初一下冊證明題
如圖,有一個直角三角形紙片,兩直角邊AC=6cm,BC=8cm 。現(xiàn)將直角邊AC沿著直線AD折疊,使他落到斜邊AB上,C與E重合,你能求出CD的長嗎?
解:因為∠C=90°,AC=6,BC=8,由勾股定理得 AB=10 ,
又因為△AED≌ACD,所以AC=AE=6, BE=AB-AE=10-6=4cm 。
設(shè)DE的長為x,則DC=DE=x BD= 8-x.
因為△BED是Rt△,由勾股定理得,(8-x)^2=4^2+x^2,解得x=3,
所以DE=CD=3cm
(^2是平方的意思)
補充回答:
不用勾股定理很難求出AB=10的。
因為∠C=90°,AC=6,BC=8,由勾股定理得 AB=10
DC=DE=x
(6x8)/2=(10xDE)/2+(DCX6)/2(整個三角形的面積會等于三角形ABD+三角形ADC)
DC=DE=3
2
解:∵在三角形ABC中,AB=AC
∴三角形ABC是等腰三角形
∵E是BC中點,且ABC是等腰三角形,AB=AC
∴AE平分∠EAD
∵∠EAD=20度
∴∠BAE=20度且∠BAC=40度
∵ABC是等腰三角形,AB=AC
∴∠ABC=∠ACB=(180度-∠BAC)/2=70度
∵BD垂直AC,垂足為D
∴∠BDA=90度
∵在三角形ABD中,∠BDA+∠BAD+∠ABD=180度且∠BDA=90度,∠BAD=40度
∴∠ABD=180度-90度-40度=50度
3
5、△ABC中,AD平分∠BAC,DE是BC的中垂線,E為垂足,過D作DM垂直AB于M,DN垂直AC交AC的延長線于N,求證BM=CN
證明:AD平分∠BAC
DM⊥AB,DN⊥AC
所以DM=DN
連接DB,DC
DE垂直平分BC
那么DB=DC
DM=DN
Rt△DMB≌Rt△DNC
BM=CN
6、如圖,在△ABC中,∠C為直角,∠A=30°,分別以AB、AC為邊在△ABC的外側(cè)作正△ABE與正△ACD,DE與AB交于F。求證:EF=FD
證明:
過E做EG⊥AB
交AB于G
連接GD交AB于H,GC
△EBA為正△
那么G為AB中點
GC=1/2AB=GA
∠GCA=∠GAC=30
∠DCA=∠DAC=60
兩式相加
∠DCG=∠DAG=90
GC=GA
GD=GD
△DCG≌△DAG
∠GDC=∠GDA
DG為∠CDA的平分線
那么
我們可以知道
DG垂直平分AC
H為AC中點
GH‖BC
∠EAD=60
∠BAC=30
∠EAC=90
∠BCA=90
BC‖EA
GH‖AE(1)
同理
EG‖DA(2)
根據(jù)(1)(2)
那么
四邊形ADGE為平行四邊形
GA和DE是對角線
版權(quán)聲明:本文內(nèi)容由互聯(lián)網(wǎng)用戶自發(fā)貢獻,該文觀點僅代表作者本人。本站僅提供信息存儲空間服務,不擁有所有權(quán),不承擔相關(guān)法律責任。如發(fā)現(xiàn)本站有涉嫌抄襲侵權(quán)/違法違規(guī)的內(nèi)容, 請發(fā)送郵件至 yyfangchan@163.com (舉報時請帶上具體的網(wǎng)址) 舉報,一經(jīng)查實,本站將立刻刪除