怎么證明面面垂直
證明一個面上的一條線垂直另一個面;首先可以轉(zhuǎn)化成
一個平面的垂線在另一個平面內(nèi),即一條直線垂直于另一個平面
然后轉(zhuǎn)化成
一條直線垂直于另一個平面內(nèi)的兩條相交直線
也可以運用兩個面的法向量互相垂直。
這是解析幾何的方法。
證:連接AC,BD.PD垂直面ABCD=>PD垂直AC.ABCD為正方形=>AC垂直BD.而BD是PB在面ABCD內(nèi)的射影=>PB垂直AC.PD垂直AC=>AC垂直面PBD.AC屬于面ACE=>面PBD垂直面ACE
2
1利用直角三角形中兩銳角互余證明
由直角三角形的定義與三角形的內(nèi)角和定理可知直角三角形的兩個銳角和等于90° ,即直角三角形的兩個銳角互余。
2勾股定理逆定理
3圓周角定理的推論:直徑所對的圓周角是直角,一個三角形的一邊中線等于這邊的一半,則這個三角形是直角三角形。
二、高中部分
線線垂直分為共面與不共面。不共面時,兩直線經(jīng)過平移后相交成直角,則稱兩條直線互相垂直。
1向量法 兩條直線的方向向量數(shù)量積為0
2斜率 兩條直線斜率積為-1
3線面垂直,則這條直線垂直于該平面內(nèi)的所有直線
一條直線垂直于三角形的兩邊,那么它也垂直于另外一邊
4三垂線定理 在平面內(nèi)的一條直線,如果和穿過這個平面的一條斜線在這個平面內(nèi)的射影垂直,那么它也和這條斜線垂直。
5三垂線定理逆定理 如果平面內(nèi)一條直線和平面的一條斜線垂直,那么這條直線也垂直于這條斜線在平面內(nèi)的射影。
3高中立體幾何的證明主要是平行關(guān)系與垂直關(guān)系的證明。方法如下(難以建立坐標系時再考慮):
Ⅰ.平行關(guān)系:
線線平行:1.在同一平面內(nèi)無公共點的兩條直線平行。2.公理4(平行公理)。3.線面平行的性質(zhì)。4.面面平行的性質(zhì)。5.垂直于同一平面的兩條直線平行 。
線面平行:1.直線與平面無公共點。2.平面外的一條直線與平面內(nèi)的一條直線平行 。3.兩平面平行,一個平面內(nèi)的任一直線與另一平面平行 。
面面平行:1.兩個平面無公共點 。2.一個平面內(nèi)的兩條相交直線分別與另一平面平行。
Ⅱ.垂直關(guān)系:
線線垂直:1.直線所成角為90°。2.一條直線與一個平面垂直,那么這條直線與平面內(nèi)的任一直線垂直 。
線面垂直:1.一條直線與一個平面內(nèi)的任一直線垂直。2.一條直線與一個平面內(nèi)的兩條相交直線都垂直。3.面面垂直的性質(zhì)。4.兩條平行直線中的一條垂直與一個平面,那么另一直線也與此平面垂直。5.一條直線垂直與兩個平行平面中的一個,那么這條直線也與另一平面垂直。
面面垂直:1.面面所成二面角為直二面角 。2.一個平面過另一平面的垂線,那么這兩個平面垂直 。
版權(quán)聲明:本文內(nèi)容由互聯(lián)網(wǎng)用戶自發(fā)貢獻,該文觀點僅代表作者本人。本站僅提供信息存儲空間服務(wù),不擁有所有權(quán),不承擔相關(guān)法律責任。如發(fā)現(xiàn)本站有涉嫌抄襲侵權(quán)/違法違規(guī)的內(nèi)容, 請發(fā)送郵件至 yyfangchan@163.com (舉報時請帶上具體的網(wǎng)址) 舉報,一經(jīng)查實,本站將立刻刪除