狠狠操网,91中文字幕在线观看,精品久久香蕉国产线看观看亚洲,亚洲haose在线观看

高中數(shù)學(xué)復(fù)數(shù)知識點總結(jié) (菁選3篇)

高中數(shù)學(xué)復(fù)數(shù)知識點總結(jié)1

  形如a+bi(a,b∈R)的.數(shù)叫復(fù)數(shù),其中i叫做虛數(shù)單位。全體復(fù)數(shù)所成的集合叫做復(fù)數(shù)集,用字母C表示。

  復(fù)數(shù)的表示:

  復(fù)數(shù)通常用字母z表示,即z=a+bi(a,b∈R),這一表示形式叫做復(fù)數(shù)的代數(shù)形式,其中a叫復(fù)數(shù)的實部,b叫復(fù)數(shù)的虛部。

  復(fù)數(shù)的幾何意義:

  (1)復(fù)*面、實軸、虛軸:

  點Z的橫坐標是a,縱坐標是b,復(fù)數(shù)z=a+bi(a、b∈R)可用點Z(a,b)表示,這個建立了直角坐標系來表示復(fù)數(shù)的*面叫做復(fù)*面,x軸叫做實軸,y軸叫做虛軸。顯然,實軸上的點都表示實數(shù),除原點外,虛軸上的點都表示純虛數(shù)

  (2)復(fù)數(shù)的幾何意義:復(fù)數(shù)集C和復(fù)*面內(nèi)所有的點所成的集合是一一對應(yīng)關(guān)系,即

  這是因為,每一個復(fù)數(shù)有復(fù)*面內(nèi)惟一的一個點和它對應(yīng);反過來,復(fù)*面內(nèi)的每一個點,有惟一的一個復(fù)數(shù)和它對應(yīng)。

  這就是復(fù)數(shù)的一種幾何意義,也就是復(fù)數(shù)的另一種表示方法,即幾何表示方法。

  復(fù)數(shù)的模:

  復(fù)數(shù)z=a+bi(a、b∈R)在復(fù)*面上對應(yīng)的點Z(a,b)到原點的距離叫復(fù)數(shù)的模,記為|Z|,即|Z|=

  虛數(shù)單位i:

  (1)它的*方等于-1,即i2=-1;

  (2)實數(shù)可以與它進行四則運算,進行四則運算時,原有加、乘運算律仍然成立

  (3)i與-1的關(guān)系:i就是-1的一個*方根,即方程x2=-1的一個根,方程x2=-1的另一個根是-i。

  (4)i的周期性:i4n+1=i,i4n+2=-1,i4n+3=-i,i4n=1。

  復(fù)數(shù)模的性質(zhì):

  復(fù)數(shù)與實數(shù)、虛數(shù)、純虛數(shù)及0的關(guān)系:

  對于復(fù)數(shù)a+bi(a、b∈R),當且僅當b=0時,復(fù)數(shù)a+bi(a、b∈R)是實數(shù)a;當b≠0時,復(fù)數(shù)z=a+bi叫做虛數(shù);當a=0且b≠0時,z=bi叫做純虛數(shù);當且僅當a=b=0時,z就是實數(shù)0。

  兩個復(fù)數(shù)相等的定義:

  如果兩個復(fù)數(shù)的實部和虛部分別相等,那么我們就說這兩個復(fù)數(shù)相等,即:如果a,b,c,d∈R,那么a+bi=c+di

  a=c,b=d。特殊地,a,b∈R時,a+bi=0

  a=0,b=0.

  復(fù)數(shù)相等的充要條件,提供了將復(fù)數(shù)問題化歸為實數(shù)問題解決的途徑。

  復(fù)數(shù)相等特別提醒:

  一般地,兩個復(fù)數(shù)只能說相等或不相等,而不能比較大小。如果兩個復(fù)數(shù)都是實數(shù),就可以比較大小,也只有當兩個復(fù)數(shù)全是實數(shù)時才能比較大小。

  解復(fù)數(shù)相等問題的方法步驟:

  (1)把給的復(fù)數(shù)化成復(fù)數(shù)的標準形式;

  (2)根據(jù)復(fù)數(shù)相等的充要條件解之。

  數(shù)學(xué)加法心算技巧

  1、**再湊整數(shù)加法;

  比如;8+5=13,先把“5”**成“2”和“3”;那么就是8+2+3=10;

  2、比如;77+8=85,先把“8”**成“3”和“5”;那么就是77+3+5=85;

  3、變整數(shù)再減去

  比如,26+18=44,把“18”變成“20-2”,那么就是26+20-2=44;

  4、比如;387+983=1370,把“983”變成“1000-17”,那么就是387+1000-17=1370;

  5、錯位數(shù)相加

  比如,個位加十位得數(shù)是個位的;

  51+15=66;這樣算:5+1得6;1+5得6;兩*拼

  72+27=99;這樣算:7+2得9;2+7得9;兩9合拼

  63+36=99;這樣算:6+3得9;3+6得9;兩9合拼

  52+25=77;這樣算:5+2得7;2+5得7;兩7合拼

  6、比如,個位加十位得數(shù)是十位的;

  78+87=165;這樣算:7+8=15,再把“15”兩個數(shù)字“1”和“5”相加得6,把這個“6”放在“15”的中間,得出“165”;

  67+76=143,這樣算:6+7=13,再把“13”兩個數(shù)字“1”和“3”相加得4,把這個“4”放在“13”的中間,得出“143”;

高中數(shù)學(xué)復(fù)數(shù)知識點總結(jié)2

  復(fù)數(shù)定義

  我們把形如a+bi(a,b均為實數(shù))的數(shù)稱為復(fù)數(shù),其中a稱為實部,b稱為虛部,i稱為虛數(shù)單位。當虛部等于零時,這個復(fù)數(shù)可以視為實數(shù);當z的虛部不等于零時,實部等于零時,常稱z為純虛數(shù)。復(fù)數(shù)域是實數(shù)域的代數(shù)閉包,也即任何復(fù)系數(shù)多項式在復(fù)數(shù)域中總有根。

  復(fù)數(shù)表達式

  虛數(shù)是與任何事物沒有聯(lián)系的,是絕對的,所以符合的表達式為:

  a=a+ia為實部,i為虛部

  復(fù)數(shù)運算法則

  加法法則:(a+bi)+(c+di)=(a+c)+(b+d)i;

  減法法則:(a+bi)-(c+di)=(a-c)+(b-d)i;

  乘法法則:(a+bi)·(c+di)=(ac-bd)+(bc+ad)i;

  除法法則:(a+bi)/(c+di)=[(ac+bd)/(c+d)]+[(bc-ad)/(c+d)]i.

