b2=a2+c2-2accosB注:角B是邊a和邊c的夾角

  圓的標(biāo)準(zhǔn)方程(x-a)2+(y-b)2=r2注:(a,b)是圓心坐標(biāo)

  圓的一般方程x2+y2+Dx+Ey+F=0注:D2+E2-4F>0

  拋物線標(biāo)準(zhǔn)方程y2=2pxy2=-2px-x2=2pyx2=-2py

  直棱柱側(cè)面積S=c.h斜棱柱側(cè)面積S=c'.h

  正棱錐側(cè)面積S=1/2c.h'正棱臺側(cè)面積S=1/2(c+c')h'

  圓臺側(cè)面積S=1/2(c+c')l=pi(R+r)l球的表面積S=4pi.r2

  圓柱側(cè)面積S=c.h=2pi.h圓錐側(cè)面積S=1/2.c.l=pi.r.l

  弧長公式l=a.ra是圓心角的弧度數(shù)r>0扇形面積公式s=1/2.l.r

  錐體體積公式V=1/3.S.H圓錐體體積公式V=1/3.pi.r2h

  斜棱柱體積V=S'L注:其中,S'是直截面面積,L是側(cè)棱長

  柱體體積公式V=s.h圓柱體V=p.r2h

  乘法與因式分a2-b2=(a+b)(a-b)a3+b3=(a+b)(a2-ab+b2)a3-b3=(a-b(a2+ab+b2)

  三角不等式|a+b|≤|a|+|b||a-b|≤|a|+|b||a|≤b<=>-b≤a≤b

  |a-b|≥|a|-|b|-|a|≤a≤|a|

  一元二次方程的解-b+√(b2-4ac)/2a-b-√(b2-4ac)/2a

  根與系數(shù)的關(guān)系X1+X2=-b/aX1.X2=c/a注:韋達(dá)定理

  判別式

  b2-4ac=0注:方程有兩個(gè)相等的實(shí)根

  b2-4ac>0注:方程有兩個(gè)不等的實(shí)根

  b2-4ac<0注:方程沒有實(shí)根,有共軛復(fù)數(shù)根

  高二數(shù)學(xué)綜合練習(xí)題

  高二數(shù)學(xué)練習(xí)題1.設(shè)logx(2x2+x-1)>logx2 -1,則x的取值范圍為

  11

  ,且x≠1 C.x>1 D.0A.

  中元素的個(gè)數(shù)為A.9 B.6

  C.4

  D.2

  x2+y23.已知xy<0,則代數(shù)式

  xy

  A.有最小值2 B.有值-2 C.有最小值-2 D.不存在最值4.已知a、b、c滿足cac B.c(b-a)<0 C.cb2

  2

  α//β?α⊥β?m⊥α?

 、 ③?m⊥β?β//γ???α⊥β ?

  m//α?m//βα//γ??

  m//n?

  ??m//α,其中為真命題的是n?α?

  A.①④ B.②③ C.①③ D.②④

  6.使不等式|x|≤2成立的一個(gè)必要但不充分條件是A.|x+1|≤3 B.|x-1|≤2 C.log2(x+1)≤1 D.

  11≥ |x|2

  7.命題p:存在實(shí)數(shù)m,使方程x2+mx+1=0有實(shí)數(shù)根,則“非p”形式的命題是A.存在實(shí)數(shù)m,使得方程x2+mx+1=0無實(shí)根B.不存在實(shí)數(shù)m,使得方程x2+mx+1=0有實(shí)根C.對任意的實(shí)數(shù)m,使得方程x2+mx+1=0有實(shí)根D.至多有一個(gè)實(shí)數(shù)m,使得方程x2+mx+1=0有實(shí)根

  8. “用反證法證明命題“如果x15

  15

  15

  1

  5

  B.x 3

  1515

  C.x=y且x15151515

  D.x=y或x>y

  15151515

  9.函數(shù)f(x)=ax+x+1有極值的充要條件是A.a≥0

  4

  B.a>0 C.a≤0 D.a<0

  10.若曲線y=x的一條切線l與直線x+4y-8=0垂直,則l的方程為A.4x-y-3=0 B.x+4y-5=0 C.4x-y+3=0D.x+4y+3=0 11.已知(1+i)?z=-i那么復(fù)數(shù)z對應(yīng)的點(diǎn)位于復(fù)*面內(nèi)的A.第一象限B.第二象限

  C.第三象限D(zhuǎn).第四象限12.設(shè)復(fù)數(shù)ω=-13+i,則1+ω= 22

  2A.-ω B.ω C.-1

  ω D.1 2ω

  z-z1π復(fù)數(shù)z1=1,z2由向量OZ1繞原點(diǎn)O而得到,則arg2的值為3213.

