狠狠操网,91中文字幕在线观看,精品久久香蕉国产线看观看亚洲,亚洲haose在线观看

怎么證明勾股定理

今天小編就為大家分享一篇怎么證明勾股定理,具有很好的參考價值,希望對大家有所幫助

第一階段是在剛開學那會兒,第一次寫讀書筆記時,莫名其妙的有點興奮,因為自己一直都很喜歡寫寫劃劃


設ABC為一直角三角形, 直角于角C. 從點C畫上三角形的高,并將此高與AB的交叉點稱之為H。此新三角形ACH和原本的三角形ABC相似,因為在兩個三角形中都有一個直角,而兩個三角形都有A這個共同角,由此可知第三只角都是相等的。同樣道理,三角形CBH和三角形ABC也是相似的。這些相似關系衍生出以下的比率關系:因為BC=a,AC=b,AB=c所以a/c=HB/a 和 b/c=AH/b可以寫成a*a=c*HB 和 b*b=C*AH綜合這兩個方程式,我們得到a*a+b*b=c*HB+C*AH =a*a+b*b=C*(HB+AH) =a*a+b*b=c*c
2
勾股定理是初等幾何中的一個基本定理。所謂勾股定理,就是指在直角三角形中,兩條直角邊的平方和等于斜邊的平方。這個定理有十分悠久的歷史,幾乎所有文明古國(希臘、 中國、埃及、巴比倫、印度等) 對此定理都有所研究。勾股定理在西方被稱為畢達哥拉斯定理,相傳是古希臘數(shù)學家兼哲學家畢達哥拉斯(Pythagoras,公元前572?~公元前497?) (右圖) 于公元前550年首先發(fā)現(xiàn)的。但畢達哥拉斯對勾股定理的證明方法已經(jīng)失傳。著名的希臘數(shù)學家歐幾里得(Euclid,公元前330~公元前275)在巨著《幾何原本》(第Ⅰ卷,命題47)中給出一個很好的證明

時間,讓我學會堅持,學會面對。

。 (左圖為歐幾里得和他的證明圖) 中國古代對這一數(shù)學定理的發(fā)現(xiàn)和應用,遠比畢達哥拉斯早得多。中國最早的一部數(shù)學著作——《周髀算經(jīng)》的開頭,記載著一段周公向商高請教數(shù)學知識的對話:周公問:"我聽說您對數(shù)學非常精通,我想請教一下:天沒有梯子可以上去,地也沒法用尺子去一段一段丈量, 那么怎樣才能得到關于天地得到數(shù)據(jù)呢?" 商高回答說:"數(shù)的產(chǎn)生來源于對方和圓這些形體的認識。其中有一條原理:當直角三角形‘矩'得到的一條直 角邊‘勾'等于3,另一條直角邊’股'等于4的時候, 那么它的斜邊'弦'就必定是5。這個原理是大禹在治水的時候就總結(jié)出來的呵。" 如果說大禹治水因年代久遠而無法確切考證的話,那么周公與商高的對話則可以確定在公元前1100年左右的西周時期, 比畢達哥拉斯要早了五百多年。其中所說的勾3股4弦5,正是勾股定理的一個應用特例。 所以現(xiàn)在數(shù)學界把它稱為勾股定理是非常恰當?shù)摹?在稍后一點的《九章算術》一書中( 約在 公元50至100年間) (右圖) ,勾股定理得到了更加規(guī)范的一般性表達。書中的《勾股章》說;“把勾和股分別自乘,然后把它們的積加起來,再進行開方,便可以得到弦! 。 《九章算術》系統(tǒng)地總結(jié)了戰(zhàn)國、秦、漢以來的數(shù)學成就,共收集了246個數(shù)學的應用問題和各個問題的解法,列為九章,可能是所有中國數(shù)學著作中影響最大的一部。 中國古代的數(shù)學家們不僅很早就發(fā)現(xiàn)并應用勾股定理,而且很早就嘗試對勾股定理作理論的證明。最早對勾股定理進行證明的,是三國時期吳國的數(shù)學家趙爽

我正要開口之時,突然又轉(zhuǎn)到了另一個地方。那里一片荒蕪,沒有一花一草。我現(xiàn)在心情似乎就像這一片地一樣,一片荒蕪,

。趙爽創(chuàng)制了一幅“勾股圓方圖” ,用形數(shù)結(jié)合得到方法,給出了勾股定理的詳細證明 (右圖) 。在這幅“勾股圓方圖”中,以弦為邊長得到正方形ABDE是由4個相等的直角三角形再加上中間的那個小正方形組成的。每個直角三角形的面積為ab/2;中間的小正方形邊長為b-a,則面積為(b-a) 2 。于是便可得如下的式子: 4×(ab/2)+(b-a) 2 =c 2 化簡后便可得: a 2 +b 2 =c 2 亦即:c=(a 2 +b 2 ) (1/2) 趙爽的這個證明可謂別具匠心,極富創(chuàng)新意識。他用幾何圖形的截、割、拼、補來證明代數(shù)式之間的恒等關系,既具嚴密性,又具直觀性,為中國古代以形證數(shù)、形數(shù)統(tǒng)一、代數(shù)和幾何緊密結(jié)合、互不可分的獨特風格樹立了一個典范。 以后的數(shù)學家大多繼承了這一風格并且有發(fā)展, 只是具體圖形的分合移補略有不同而已。 例如稍后一點的劉徽在證明勾股定理時也是用以形證數(shù)的方法,劉徽 (右圖) 用了“出入相補法”即剪貼證明法,他把勾股為邊的正方形上的某些區(qū)域剪下來(出), 移到以弦為邊的正方形的空白區(qū)域內(nèi)(入),結(jié)果剛好填滿,完全用圖解法就解決了問題。 (左圖為劉徽的勾股證明圖) 中國古代數(shù)學家們對于勾股定理的發(fā)現(xiàn)和證明,在世界數(shù)學史上具有獨特的貢獻和地位。尤其是其中體現(xiàn)出來的“形數(shù)統(tǒng)一”的思想方法,更具有科學創(chuàng)新的重大意義

更不能“拔苗助長”;但我已經(jīng)在勤奮了,希望心中那美好的憧憬能如愿以償,更希望:


版權(quán)聲明:本文內(nèi)容由互聯(lián)網(wǎng)用戶自發(fā)貢獻,該文觀點僅代表作者本人。本站僅提供信息存儲空間服務,不擁有所有權(quán),不承擔相關法律責任。如發(fā)現(xiàn)本站有涉嫌抄襲侵權(quán)/違法違規(guī)的內(nèi)容, 請發(fā)送郵件至 yyfangchan@163.com (舉報時請帶上具體的網(wǎng)址) 舉報,一經(jīng)查實,本站將立刻刪除