  例如:[(a+bi)+(c+di)]-[(a+c)+(b+d)i]=0,最終結(jié)果還是0,也就在數(shù)字中沒有復(fù)數(shù)的存在。[(a+bi)+(c+di)]-[(a+c)+(b+d)i]=z是一個函數(shù)。

  復(fù)數(shù)與幾何

 、賻缀涡问

  復(fù)數(shù)z=a+bi被復(fù)*面上的點z(a,b)唯一確定。這種形式使復(fù)數(shù)的問題可以借助圖形來研究。也可反過來用復(fù)數(shù)的理論解決一些幾何問題。

 、谙蛄啃问

  復(fù)數(shù)z=a+bi用一個以原點O(0,0)為起點,點Z(a,b)為終點的向量OZ表示。這種形式使復(fù)數(shù)四則運算得到恰當?shù)膸缀谓忉尅?/p>

  ③三角形式

  復(fù)數(shù)z=a+bi化為三角形式

高中數(shù)學(xué)復(fù)數(shù)知識點總結(jié)3

  復(fù)數(shù)的概念:

  形如a+bi(a,b∈R)的數(shù)叫復(fù)數(shù),其中i叫做虛數(shù)單位。全體復(fù)數(shù)所成的集合叫做復(fù)數(shù)集,用字母C表示。

  復(fù)數(shù)的表示:

  復(fù)數(shù)通常用字母z表示,即z=a+bi(a,b∈R),這一表示形式叫做復(fù)數(shù)的代數(shù)形式,其中a叫復(fù)數(shù)的實部,b叫復(fù)數(shù)的虛部。

  復(fù)數(shù)的幾何意義:

  (1)復(fù)*面、實軸、虛軸:

  點Z的橫坐標是a,縱坐標是b,復(fù)數(shù)z=a+bi(a、b∈R)可用點Z(a,b)表示,這個建立了直角坐標系來表示復(fù)數(shù)的*面叫做復(fù)*面,x軸叫做實軸,y軸叫做虛軸。顯然,實軸上的點都表示實數(shù),除原點外,虛軸上的點都表示純虛數(shù)

  (2)復(fù)數(shù)的幾何意義:復(fù)數(shù)集C和復(fù)*面內(nèi)所有的點所成的集合是一一對應(yīng)關(guān)系,即

  這是因為,每一個復(fù)數(shù)有復(fù)*面內(nèi)惟一的一個點和它對應(yīng);反過來,復(fù)*面內(nèi)的每一個點,有惟一的一個復(fù)數(shù)和它對應(yīng)。

  這就是復(fù)數(shù)的一種幾何意義,也就是復(fù)數(shù)的另一種表示方法,即幾何表示方法。

  復(fù)數(shù)的模:

  復(fù)數(shù)z=a+bi(a、b∈R)在復(fù)*面上對應(yīng)的點Z(a,b)到原點的距離叫復(fù)數(shù)的模,記為|Z|,即|Z|=

  虛數(shù)單位i:

  (1)它的*方等于-1,即i2=-1;

  (2)實數(shù)可以與它進行四則運算,進行四則運算時,原有加、乘運算律仍然成立

  (3)i與-1的關(guān)系:i就是-1的一個*方根,即方程x2=-1的一個根,方程x2=-1的另一個根是-i。

  (4)i的周期性:i4n+1=i,i4n+2=-1,i4n+3=-i,i4n=1。

  復(fù)數(shù)模的性質(zhì):

  復(fù)數(shù)與實數(shù)、虛數(shù)、純虛數(shù)及0的關(guān)系:

  對于復(fù)數(shù)a+bi(a、b∈R),當且僅當b=0時,復(fù)數(shù)a+bi(a、b∈R)是實數(shù)a;當b≠0時,復(fù)數(shù)z=a+bi叫做虛數(shù);當a=0且b≠0時,z=bi叫做純虛數(shù);當且僅當a=b=0時,z就是實數(shù)0。

  兩個復(fù)數(shù)相等的定義:

  如果兩個復(fù)數(shù)的實部和虛部分別相等,那么我們就說這兩個復(fù)數(shù)相等,即:如果a,b,c,d∈R,那么a+bi=c+di

  a=c,b=d。特殊地,a,b∈R時,a+bi=0

  a=0,b=0.

  復(fù)數(shù)相等的充要條件,提供了將復(fù)數(shù)問題化歸為實數(shù)問題解決的途徑。

  復(fù)數(shù)相等特別提醒:

  一般地,兩個復(fù)數(shù)只能說相等或不相等,而不能比較大小。如果兩個復(fù)數(shù)都是實數(shù),就可以比較大小,也只有當兩個復(fù)數(shù)全是實數(shù)時才能比較大小。

  解復(fù)數(shù)相等問題的方法步驟:

  (1)把給的復(fù)數(shù)化成復(fù)數(shù)的標準形式;

  (2)根據(jù)復(fù)數(shù)相等的充要條件解之。

  數(shù)學(xué)加法心算技巧

  1、**再湊整數(shù)加法;

  比如;8+5=13,先把“5”**成“2”和“3”;那么就是8+2+3=10;

  2、比如;77+8=85,先把“8”**成“3”和“5”;那么就是77+3+5=85;

  3、變整數(shù)再減去

  比如,26+18=44,把“18”變成“20-2”,那么就是26+20-2=44;

  4、比如;387+983=1370,把“983”變成“1000-17”,那么就是387+1000-17=1370;

  5、錯位數(shù)相加

  比如,個位加十位得數(shù)是個位的;

  51+15=66;這樣算:5+1得6;1+5得6;兩*拼

  72+27=99;這樣算:7+2得9;2+7得9;兩9合拼

  63+36=99;這樣算:6+3得9;3+6得9;兩9合拼

  52+25=77;這樣算:5+2得7;2+5得7;兩7合拼

  6、比如,個位加十位得數(shù)是十位的;

  78+87=165;這樣算:7+8=15,再把“15”兩個數(shù)字“1”和“5”相加得6,把這個“6”放在“15”的中間,得出“165”;

  67+76=143,這樣算:6+7=13,再把“13”兩個數(shù)字“1”和“3”相加得4,把這個“4”放在“13”的中間,得出“143”;


高中數(shù)學(xué)復(fù)數(shù)知識點總結(jié) (菁選3篇)擴展閱讀


高中數(shù)學(xué)復(fù)數(shù)知識點總結(jié) (菁選3篇)(擴展1)