  ππ2π4πA. B. C. D.6333

  14.若a C.a>b D.a2>b2 > B.a-baab

  15.已知不等式①x2-4x+3<0 ②x2-6x+8<0 A.

 、2x-9x+m<0要使同時(shí)滿足①②的x也滿足③則m滿足.

  A.m>9 B.m=9 C.0x2y2kπ16.關(guān)于方程+=tanα(α是常數(shù)且α≠k∈Z),以下結(jié)論中不正確的是sinαcosα2

  A.可以表示雙曲線B.可以表示橢圓C.可以表示圓D.可以表示直線2

  x2y2

  +=1的左頂點(diǎn)的距離的最小值為17.拋物線y=-4x上有一點(diǎn)P,P到橢圓16152

  A.2 B.2+3 C.3 D.2-3

  x2y2

  +=1,當(dāng)m∈[-2,-1]時(shí),該曲線的離心率e的.取值范圍是

  18.二次曲線4m

  A.[,

  2

  第Ⅱ卷(非選擇題共12道填空題12道解答題)請將你認(rèn)為正確的答案代號填在下表中

  1 2 3 4 5 6 7 8 9 10 11 12 13

  16 17 18

  14 15

  ?x≥ -1?2219.已知實(shí)數(shù)x,y滿足約束條件?y≥0則(x +2)+ y最小值為____________。

  ?x+y ≥1?

  2220.已知a,b,x,y∈R,a+b=4,ax+by=6,則x+y的最小值為. 22

  21.不等式x+1-x≤3的解集是_______.

  x22.已知命題p:函數(shù)y=log0.5(x2+2x+a)的值域?yàn)镽.命題q:函數(shù)y=-(5-2a)

高中數(shù)學(xué)橢圓知識點(diǎn)2

 、偶吓c簡易邏輯:集合的概念與運(yùn)算、簡易邏輯、充要條件

 、坪瘮(shù):映射與函數(shù)、函數(shù)解析式與定義域、值域與最值、反函數(shù)、三大性質(zhì)、函數(shù)圖象、指數(shù)與指數(shù)函數(shù)、對數(shù)與對數(shù)函數(shù)、函數(shù)的應(yīng)用

 、菙(shù)列:數(shù)列的有關(guān)概念、等差數(shù)列、等比數(shù)列、數(shù)列求和、數(shù)列的應(yīng)用

 、热呛瘮(shù):有關(guān)概念、同角關(guān)系與誘導(dǎo)公式、和、差、倍、半公式、求值、化簡、證明、三角函數(shù)的圖象與性質(zhì)、三角函數(shù)的應(yīng)用

  ⑸*面向量:有關(guān)概念與初等運(yùn)算、坐標(biāo)運(yùn)算、數(shù)量積及其應(yīng)用

 、什坏仁剑焊拍钆c性質(zhì)、均值不等式、不等式的證明、不等式的解法、絕對值不等式、不等式的應(yīng)用

  ⑺直線和圓的方程:直線的方程、兩直線的位置關(guān)系、線性規(guī)劃、圓、直線與圓的位置關(guān)系

  ⑻圓錐曲線方程:橢圓、雙曲線、拋物線、直線與圓錐曲線的位置關(guān)系、軌跡問題、圓錐曲線的應(yīng)用

  ⑽排列、組合和概率:排列、組合應(yīng)用題、二項(xiàng)式定理及其應(yīng)用

 、细怕逝c統(tǒng)計(jì):概率、分布列、期望、方差、抽樣、正態(tài)分布

  ⑿導(dǎo)數(shù):導(dǎo)數(shù)的概念、求導(dǎo)、導(dǎo)數(shù)的應(yīng)用

  ⒀復(fù)數(shù):復(fù)數(shù)的概念與運(yùn)算

高中數(shù)學(xué)橢圓知識點(diǎn)3

  正弦定理a/sinA=b/sinB=c/sinC=2R注:其中R表示三角形的外接圓半徑

  余弦定理b2=a2+c2-2accosB注:角B是邊a和邊c的夾角

  圓的標(biāo)準(zhǔn)方程(x-a)2+(y-b)2=r2注:(a,b)是圓心坐標(biāo)