——高中數(shù)學(xué)導(dǎo)數(shù)知識點總結(jié)3篇

高中數(shù)學(xué)導(dǎo)數(shù)知識點總結(jié)1

  ★高中數(shù)學(xué)導(dǎo)數(shù)知識點

  一、早期導(dǎo)數(shù)概念————特殊的形式大約在1629年法國數(shù)學(xué)家費馬研究了作曲線的切線和求函數(shù)極值的方法1637年左右他寫一篇手稿《求最大值與最小值的方法》。在作切線時他構(gòu)造了差分f(A+E)—f(A),發(fā)現(xiàn)的因子E就是我們所說的導(dǎo)數(shù)f(A)。

  二、17世紀————廣泛使用的“流數(shù)術(shù)”17世紀生產(chǎn)力的發(fā)展推動了自然科學(xué)和技術(shù)的發(fā)展在前人創(chuàng)造性研究的基礎(chǔ)上大數(shù)學(xué)家牛頓、萊布尼茨等從不同的角度開始系統(tǒng)地研究微積分。牛頓的微積分理論被稱為“流數(shù)術(shù)”他稱變量為流量稱變量的變化率為流數(shù)相當于我們所說的導(dǎo)數(shù)。牛頓的有關(guān)“流數(shù)術(shù)”的主要著作是《求曲邊形面積》、《運用無窮多項方程的計算法》和《流數(shù)術(shù)和無窮級數(shù)》流數(shù)理論的實質(zhì)概括為他的重點在于一個變量的函數(shù)而不在于多變量的方程在于自變量的變化與函數(shù)的變化的比的構(gòu)成最在于決定這個比當變化趨于零時的極限。

  三、19世紀導(dǎo)數(shù)————逐漸成熟的理論1750年達朗貝爾在為法國科學(xué)家院出版的《百科全書》第五版寫的“微分”條目中提出了關(guān)于導(dǎo)數(shù)的一種觀點可以用現(xiàn)代符號簡單表示{dy/dx)=lim(oy/ox)。1823年柯西在他的《無窮小分析概論》中定義導(dǎo)數(shù)如果函數(shù)y=f(x)在變量x的兩個給定的界限之間保持連續(xù)并且我們?yōu)檫@樣的變量指定一個包含在這兩個不同界限之間的值那么是使變量得到一個無窮小增量。19世紀60年代以后魏爾斯特拉斯創(chuàng)造了ε—δ語言對微積分中出現(xiàn)的各種類型的極限重加表達導(dǎo)數(shù)的定義也就獲得了今天常見的形式。

  四、實無限將異軍突起微積分第二輪初等化或成為可能微積分學(xué)理論基礎(chǔ)大體可以分為兩個部分。一個是實無限理論即無限是一個具體的東西一種真實的存在另一種是潛無限指一種****上的過程比如無限接近。就歷史來看兩種理論都有一定的道理。其中實無限用了150年后來極限論就是現(xiàn)在所使用的。光是電磁波還是粒子是一個物理學(xué)長期爭論的問題后來由波粒二象性來**。微積分無論是用現(xiàn)代極限論還是150年前的理論都不是最好的**。

  高中數(shù)學(xué)導(dǎo)數(shù)要點

  1、求函數(shù)的單調(diào)性:

  利用導(dǎo)數(shù)求函數(shù)單調(diào)性的基本方法:設(shè)函數(shù)yf(x)在區(qū)間(a,b)內(nèi)可導(dǎo),(1)如果恒f(x)0,則函數(shù)yf(x)在區(qū)間(a,b)上為增函數(shù);(2)如果恒f(x)0,則函數(shù)yf(x)在區(qū)間(a,b)上為減函數(shù);(3)如果恒f(x)0,則函數(shù)yf(x)在區(qū)間(a,b)上為常數(shù)函數(shù)。

  利用導(dǎo)數(shù)求函數(shù)單調(diào)性的基本步驟:①求函數(shù)yf(x)的定義域;②求導(dǎo)數(shù)f(x);③解不等式f(x)0,解集在定義域內(nèi)的不間斷區(qū)間為增區(qū)間;④解不等式f(x)0,解集在定義域內(nèi)的不間斷區(qū)間為減區(qū)間。

  反過來,也可以利用導(dǎo)數(shù)由函數(shù)的單調(diào)性解決相關(guān)問題(如確定參數(shù)的取值范圍):設(shè)函數(shù)yf(x)在區(qū)間(a,b)內(nèi)可導(dǎo),

 。1)如果函數(shù)yf(x)在區(qū)間(a,b)上為增函數(shù),則f(x)0(其中使f(x)0的x值不構(gòu)成區(qū)間);

 。2)如果函數(shù)yf(x)在區(qū)間(a,b)上為減函數(shù),則f(x)0(其中使f(x)0的x值不構(gòu)成區(qū)間);

 。3)如果函數(shù)yf(x)在區(qū)間(a,b)上為常數(shù)函數(shù),則f(x)0恒成立。

  2、求函數(shù)的極值:

  設(shè)函數(shù)yf(x)在x0及其附近有定義,如果對x0附近的所有的點都有f(x)f(x0)(或f(x)f(x0)),則稱f(x0)是函數(shù)f(x)的極小值(或極大值)。

  可導(dǎo)函數(shù)的極值,可通過研究函數(shù)的單調(diào)性求得,基本步驟是:

  (1)確定函數(shù)f(x)的定義域;(2)求導(dǎo)數(shù)f(x);(3)求方程f(x)0的全部實根,x1x2xn,順次將定義域分成若干個小區(qū)間,并列表:x變化時,f(x)和f(x)值的

  變化情況:

 。4)檢查f(x)的符號并由表格判斷極值。

  3、求函數(shù)的最大值與最小值:

  如果函數(shù)f(x)在定義域I內(nèi)存在x0,使得對任意的xI,總有f(x)f(x0),則稱f(x0)為函數(shù)在定義域上的最大值。函數(shù)在定義域內(nèi)的極值不一定唯一,但在定義域內(nèi)的最值是唯一的。

  求函數(shù)f(x)在區(qū)間[a,b]上的最大值和最小值的步驟:(1)求f(x)在區(qū)間(a,b)上的極值;

 。2)將第一步中求得的極值與f(a),f(b)比較,得到f(x)在區(qū)間[a,b]上的最大值與最小值。

  4、解決不等式的有關(guān)問題:

 。1)不等式恒成立問題(絕對不等式問題)可考慮值域。

  f(x)(xA)的值域是[a,b]時,

  不等式f(x)0恒成立的充要條件是f(x)max0,即b0;

  不等式f(x)0恒成立的充要條件是f(x)min0,即a0。

  f(x)(xA)的值域是(a,b)時,

  不等式f(x)0恒成立的充要條件是b0;不等式f(x)0恒成立的充要條件是a0。

  (2)證明不等式f(x)0可轉(zhuǎn)化為證明f(x)max0,或利用函數(shù)f(x)的單調(diào)性,轉(zhuǎn)化為證明f(x)f(x0)0。

  5、導(dǎo)數(shù)在實際生活中的應(yīng)用:

  實際生活求解最大(。┲祮栴},通常都可轉(zhuǎn)化為函數(shù)的最值。在利用導(dǎo)數(shù)來求函數(shù)最值時,一定要注意,極值點唯一的單峰函數(shù),極值點就是最值點,在解題時要加以說明。

高中數(shù)學(xué)導(dǎo)數(shù)知識點總結(jié)2

  一、求導(dǎo)數(shù)的.方法

 。1)基本求導(dǎo)公式

 。2)導(dǎo)數(shù)的四則運算

 。3)復(fù)合函數(shù)的導(dǎo)數(shù)

  設(shè)在點x處可導(dǎo),y=在點處可導(dǎo),則復(fù)合函數(shù)在點x處可導(dǎo),且即

  二、關(guān)于極限

  1、數(shù)列的極限:

  粗略地說,就是當數(shù)列的項n無限增大時,數(shù)列的項無限趨向于A,這就是數(shù)列極限的描述性定義。記作:=A。如:

  2、函數(shù)的極限:

  當自變量x無限趨近于常數(shù)時,如果函數(shù)無限趨近于一個常數(shù),就說當x趨近于時,函數(shù)的極限是,記作

  三、導(dǎo)數(shù)的概念

  1、在處的導(dǎo)數(shù)。

  2、在的導(dǎo)數(shù)。

  3。函數(shù)在點處的導(dǎo)數(shù)的幾何意義:

  函數(shù)在點處的導(dǎo)數(shù)是曲線在處的切線的斜率,

  即k=,相應(yīng)的切線方程是

  注:函數(shù)的導(dǎo)函數(shù)在時的函數(shù)值,就是在處的導(dǎo)數(shù)。

  例、若=2,則=()A—1B—2C1D

  四、導(dǎo)數(shù)的綜合運用

 。ㄒ唬┣的切線

  函數(shù)y=f(x)在點處的導(dǎo)數(shù),就是曲線y=(x)在點處的切線的斜率。由此,可以利用導(dǎo)數(shù)求曲線的切線方程。具體求法分兩步:

 。1)求出函數(shù)y=f(x)在點處的導(dǎo)數(shù),即曲線y=f(x)在點處的切線的斜率k=

 。2)在已知切點坐標和切線斜率的條件下,求得切線方程為x。

高中數(shù)學(xué)導(dǎo)數(shù)知識點總結(jié)3

 。ㄒ唬⿲(dǎo)數(shù)第一定義

  設(shè)函數(shù)y = f(x)在點x0的某個領(lǐng)域內(nèi)有定義,當自變量x在x0處有增量△x(x0 + △x也在該鄰域內(nèi))時,相應(yīng)地函數(shù)取得增量△y = f(x0 + △x)— f(x0);如果△y與△x之比當△x→0時極限存在,則稱函數(shù)y = f(x)在點x0處可導(dǎo),并稱這個極限值為函數(shù)y = f(x)在點x0處的導(dǎo)數(shù)記為f(x0),即導(dǎo)數(shù)第一定義

  (二)導(dǎo)數(shù)第二定義

  設(shè)函數(shù)y = f(x)在點x0的某個領(lǐng)域內(nèi)有定義,當自變量x在x0處有變化△x(x — x0也在該鄰域內(nèi))時,相應(yīng)地函數(shù)變化△y = f(x)— f(x0);如果△y與△x之比當△x→0時極限存在,則稱函數(shù)y = f(x)在點x0處可導(dǎo),并稱這個極限值為函數(shù)y = f(x)在點x0處的導(dǎo)數(shù)記為f(x0),即導(dǎo)數(shù)第二定義

 。ㄈ⿲(dǎo)函數(shù)與導(dǎo)數(shù)

  如果函數(shù)y = f(x)在開區(qū)間I內(nèi)每一點都可導(dǎo),就稱函數(shù)f(x)在區(qū)間I內(nèi)可導(dǎo)。這時函數(shù)y = f(x)對于區(qū)間I內(nèi)的每一個確定的x值,都對應(yīng)著一個確定的導(dǎo)數(shù),這就構(gòu)成一個新的函數(shù),稱這個函數(shù)為原來函數(shù)y = f(x)的導(dǎo)函數(shù),記作y,f(x),dy/dx,df(x)/dx。導(dǎo)函數(shù)簡稱導(dǎo)數(shù)。

 。ㄋ模﹩握{(diào)性及其應(yīng)用

  1.利用導(dǎo)數(shù)研究多項式函數(shù)單調(diào)性的一般步驟

  (1)求f(x)

 。2)確定f(x)在(a,b)內(nèi)符號(3)若f(x)>0在(a,b)上恒成立,則f(x)在(a,b)上是增函數(shù);若f(x)<0在(a,b)上恒成立,則f(x)在(a,b)上是減函數(shù)

  2.用導(dǎo)數(shù)求多項式函數(shù)單調(diào)區(qū)間的一般步驟

 。1)求f(x)

 。2)f(x)>0的解集與定義域的交集的對應(yīng)區(qū)間為增區(qū)間;f(x)<0的解集與定義域的交集的對應(yīng)區(qū)間為減區(qū)間

  學(xué)習(xí)了導(dǎo)數(shù)基礎(chǔ)知識點,接下來可以學(xué)習(xí)高二數(shù)學(xué)中涉及到的導(dǎo)數(shù)應(yīng)用的部分。


高中數(shù)學(xué)復(fù)數(shù)知識點總結(jié) (菁選3篇)(擴展2)

——高中數(shù)學(xué)必修三知識點總結(jié)3篇

高中數(shù)學(xué)必修三知識點總結(jié)1

  總體和樣本

  ①在統(tǒng)計學(xué)中,把研究對象的全體叫做總體。

 、诎衙總研究對象叫做個體。

 、郯芽傮w中個體的總數(shù)叫做總體容量。

 、転榱搜芯靠傮w的有關(guān)性質(zhì),一般從總體中隨機抽取一部分:x1,x2,……,x-x研究,我們稱它為樣本。其中個體的個數(shù)稱為樣本容量。