  圓的一般方程x2+y2+Dx+Ey+F=0注:D2+E2-4F>0

  拋物線標(biāo)準(zhǔn)方程y2=2pxy2=-2px-x2=2pyx2=-2py

  直棱柱側(cè)面積S=c.h斜棱柱側(cè)面積S=c'.h

  正棱錐側(cè)面積S=1/2c.h'正棱臺側(cè)面積S=1/2(c+c')h'

  圓臺側(cè)面積S=1/2(c+c')l=pi(R+r)l球的表面積S=4pi.r2

  圓柱側(cè)面積S=c.h=2pi.h圓錐側(cè)面積S=1/2.c.l=pi.r.l

  弧長公式l=a.ra是圓心角的'弧度數(shù)r>0扇形面積公式s=1/2.l.r

  錐體體積公式V=1/3.S.H圓錐體體積公式V=1/3.pi.r2h

  斜棱柱體積V=S'L注:其中,S'是直截面面積,L是側(cè)棱長

  柱體體積公式V=s.h圓柱體V=p.r2h

  乘法與因式分a2-b2=(a+b)(a-b)a3+b3=(a+b)(a2-ab+b2)a3-b3=(a-b(a2+ab+b2)

  三角不等式|a+b|≤|a|+|b||a-b|≤|a|+|b||a|≤b<=>-b≤a≤b

  |a-b|≥|a|-|b|-|a|≤a≤|a|

  一元二次方程的解-b+√(b2-4ac)/2a-b-√(b2-4ac)/2a

  根與系數(shù)的關(guān)系X1+X2=-b/aX1.X2=c/a注:韋達(dá)定理

  判別式

  b2-4ac=0注:方程有兩個(gè)相等的實(shí)根

  b2-4ac>0注:方程有兩個(gè)不等的實(shí)根

  b2-4ac<0注:方程沒有實(shí)根,有共軛復(fù)數(shù)根

  高二數(shù)學(xué)綜合練習(xí)題

  高二數(shù)學(xué)練習(xí)題1.設(shè)logx(2x2+x-1)>logx2 -1,則x的取值范圍為

  11

  ,且x≠1 C.x>1 D.0A.

  中元素的個(gè)數(shù)為A.9 B.6

  C.4

  D.2

  x2+y23.已知xy<0,則代數(shù)式

  xy

  A.有最小值2 B.有值-2 C.有最小值-2 D.不存在最值4.已知a、b、c滿足cac B.c(b-a)<0 C.cb2

  2

  α//β?α⊥β?m⊥α?

  ② ③?m⊥β?β//γ???α⊥β ?

  m//α?m//βα//γ??

  m//n?

  ??m//α,其中為真命題的是n?α?

  A.①④ B.②③ C.①③ D.②④

  6.使不等式|x|≤2成立的一個(gè)必要但不充分條件是A.|x+1|≤3 B.|x-1|≤2 C.log2(x+1)≤1 D.

  11≥ |x|2

  7.命題p:存在實(shí)數(shù)m,使方程x2+mx+1=0有實(shí)數(shù)根,則“非p”形式的命題是A.存在實(shí)數(shù)m,使得方程x2+mx+1=0無實(shí)根B.不存在實(shí)數(shù)m,使得方程x2+mx+1=0有實(shí)根C.對任意的實(shí)數(shù)m,使得方程x2+mx+1=0有實(shí)根D.至多有一個(gè)實(shí)數(shù)m,使得方程x2+mx+1=0有實(shí)根

  8. “用反證法證明命題“如果x15

  15

  15

  1

  5

  B.x 3

  1515

  C.x=y且x15151515

  D.x=y或x>y

  15151515

  9.函數(shù)f(x)=ax+x+1有極值的充要條件是A.a≥0

  4

  B.a>0 C.a≤0 D.a<0

  10.若曲線y=x的一條切線l與直線x+4y-8=0垂直,則l的方程為A.4x-y-3=0 B.x+4y-5=0 C.4x-y+3=0D.x+4y+3=0 11.已知(1+i)?z=-i那么復(fù)數(shù)z對應(yīng)的點(diǎn)位于復(fù)*面內(nèi)的A.第一象限B.第二象限

  C.第三象限D(zhuǎn).第四象限12.設(shè)復(fù)數(shù)ω=-13+i,則1+ω= 22

  2A.-ω B.ω C.-1

  ω D.1 2ω

  z-z1π復(fù)數(shù)z1=1,z2由向量OZ1繞原點(diǎn)O而得到,則arg2的值為3213.

  ππ2π4πA. B. C. D.6333

  14.若a C.a>b D.a2>b2 > B.a-baab

  15.已知不等式①x2-4x+3<0 ②x2-6x+8<0 A.