  簡單隨機抽樣

  也叫純隨機抽樣。就是從總體中不加任何分組、劃類、排隊等,完全隨。

  機地抽取**單位。特點是:每個樣本單位被抽中的可能性相同(概率相等),樣本的每個單位完全**,彼此間無一定的關(guān)聯(lián)性和排斥性。簡單隨機抽樣是其它各種抽樣形式的基礎(chǔ),高三。通常只是在總體單位之間差異程度較小和數(shù)目較少時,才采用這種方法。

  簡單隨機抽樣常用的方法

 、俪楹灧

 、陔S機數(shù)表法

 、塾嬎銠C模擬法

  ④使用統(tǒng)計軟件直接抽取。

  在簡單隨機抽樣的樣本容量設(shè)計中,主要考慮:

 、倏傮w變異情況;

  ②允許誤差范圍;

 、鄹怕时WC程度。

  抽簽法

 、俳o**對象群體中的每一個對象編號;

  ②準備抽簽的工具,實施抽簽;

 、蹖颖局械拿恳粋個體進行測量或**。

高中數(shù)學(xué)必修三知識點總結(jié)2

  一、早期導(dǎo)數(shù)概念——特殊的形式大約在1629年法國數(shù)學(xué)家費馬研究了作曲線的切線和求函數(shù)極值的方法1637年左右他寫一篇手稿《求最大值與最小值的方法》。在作切線時他構(gòu)造了差分f(A+E)—f(A),發(fā)現(xiàn)的因子E就是我們所說的導(dǎo)數(shù)f(A)。

  二、17世紀——廣泛使用的“流數(shù)術(shù)”17世紀生產(chǎn)力的發(fā)展推動了自然科學(xué)和技術(shù)的發(fā)展在前人創(chuàng)造性研究的基礎(chǔ)上大數(shù)學(xué)家牛頓、萊布尼茨等從不同的角度開始系統(tǒng)地研究微積分。牛頓的微積分理論被稱為“流數(shù)術(shù)”他稱變量為流量稱變量的變化率為流數(shù)相當于我們所說的導(dǎo)數(shù)。牛頓的有關(guān)“流數(shù)術(shù)”的主要著作是《求曲邊形面積》、《運用無窮多項方程的計算法》和《流數(shù)術(shù)和無窮級數(shù)》流數(shù)理論的實質(zhì)概括為他的重點在于一個變量的函數(shù)而不在于多變量的方程在于自變量的變化與函數(shù)的變化的比的構(gòu)成最在于決定這個比當變化趨于零時的極限。

  三、19世紀導(dǎo)數(shù)——逐漸成熟的理論1750年達朗貝爾在為法國科學(xué)家院出版的《百科全書》第五版寫的“微分”條目中提出了關(guān)于導(dǎo)數(shù)的一種觀點可以用現(xiàn)代符號簡單表示{dy/dx)=lim(oy/ox)。1823年柯西在他的《無窮小分析概論》中定義導(dǎo)數(shù)如果函數(shù)y=f(x)在變量x的兩個給定的界限之間保持連續(xù)并且我們?yōu)檫@樣的變量指定一個包含在這兩個不同界限之間的值那么是使變量得到一個無窮小增量。19世紀60年代以后魏爾斯特拉斯創(chuàng)造了ε—δ語言對微積分中出現(xiàn)的各種類型的極限重加表達導(dǎo)數(shù)的定義也就獲得了今天常見的形式。

  四、實無限將異軍突起微積分第二輪初等化或成為可能微積分學(xué)理論基礎(chǔ)大體可以分為兩個部分。一個是實無限理論即無限是一個具體的東西一種真實的存在另一種是潛無限指一種****上的過程比如無限接近。就歷史來看兩種理論都有一定的道理。其中實無限用了150年后來極限論就是現(xiàn)在所使用的。光是電磁波還是粒子是一個物理學(xué)長期爭論的問題后來由波粒二象性來**。微積分無論是用現(xiàn)代極限論還是150年前的理論都不是最好的**。

高中數(shù)學(xué)必修三知識點總結(jié)3

  (一)導(dǎo)數(shù)第一定義

  設(shè)函數(shù) y = f(x) 在點 x0 的某個領(lǐng)域內(nèi)有定義,當自變量 x 在 x0 處有增量 △x ( x0 + △x 也在該鄰域內(nèi) ) 時,相應(yīng)地函數(shù)取得增量 △y = f(x0 + △x) - f(x0) ;如果 △y 與 △x 之比當 △x→0 時極限存在,則稱函數(shù) y = f(x) 在點 x0 處可導(dǎo),并稱這個極限值為函數(shù) y = f(x) 在點 x0 處的導(dǎo)數(shù)記為 f'(x0) ,即導(dǎo)數(shù)第一定義

  (二)導(dǎo)數(shù)第二定義

  設(shè)函數(shù) y = f(x) 在點 x0 的某個領(lǐng)域內(nèi)有定義,當自變量 x 在 x0 處有變化 △x ( x - x0 也在該鄰域內(nèi) ) 時,相應(yīng)地函數(shù)變化 △y = f(x) - f(x0) ;如果 △y 與 △x 之比當 △x→0 時極限存在,則稱函數(shù) y = f(x) 在點 x0 處可導(dǎo),并稱這個極限值為函數(shù) y = f(x) 在點 x0 處的導(dǎo)數(shù)記為 f'(x0) ,即 導(dǎo)數(shù)第二定義

  (三)導(dǎo)函數(shù)與導(dǎo)數(shù)

  如果函數(shù) y = f(x) 在開區(qū)間 I 內(nèi)每一點都可導(dǎo),就稱函數(shù)f(x)在區(qū)間 I 內(nèi)可導(dǎo)。這時函數(shù) y = f(x) 對于區(qū)間 I 內(nèi)的每一個確定的 x 值,都對應(yīng)著一個確定的導(dǎo)數(shù),這就構(gòu)成一個新的函數(shù),稱這個函數(shù)為原來函數(shù) y = f(x) 的導(dǎo)函數(shù),記作 y', f'(x), dy/dx, df(x)/dx。導(dǎo)函數(shù)簡稱導(dǎo)數(shù)。

  (四)單調(diào)性及其應(yīng)用

  1.利用導(dǎo)數(shù)研究多項式函數(shù)單調(diào)性的一般步驟

  (1)求f(x)

  (2)確定f(x)在(a,b)內(nèi)符號 (3)若f(x)>0在(a,b)上恒成立,則f(x)在(a,b)上是增函數(shù);若f(x)<0在(a,b)上恒成立,則f(x)在(a,b)上是減函數(shù)