 、2x-9x+m<0要使同時(shí)滿足①②的x也滿足③則m滿足.

  A.m>9 B.m=9 C.0x2y2kπ16.關(guān)于方程+=tanα(α是常數(shù)且α≠k∈Z),以下結(jié)論中不正確的是sinαcosα2

  A.可以表示雙曲線B.可以表示橢圓C.可以表示圓D.可以表示直線2

  x2y2

  +=1的左頂點(diǎn)的距離的最小值為17.拋物線y=-4x上有一點(diǎn)P,P到橢圓16152

  A.2 B.2+3 C.3 D.2-3

  x2y2

  +=1,當(dāng)m∈[-2,-1]時(shí),該曲線的離心率e的取值范圍是

  18.二次曲線4m

  A.[,

  2

  第Ⅱ卷(非選擇題共12道填空題12道解答題)請將你認(rèn)為正確的答案代號填在下表中

  1 2 3 4 5 6 7 8 9 10 11 12 13

  16 17 18

  14 15

  ?x≥ -1?2219.已知實(shí)數(shù)x,y滿足約束條件?y≥0則(x +2)+ y最小值為____________。

  ?x+y ≥1?

  2220.已知a,b,x,y∈R,a+b=4,ax+by=6,則x+y的最小值為. 22

  21.不等式x+1-x≤3的解集是_______.

  x22.已知命題p:函數(shù)y=log0.5(x2+2x+a)的值域?yàn)镽.命題q:函數(shù)y=-(5-2a)


高中數(shù)學(xué)推理與證明知識點(diǎn)總結(jié) (菁選2篇)(擴(kuò)展6)

——高中數(shù)學(xué)證明題解法詳解 (菁選2篇)

高中數(shù)學(xué)證明題解法詳解1

  因?yàn)镻A/PA'=PB/PB'

  所以A'B'//AB

  同理C'B'//CB

  兩條相交直線分別*行一個(gè)面

  兩條直線確定的面也*行這個(gè)面

  算上上次那道題,都是最基礎(chǔ)的立體幾何

  勸你還是自己多琢磨琢磨

  對以后做立體大題有好處

  解:連接CE,由于對稱性,知CE與橢圓的交點(diǎn)G與B關(guān)于x軸對稱,連接AG,我們證明BC與AG的交點(diǎn)就是F,這樣BC當(dāng)然經(jīng)過F

  已知橢圓右焦點(diǎn)坐標(biāo)為F(1,0)

  設(shè)過E斜率為K的直線方程為:y=kx+b

  E點(diǎn)坐標(biāo)滿足方程,有:0=2k+b b=-2k y=kx-2k

  把直線方程代入橢圓方程得:

  x^2/2+(kx-2k)^2=1

  x^2+2(kx-2k)^2=2

  x^2+2k^2x^2-8k^2x+8k^2-2=0

  (2k^2+1)x^2-8k^2x+8k^2-2=0

高中數(shù)學(xué)證明題解法詳解2

  設(shè)AB兩點(diǎn)坐標(biāo)為(x1,y1)(x2,y2),則C、**的坐標(biāo)為(x1,-y1)G(x2,-y2)

  x1,x2是上方程兩根,由韋達(dá)定理知

  x1+x2=8k^2/(2k^2+1)=4-4/(2k^2+1)

  x1x2=(8k^2-2)/(2k^2+1)=4-6/(2k^2+1)

  y1=kx1-2k且 y2=kx2-2k

  y1+y2=k(x1+x2)-4k=4k-4k/(2k^2+1)-4k=-4k/(2k^2+1)

  直線BC、AG的方程為:

  y=(y2+y1)(x-x1)/(x2-x1)-y1 和 y=(y1+y2)(x-x1)/(x1-x2)+y1

  聯(lián)立上兩直線方程求交點(diǎn)坐標(biāo):

  (y2+y1)(x-x1)/(x2-x1)-y1=(y1+y2)(x-x1)/(x1-x2)+y1

  (y2+y1)(x-x1)/(x2-x1)+(y1+y2)(x-x1)/(x2-x1)=2y1

  (y2+y1)(x-x1)/(x2-x1)=y1

  x-x1=y1*(x2-x1)/(y1+y2)

  x=y1*(x2-x1)/(y1+y2)+x1

  x=(x1y2+x2y1)/(y1+y2)=[x1(kx2-2k)+x2(kx1-2k)]/(y1+y2)=


高中數(shù)學(xué)推理與證明知識點(diǎn)總結(jié) (菁選2篇)(擴(kuò)展7)