  2.用導(dǎo)數(shù)求多項式函數(shù)單調(diào)區(qū)間的一般步驟

  (1)求f(x)

  (2)f(x)>0的解集與定義域的交集的對應(yīng)區(qū)間為增區(qū)間; f(x)<0的解集與定義域的交集的對應(yīng)區(qū)間為減區(qū)間

  學(xué)習(xí)了導(dǎo)數(shù)基礎(chǔ)知識點,接下來可以學(xué)習(xí)高二數(shù)學(xué)中涉及到的導(dǎo)數(shù)應(yīng)用的部分。


高中數(shù)學(xué)復(fù)數(shù)知識點總結(jié) (菁選3篇)(擴展3)

——高中數(shù)學(xué)知識點總結(jié)菁選

高中數(shù)學(xué)知識點總結(jié)15篇

  總結(jié)是在某一特定時間段對學(xué)習(xí)和工作生活或其完成情況,包括取得的成績、存在的問題及得到的經(jīng)驗和教訓(xùn)加以回顧和分析的書面材料,寫總結(jié)有利于我們學(xué)習(xí)和工作能力的提高,不如我們來制定一份總結(jié)吧?偨Y(jié)怎么寫才是正確的呢?下面是小編幫大家整理的高中數(shù)學(xué)知識點總結(jié),希望對大家有所幫助。

高中數(shù)學(xué)知識點總結(jié)1

  一、圓及圓的相關(guān)量的定義

  1.*面上到定點的距離等于定長的所有點組成的圖形叫做圓。定點稱為圓心,定長稱為半徑。

  2.圓**意兩點間的部分叫做圓弧,簡稱弧。大于半圓的弧稱為優(yōu)弧,小于半圓的弧稱為劣弧。連接圓**意兩點的線段叫做弦。經(jīng)過圓心的弦叫

  做直徑。

  3.頂點在圓心上的角叫做圓心角。頂點在圓周上,且它的兩邊分別與圓有另一個交點的角叫做圓周角。

  4.過三角形的三個頂點的圓叫做三角形的外接圓,其圓心叫做三角形的外心。和三角形三邊都相切的圓叫做這個三角形的內(nèi)切圓,其圓心稱為內(nèi)心。

  5.直線與圓有3種位置關(guān)系:無公共點為相離;有2個公共點為相交;圓與直線有唯一公共點為相切,這條直線叫做圓的切線,這個唯一的公共點叫做切點。

  6.兩圓之間有5種位置關(guān)系:無公共點的,一圓在另一圓之外叫外離,在之內(nèi)叫內(nèi)含;有唯一公共點的,一圓在另一圓之外叫外切,在之內(nèi)叫內(nèi)切;有2個公共點的叫相交。兩圓圓心之間的距離叫做圓心距。

  7.在圓上,由2條半徑和一段弧圍成的圖形叫做扇形。圓錐側(cè)面展開圖是一個扇形。這個扇形的半徑成為圓錐的母線。

  二、有關(guān)圓的字母表示方法

  圓--⊙ 半徑—r 弧--⌒ 直徑—d

  扇形弧長/圓錐母線—l 周長—C 面積—S三、有關(guān)圓的基本性質(zhì)與定理(27個)

  1.點P與圓O的位置關(guān)系(設(shè)P是一點,則PO是點到圓心的距離):

  P在⊙O外,PO>r;P在⊙O上,PO=r;P在⊙O內(nèi),PO

  2.圓是軸對稱圖形,其對稱軸是任意一條過圓心的直線。圓也是中心對稱圖形,其對稱中心是圓心。

  3.垂徑定理:垂直于弦的直徑*分這條弦,并且*分弦所對的弧。逆定

  理:*分弦(不是直徑)的直徑垂直于弦,并且*分弦所對的弧。

  4.在同圓或等圓中,如果2個圓心角,2個圓周角,2條弧,2條弦中有一組量相等,那么他們所對應(yīng)的其余各組量都分別相等。

  5.一條弧所對的圓周角等于它所對的圓心角的一半。

  6.直徑所對的圓周角是直角。90度的圓周角所對的弦是直徑。

  7.不在同一直線上的3個點確定一個圓。

  8.一個三角形有唯一確定的外接圓和內(nèi)切圓。外接圓圓心是三角形各邊垂直*分線的.交點,到三角形3個頂點距離相等;內(nèi)切圓的圓心是三角形各內(nèi)角*分線的交點,到三角形3邊距離相等。

  9.直線AB與圓O的位置關(guān)系(設(shè)OP⊥AB于P,則PO是AB到圓心的距

  離):

  AB與⊙O相離,PO>r;AB與⊙O相切,PO=r;AB與⊙O相交,PO

  10.圓的切線垂直于過切點的直徑;經(jīng)過直徑的一端,并且垂直于這條直徑的直線,是這個圓的切線。

  11.圓與圓的位置關(guān)系(設(shè)兩圓的半徑分別為R和r,且R≥r,圓心距為P):

  外離P>R+r;外切P=R+r;相交R-r

  三、有關(guān)圓的計算公式

  1.圓的周長C=2πr=πd

  2.圓的面積S=s=πr?

  3.扇形弧長l=nπr/180

  4.扇形面積S=nπr? /360=rl/2

  5.圓錐側(cè)面積S=πrl

  四、圓的方程

  1.圓的標準方程

  在*面直角坐標系中,以點O(a,b)為圓心,以r為半徑的圓的標準方程是

 。▁-a)^2+(y-b)^2=r^2

  2.圓的一般方程

  把圓的標準方程展開,移項,合并同類項后,可得圓的一般方程是

  x^2+y^2+Dx+Ey+F=0

  和標準方程對比,其實D=-2a,E=-2b,F=a^2+b^2

  相關(guān)知識:圓的離心率e=0.在圓**意一點的曲率半徑都是r.

  五、圓與直線的位置關(guān)系判斷

  *面內(nèi),直線Ax+By+C=O與圓x^2+y^2+Dx+Ey+F=0的位置關(guān)系判斷一般方法是

  討論如下2種情況:

 。1)由Ax+By+C=O可得y=(-C-Ax)/B,[其中B不等于0],

  代入x^2+y^2+Dx+Ey+F=0,即成為一個關(guān)于x的一元二次方程f(x)=0.