——高中數(shù)學(xué)解三角形知識點(diǎn) (菁選2篇)

高中數(shù)學(xué)解三角形知識點(diǎn)1

  (一) 解斜三角形

  1、解斜三角形的主要定理:正弦定理和余弦定理和余弦的射影公式和各種形式的面積的公式。

  2、能解決的四類型的問題:(1)已知兩角和一條邊(2)已知兩邊和夾角(3)已知三邊(4) 已知兩邊和其中一邊的對角。

  (二) 解直角三角形

  1、解直角三角形的主要定理:在直角三角形ABC中,直角為角C,角A和角B是它的兩銳角,所對的邊a、b、c,(1) 角A和角B的和是90度;

  (2) 勾股定理:a的*方加上+b的*方=c的*方;(3) 角A的正弦等于a比上c,角A的余弦等于b比上c,角B的正弦等于b比上c,角B的余弦等于a比上c;(4)面積的公式s=ab/2;此外還有射影定理,內(nèi)外切接圓的半徑。

  2、解直角三角形的四種類型:

  (1)已知兩直角邊:根據(jù)勾股定理先求出斜邊,用三角函數(shù)求出兩銳角中的一角,再用互余關(guān)系求出另一角或用三角函數(shù)求出兩銳角中的兩角;

  (2)已知一直角邊和斜邊,根據(jù)勾股定理先求出另一直角邊,問題轉(zhuǎn)化為(1);

  (3)已知一直角邊和一銳角,可求出另一銳角,運(yùn)用正弦或余弦,算出斜邊,用勾股定理算出另一直角邊;(4)已知斜邊和一銳角,先算出已知角的對邊,根據(jù)勾股定理先求出另一直角邊,問題轉(zhuǎn)化為(1)。

  如何學(xué)好高中數(shù)學(xué)

  1.先看筆記后做作業(yè)。 有的高中學(xué)生感到。老師講過的,自己已經(jīng)聽得明明白白了。但是,為什么自己一做題就困難重重了呢?其原因在于,學(xué)生對教師所講的內(nèi)容的理解,還沒能達(dá)到教師所要求的層次。因此,每天在做作業(yè)之前,一定要把課本的有關(guān)內(nèi)容和當(dāng)天的課堂筆記先看一看。能否堅(jiān)持如此,常常是好學(xué)生與差學(xué)生的最大區(qū)別。尤其練習(xí)題不太配套時(shí),作業(yè)中往往沒有老師剛剛講過的題目類型,因此不能對比消化。如果自己又不注意對此落實(shí),天長日久,就會(huì)造成極大損失。

  2.做題之后加強(qiáng)反思。 學(xué)生一定要明確,現(xiàn)在正坐著的題,一定不是考試的題目。而是要運(yùn)用現(xiàn)在正做著的題目的解題思路與方法。因此,要把自己做過的每道題加以反思?偨Y(jié)一下自己的收獲。要總結(jié)出,這是一道什么內(nèi)容的題,用的是什么方法。做到知識成片,問題成串,日久天長,構(gòu)建起一個(gè)內(nèi)容與方法的科學(xué)的網(wǎng)絡(luò)系統(tǒng)。

  3.主動(dòng)復(fù)*結(jié)提高。 進(jìn)行章節(jié)總結(jié)是非常重要的。初中時(shí)是教師替學(xué)生做總結(jié),做得細(xì)致,深刻,完整。高中是自己給自己做總結(jié),老師不但不給做,而且是講到哪,考到哪,不留復(fù)習(xí)時(shí)間,也沒有明確指出做總結(jié)的時(shí)間。

  倍角公式

  Sin2A=2SinA?CosA

  Cos2A=CosA^2-SinA^2=1-2SinA^2=2CosA^2-1

  tan2A=(2tanA)/(1-tanA^2)

  (注:SinA^2是sinA的*方sin2(A))

高中數(shù)學(xué)解三角形知識點(diǎn)2

  判斷解法

  已知條件:一邊和兩角

  一般解法:由A+B+C=180°,求角A,由正弦定理求出b與c,在有解時(shí),有一解。

  已知條件:兩邊和夾角

  一般解法:由余弦定理求第三邊c,由正弦定理求出小邊所對的角,再由A+B+C=180°求出另一角,在有解時(shí)有一解。

  已知條件:三邊

  一般解法:由余弦定理求出角A、B,再利用A+B+C=180°,求出角C在有解時(shí)只有一解。

  已知條件:兩邊和其中一邊的對角

  一般解法:由正弦定理求出角B,由A+B+C=180°求出角C,再利用正弦定理求出C邊,可有兩解、一解或無解。(或利用余弦定理求出c邊,再求出其余兩角B、C)