  利用判別式b^2-4ac的符號可確定圓與直線的位置關(guān)系如下:

  如果b^2-4ac>0,則圓與直線有2交點,即圓與直線相交

  如果b^2-4ac=0,則圓與直線有1交點,即圓與直線相切

  如果b^2-4ac<0,則圓與直線有0交點,即圓與直線相離

 。2)如果B=0即直線為Ax+C=0,即x=-C/A.它*行于y軸(或垂直于x軸)

  將x^2+y^2+Dx+Ey+F=0化為(x-a)^2+(y-b)^2=r^2

  令y=b,求出此時的兩個x值x1,x2,并且我們規(guī)定x1

  當x=-C/Ax2時,直線與圓相離

  當x1

  當x=-C/A=x1或x=-C/A=x2時,直線與圓相切

  圓的定理:

  1.不在同一直線上的三點確定一個圓。

  2.垂徑定理 垂直于弦的直徑*分這條弦并且*分弦所對的兩條弧

  推論1.①*分弦(不是直徑)的直徑垂直于弦,并且*分弦所對的兩條弧

  ②弦的垂直*分線經(jīng)過圓心,并且*分弦所對的兩條弧

 、*分弦所對的一條弧的直徑,垂直*分弦,并且*分弦所對的另一條弧

  推論2.圓的兩條*行弦所夾的弧相等

  3.圓是以圓心為對稱中心的中心對稱圖形

  4.圓是定點的距離等于定長的點的集合

  5.圓的內(nèi)部可以看作是圓心的距離小于半徑的點的集合

  6.圓的外部可以看作是圓心的距離大于半徑的點的集合

  7.同圓或等圓的半徑相等

  8.到定點的距離等于定長的點的軌跡,是以定點為圓心,定長為半徑的圓

  9.定理 在同圓或等圓中,相等的圓心角所對的弧相等,所對的弦 相等,所對的弦的弦心距相等

  10.推論 在同圓或等圓中,如果兩個圓心角、兩條弧、兩條弦或兩 弦的弦心距中有一組量相等那么它們所對應(yīng)的其余各組量都相等

  11.定理 圓的內(nèi)接四邊形的對角互補,并且任何一個外角都等于它 的內(nèi)對角

  12.①直線L和⊙O相交 d

 、谥本L和⊙O相切 d=r

 、壑本L和⊙O相離 d>r

  13.切線的判定定理 經(jīng)過半徑的外端并且垂直于這條半徑的直線是圓的切線

  14.切線的性質(zhì)定理 圓的切線垂直于經(jīng)過切點的半徑

  15.推論1 經(jīng)過圓心且垂直于切線的直線必經(jīng)過切點

  16.推論2 經(jīng)過切點且垂直于切線的直線必經(jīng)過圓心

  17.切線長定理 從圓外一點引圓的兩條切線,它們的切線長相等, 圓心和這一點的連線*分兩條切線的夾角

  18.圓的外切四邊形的兩組對邊的和相等 外角等于內(nèi)對角

  19.如果兩個圓相切,那么切點一定在連心線上

  20.①兩圓外離 d>R+r ②兩圓外切 d=R+r

 、蹆蓤A相交 R-rr)

 、軆蓤A內(nèi)切 d=R-r(R>r) ⑤兩圓內(nèi)含dr)

  21.定理 相交兩圓的連心線垂直*分兩圓的公共弦

  22.定理 把圓分成n(n≥3):

 。1)依次連結(jié)各分點所得的多邊形是這個圓的內(nèi)接正n邊形

 。2)經(jīng)過各分點作圓的切線,以相鄰切線的交點為頂點的多邊形是這個圓的外切正n邊形

  23.定理 任何正多邊形都有一個外接圓和一個內(nèi)切圓,這兩個圓是同心圓

  24.正n邊形的每個內(nèi)角都等于(n-2)×180°/n

  25.定理 正n邊形的半徑和邊心距把正n邊形分成2n個全等的直角三角形

  26.正n邊形的面積Sn=pnrn/2 p表示正n邊形的周長

  27.正三角形面積√3a/4 a表示邊長

  28.如果在一個頂點周圍有k個正n邊形的角,由于這些角的和應(yīng)為 360°,因此k×(n-2)180°/n=360°化為(n-2)(k-2)=4

  29.弧長計算公式:L=n兀R/180

  30.扇形面積公式:S扇形=n兀R^2/360=LR/2

  31.內(nèi)公切線長= d-(R-r) 外公切線長= d-(R+r)

  32.定理 一條弧所對的圓周角等于它所對的圓心角的一半

  33.推論1 同弧或等弧所對的圓周角相等;同圓或等圓中,相等的圓周角所對的弧也相等

  34.推論2 半圓(或直徑)所對的圓周角是直角;90°的圓周角所 對的弦是直徑

  35.弧長公式 l=a*r a是圓心角的弧度數(shù)r >0 扇形面積公式 s=1/2*l*r

高中數(shù)學(xué)知識點總結(jié)2

  1.有關(guān)*行與垂直(線線、線面及面面)的問題,是在解決立體幾何問題的過程中,大量的、反復(fù)遇到的,而且是以各種各樣的問題(包括論證、計算角、與距離等)中不可缺少的內(nèi)容,因此在主體幾何的總復(fù)習(xí)中,首先應(yīng)從解決*行與垂直的有關(guān)問題著手,通過較為基本問題,熟悉公理、定理的內(nèi)容和功能,通過對問題的分析與概括,掌握立體幾何中解決問題的規(guī)律--充分利用線線*行(垂直)、線面*行(垂直)、面面*行(垂直)相互轉(zhuǎn)化的思想,以提高邏輯思維能力和空間想象能力。

  2. 判定兩個*面*行的方法:

  (1)根據(jù)定義--證明兩*面沒有公共點;

  (2)判定定理--證明一個*面內(nèi)的兩條相交直線都*行于另一個*面;

  (3)證明兩*面同垂直于一條直線。

  3.兩個*面*行的主要性質(zhì):

  (1)由定義知:兩*行*面沒有公共點。

  (2)由定義推得:兩個*面*行,其中一個*面內(nèi)的直線必*行于另一個*面。

  (3)兩個*面*行的性質(zhì)定理:如果兩個*行*面同時和第三個*面相交,那么它們的交線*行。

  (4)一條直線垂直于兩個*行*面中的一個*面,它也垂直于另一個*面。

  (5)夾在兩個*行*面間的*行線段相等。

  (6)經(jīng)過*面外一點只有一個*面和已知*面*行。

  以上性質(zhì)(2)、(3)、(5)、(6)在課文中雖未直接列為性質(zhì)定理,但在解題過程中均可直接作為性質(zhì)定理引用。

  數(shù)學(xué)必修單元知識點

  第一,函數(shù)與導(dǎo)數(shù)。主要考查集合運算、函數(shù)的有關(guān)概念定義域、值域、解析式、函數(shù)的極限、連續(xù)、導(dǎo)數(shù)。