 、偃鬭>b,則A>B有唯一解;

 、谌鬮>a,且b>a>bsinA有兩解;

  ③若a

  常用定理

  正弦定理

  a/sinA=b/sinB=c/sinC=2R(2R在同一個(gè)三角形中是恒量,R是此三角形外接圓的半徑)。

  變形公式

  (1)a=2RsinA,b=2RsinB,c=2RsinC

  (2)sinA:sinB:sinC=a:b:c

  (3)asinB=bsinA,asinC=csinA,bsinC=csinB

  (4)sinA=a/2R,sinB=b/2R,sinC=c/2R

  面積公式(5)S=1/2bcsinA=1/2acsinB=1/2absinC S=1/2底·h(原始公式)

  余弦定理

  a?=b?+c?-2bccosA

  b?=a?+c?-2accosB

  c?=a?+b?-2abcosC

  注:勾股定理其實(shí)是余弦定理的一種特殊情況。

  變形公式

  cosC=(a?+b?-c?)/2ab

  cosB=(a?+c?-b?)/2ac

  cosA=(c?+b?-a?)/2bc

  高三數(shù)學(xué)知識點(diǎn)有哪些

  1、混淆命題的否定與否命題

  命題的“否定”與命題的“否命題”是兩個(gè)不同的概念,命題p的否定是否定命題所作的判斷,而“否命題”是對“若p,則q”形式的命題而言,既要否定條件也要否定結(jié)論。

  2、忽視集合元素的三性致誤

  集合中的元素具有確定性、無序性、互異性,集合元素的三性中互異性對解題的影響最大,特別是帶有字母參數(shù)的集合,實(shí)際上就隱含著對字母參數(shù)的一些要求。

  3、判斷函數(shù)奇偶性忽略定義域致誤

  判斷函數(shù)的奇偶性,首先要考慮函數(shù)的定義域,一個(gè)函數(shù)具備奇偶性的必要條件是這個(gè)函數(shù)的定義域關(guān)于原點(diǎn)對稱,如果不具備這個(gè)條件,函數(shù)一定是非奇非偶函數(shù)。

  4、函數(shù)零點(diǎn)定理使用不當(dāng)致誤

  如果函數(shù)y=f(x)在區(qū)間[a,b]上的圖像是一條連續(xù)的曲線,并且有f(a)f(b)<0,那么,函數(shù)y=f(x)在區(qū)間(a,b)內(nèi)有零點(diǎn),但f(a)f(b)>0時(shí),不能否定函數(shù)y=f(x)在(a,b)內(nèi)有零點(diǎn)。函數(shù)的零點(diǎn)有“變號零點(diǎn)”和“不變號零點(diǎn)”,對于“不變號零點(diǎn)”函數(shù)的零點(diǎn)定理是“**為力”的,在解決函數(shù)的零點(diǎn)問題時(shí)要注意這個(gè)問題。

  5、函數(shù)的單調(diào)區(qū)間理解不準(zhǔn)致誤

  在研究函數(shù)問題時(shí)要時(shí)時(shí)刻刻想到“函數(shù)的圖像”,學(xué)會(huì)從函數(shù)圖像上去分析問題、尋找解決問題的方法。對于函數(shù)的幾個(gè)不同的單調(diào)遞增(減)區(qū)間,切忌使用并集,只要指明這幾個(gè)區(qū)間是該函數(shù)的單調(diào)遞增(減)區(qū)間即可。

  6、三角函數(shù)的單調(diào)性判斷致誤

  對于函數(shù)y=Asin(ωx+φ)的單調(diào)性,當(dāng)ω>0時(shí),由于內(nèi)層函數(shù)u=ωx+φ是單調(diào)遞增的,所以該函數(shù)的單調(diào)性和y=sin x的單調(diào)性相同,故可完全按照函數(shù)y=sin x的單調(diào)區(qū)間解決;但當(dāng)ω<0時(shí),內(nèi)層函數(shù)u=ωx+φ是單調(diào)遞減的,此時(shí)該函數(shù)的單調(diào)性和函數(shù)y=sinx的單調(diào)性相反,就不能再按照函數(shù)y=sinx的單調(diào)性解決,一般是根據(jù)三角函數(shù)的奇偶性將內(nèi)層函數(shù)的系數(shù)變?yōu)檎龜?shù)后再加以解決。對于帶有絕對值的三角函數(shù)應(yīng)該根據(jù)圖像,從直觀上進(jìn)行判斷。

  7、向量夾角范圍不清致誤

  解題時(shí)要全面考慮問題。數(shù)學(xué)試題中往往隱含著一些容易被考生所忽視的因素,能不能在解題時(shí)把這些因素考慮到,是解題成功的關(guān)鍵,如當(dāng)a·b<0時(shí),a與b的夾角不一定為鈍角,要注意θ=π的情況。

  8、忽視零向量致誤

  零向量是向量中最特殊的向量,規(guī)定零向量的長度為0,其方向是任意的,零向量與任意向量都共線。它在向量中的位置正如實(shí)數(shù)中0的位置一樣,但有了它容易引起一些混淆,稍微考慮不到就會(huì)出錯(cuò),考生應(yīng)給予足夠的重視。

  9、對數(shù)列的定義、性質(zhì)理解錯(cuò)誤

  等差數(shù)列的前n項(xiàng)和在公差不為零時(shí)是關(guān)于n的常數(shù)項(xiàng)為零的二次函數(shù);一般地,有結(jié)論“若數(shù)列{an}的前n項(xiàng)和Sn=an2+bn+c(a,b,c∈R),則數(shù)列{an}為等差數(shù)列的充要條件是c=0”;在等差數(shù)列中,Sm,S2m-Sm,S3m-S2m(m∈N_)是等差數(shù)列。

  10、an與Sn關(guān)系不清致誤

  在數(shù)列問題中,數(shù)列的通項(xiàng)an與其前n項(xiàng)和Sn之間存在下列關(guān)系:an=S1,n=1,Sn-Sn-1,n≥2。這個(gè)關(guān)系對任意數(shù)列都是成立的,但要注意的是這個(gè)關(guān)系式是分段的,在n=1和n≥2時(shí)這個(gè)關(guān)系式具有完全不同的表現(xiàn)形式,這也是解題中經(jīng)常出錯(cuò)的一個(gè)地方,在使用這個(gè)關(guān)系式時(shí)要牢牢記住其“分段”的特點(diǎn)。


高中數(shù)學(xué)推理與證明知識點(diǎn)總結(jié) (菁選2篇)(擴(kuò)展8)

——高中數(shù)學(xué)考試總結(jié) (菁選2篇)

高中數(shù)學(xué)考試總結(jié)1

  期中考試考完了,還沒等成績出來,我已經(jīng)預(yù)料到了這次考試的慘敗,我認(rèn)為讓這次考試慘敗和這幾點(diǎn)有關(guān):

  1、考試前沒有好好復(fù)習(xí)

  2、考試時(shí)心理狀態(tài)不佳,非常緊張

  3、考試時(shí)精神狀態(tài)異常不好,沒精打采,根本沒有心思考試,只想趕快把題做完,結(jié)束考試

  4、在考試的時(shí)候有部分題目不會(huì)做,放在了后面來做,結(jié)果后面沒有了時(shí)間,也忘記了還有這些剩余的題目

  成績次日就下來了,結(jié)果非常令人驚訝,簡直不可思議,卷子錯(cuò)誤連篇,叉叉隨處可見,上次期末222名,這次中期考試竟然409名,直線下降187名,接近翻番,如果在后半期還是這樣的狀態(tài),留在*班是沒***、完全不可能的,因?yàn)樵谖液竺孢有許許多多的人想到*班來,而我在后退,他們在前進(jìn),所以我在后半期一定要努力,做到這幾點(diǎn):

  1、每天所有的課余時(shí)間均拿來學(xué)習(xí)、做作業(yè)、看書,上廁所除外。

  2、提高每次作業(yè)質(zhì)量,包括語文、數(shù)學(xué)、英語等其它科目,盡自己的力量完成會(huì)做的題目。

  3、做作業(yè)認(rèn)真審題,遇到選擇題、填空題不亂寫亂填,堅(jiān)決做到先審題再思考最后再答題,不盲目的猜。

  4、回家在沒有必要的情況下,不使用電腦,在有關(guān)學(xué)習(xí)的情況下才使用電腦

  5、上課不和同桌及其周圍的人講話,在上課時(shí)不理睬與課堂無關(guān)的談?wù)、事?/p>

  6、上課盡量精力集中,不發(fā)呆、***

  7、不在上課的時(shí)候睡覺,特別是數(shù)學(xué)課的時(shí)候

  8、不在上課時(shí)做與本堂課無關(guān)的事情,例如在數(shù)學(xué)課上做其它科目的作業(yè)之類

  9、改變我自暴自棄、破管子破摔的觀念

  這9點(diǎn),我一定要在這在校的四十多天中堅(jiān)持下去,爭取考到前200名,留到這個(gè)集體,時(shí)間已經(jīng)不多了,難道在這剩余的四十多天中,我都不能堅(jiān)持么?

高中數(shù)學(xué)考試總結(jié)2

  第一次月考結(jié)束了,成績也發(fā)下來了,本以為心情會(huì)輕松一些,但是反而更緊張了。 因?yàn)槌煽兒懿焕硐,我們是八個(gè)班里的倒數(shù)第一,這不僅使我疑惑,更使成老師不解。因?yàn)樵谶@一個(gè)月里,我們同學(xué)沒有做什么太出格的事,都安安生生的,不是別亂。 因此,我覺得這次月考我們發(fā)揮失常了。我覺得我們都沒有認(rèn)真對待這次月考。我總結(jié)了一下我考試失利的原因,共有兩點(diǎn):

  第一,復(fù)習(xí)不嚴(yán)密。這次考試中,我發(fā)現(xiàn)了許多問題,有些地方我都沒有復(fù)習(xí)到。

  第二,復(fù)習(xí)方法沒有掌握。這是在初中階段的第一次重要考試,在學(xué)習(xí)了一個(gè)月后,要月考了,心中當(dāng)然有些緊張,但又不知道怎樣復(fù)習(xí),試卷會(huì)考哪方面的知識,沒有一個(gè)目標(biāo),很盲目,所以只有把所有的書都復(fù)習(xí)了一遍,但所學(xué)的知識太多了,有些東西就丟掉了,導(dǎo)致考試時(shí)會(huì)迷惑。

  因此,我要經(jīng)常復(fù)習(xí),踏踏實(shí)實(shí)地做到日日清、周周清、月月清,并且還要經(jīng)常復(fù)習(xí)以前的舊知識,多思考,多問問題。找到一個(gè)適合自己的學(xué)習(xí)方法,爭取在期中考試能取得進(jìn)步。

  在這次月考中,我學(xué)會(huì)了許多,我知道我的不足在哪里,我知道我還要再努力。也許這次月考的成績不是很理想,但這次月考卻給我**一節(jié)讓我今生難忘的課,這節(jié)課中,他教給了我無論是在做事還是生活中,都要做到做好,做到極致,做到精益求精,這樣才對得起自己,對得起**自己的人。有一句話說得好:“人之所以成功或失敗,完全取決于對別人和自己的態(tài)度”。

  因此做任何事情都要認(rèn)真對待,都要一絲不茍,都要作完整,不能拖拖拉拉,不論是多么小的事情都要這樣,就算是把一片爛紙人進(jìn)垃圾桶,也要認(rèn)真去做。假如我們?nèi)巳硕济靼走@次考試告訴我們的道理,教給我們在做實(shí)事的方法,并且付諸實(shí)踐,我覺得這次考試的成績就不重要了,因?yàn)槲覀儷@得的是比成績更重要、更有意義的東西。

  這次月考已經(jīng)結(jié)束了,可以說這次月考試失敗的,但是一次的失敗,不會(huì)讓一個(gè)勇敢堅(jiān)強(qiáng)的人爬不起來,反而會(huì)讓這個(gè)勇敢堅(jiān)強(qiáng)的'人變得更加堅(jiān)韌、成熟,這個(gè)勇敢堅(jiān)強(qiáng)的人會(huì)一次又一次的讓失敗低頭,我們不會(huì)在逆境中低頭,我們要在逆境中揚(yáng)起頭,尋找新的方向和希望。*人常說“聞過則喜”,意思是聽到自己有過失,就高興。雖然這次我們考試考砸了,但我們從這次考試中找到了不足,有了方向,我們應(yīng)該吸取教訓(xùn)。我相信,我們八班一定是最棒的,我們八班一定可以在期中考試時(shí)一舉成功。

版權(quán)聲明:本文內(nèi)容由互聯(lián)網(wǎng)用戶自發(fā)貢獻(xiàn),該文觀點(diǎn)僅代表作者本人。本站僅提供信息存儲空間服務(wù),不擁有所有權(quán),不承擔(dān)相關(guān)法律責(zé)任。如發(fā)現(xiàn)本站有涉嫌抄襲侵權(quán)/違法違規(guī)的內(nèi)容, 請發(fā)送郵件至 yyfangchan@163.com (舉報(bào)時(shí)請帶上具體的網(wǎng)址) 舉報(bào),一經(jīng)查實(shí),本站將立刻刪除