  第二,*面向量與三角函數(shù)、三角變換及其應(yīng)用。這一部分是高考的重點但不是難點,主要出一些基礎(chǔ)題或中檔題。

  第三,數(shù)列及其應(yīng)用。這部分是高考的重點而且是難點,主要出一些綜合題。

  第四,不等式。主要考查不等式的求解和證明,而且很少單獨考查,主要是在解答題中比較大小。是高考的重點和難點

  第五,概率和統(tǒng)計。這部分和我們的生活聯(lián)系比較大,屬應(yīng)用題。

  第六,空間位置關(guān)系的定性與定量分析,主要是證明*行或垂直,求角和距離。

  第七,解析幾何。是高考的難點,運算量大,一般含參數(shù)。

  高中數(shù)學(xué)知識點梳理

  函數(shù)與導(dǎo)數(shù)

  第一、求函數(shù)定義域題忽視細節(jié)函數(shù)的定義域是使函數(shù)有意義的自變量的.取值范圍,考生想要在考場上準確求出定義域,就要根據(jù)函數(shù)解析式把各種情況下的自變量的限制條件找出來,列成不等式組,不等式組的解集就是該函數(shù)的定義域。

  在求一般函數(shù)定義域時,要注意以下幾點:分母不為0;偶次被開放式非負;真數(shù)大于0以及0的0次冪無意義。函數(shù)的定義域是非空的數(shù)集,在解答函數(shù)定義域類的題時千萬別忘了這一點。復(fù)合函數(shù)要注意外層函數(shù)的定義域由內(nèi)層函數(shù)的值域決定。

  第二、帶絕對值的函數(shù)單調(diào)性判斷錯誤帶絕對值的函數(shù)實質(zhì)上就是分段函數(shù),判斷分段函數(shù)的單調(diào)性有兩種方法:第一,在各個段上根據(jù)函數(shù)的解析式所表示的函數(shù)的單調(diào)性求出單調(diào)區(qū)間,然后對各個段上的單調(diào)區(qū)間進行整合;第二,畫出這個分段函數(shù)的圖象,結(jié)合函數(shù)圖象、性質(zhì)能夠進行直觀的判斷。函數(shù)題離不開函數(shù)圖象,而函數(shù)圖象反應(yīng)了函數(shù)的所有性質(zhì),考生在解答函數(shù)題時,要第一時間在腦海中畫出函數(shù)圖象,從圖象上分析問題,解決問題。

  對于函數(shù)不同的單調(diào)遞增(減)區(qū)間,千萬記住,不要使用并集,指明這幾個區(qū)間是該函數(shù)的單調(diào)遞增(減)區(qū)間即可。

  第三、求函數(shù)奇偶性的常見錯誤求函數(shù)奇偶性類的題最常見的錯誤有求錯函數(shù)定義域或忽視函數(shù)定義域,對函數(shù)具有奇偶性的前提條件不清,對分段函數(shù)奇偶性判斷方法不當?shù)鹊。判斷函?shù)的奇偶性,首先要考慮函數(shù)的定義域,一個函數(shù)具備奇偶性的必要條件是這個函數(shù)的定義域區(qū)間關(guān)于原點對稱,如果不具備這個條件,函數(shù)一定是非奇非偶的函數(shù)。在定義域區(qū)間關(guān)于原點對稱的前提下,再根據(jù)奇偶函數(shù)的定義進行判斷。

  在用定義進行判斷時,要注意自變量在定義域區(qū)間內(nèi)的任意性。

  第四、抽象函數(shù)推理不嚴謹很多抽象函數(shù)問題都是以抽象出某一類函數(shù)的共同特征而設(shè)計的,在解答此類問題時,考生可以通過類比這類函數(shù)中一些具體函數(shù)的性質(zhì)去解決抽象函數(shù)。多用特殊賦值法,通過特殊賦可以找到函數(shù)的不變性質(zhì),這往往是問題的突破口。

  抽象函數(shù)性質(zhì)的證明屬于代數(shù)推理,和幾何推理證明一樣,考生在作答時要注意推理的嚴謹性。每一步都要有充分的條件,別漏掉條件,更不能臆造條件,推理過程層次分明,還要注意書寫規(guī)范。

  第五、函數(shù)零點定理使用不當若函數(shù)y=f(x)在區(qū)間[a,b]上的圖象是連續(xù)不斷的一條曲線,且有f(a)f(b)0。那么函數(shù)y=f(x)在區(qū)間(a,b)內(nèi)有零點,即存在c(a,b),使得f(c)=0。這個c也可以是方程f(c)=0的根,稱之為函數(shù)的零點定理,分為變號零點和不變號零點,而對于不變號零點,函數(shù)的零點定理是**為力的,在解決函數(shù)的零點時,考生需格外注意這類問題。

  第六、混淆兩類切線曲線上一點處的切線是指以該點為切點的曲線的切線,這樣的切線只有一條;曲線的過一個點的切線是指過這個點的曲線的所有切線,這個點如果在曲線上當然包括曲線在該點處的切線,曲線的過一個點的切線可能不止一條。

  因此,考生在求解曲線的切線問題時,首先要區(qū)分是什么類型的切線。

  第七、混淆導(dǎo)數(shù)與單調(diào)性的關(guān)系一個函數(shù)在某個區(qū)間上是增函數(shù)的這類題型,如果考生認為函數(shù)的導(dǎo)函數(shù)在此區(qū)間上恒大于0,很容易就會出錯。

  解答函數(shù)的單調(diào)性與其導(dǎo)函數(shù)的關(guān)系時一定要注意,一個函數(shù)的導(dǎo)函數(shù)在某個區(qū)間上單調(diào)遞增(減)的充要條件是這個函數(shù)的導(dǎo)函數(shù)在此區(qū)間上恒大(小)于等于0,且導(dǎo)函數(shù)在此區(qū)間的任意子區(qū)間上都不恒為零。

  第八、導(dǎo)數(shù)與極值關(guān)系不清考生在使用導(dǎo)數(shù)求函數(shù)極值類問題時,容易出現(xiàn)的錯誤就是求出使導(dǎo)函數(shù)等于0的點,卻沒有對這些點左右兩側(cè)導(dǎo)函數(shù)的符號進行判斷,誤以為使導(dǎo)函數(shù)等于0的點就是函數(shù)的極值點,往往就會出錯,出錯原因就是考生對導(dǎo)數(shù)與極值關(guān)系沒搞清楚。

高中數(shù)學(xué)知識點總結(jié)3

  1.一些基本概念:

  (1)向量:既有大小,又有方向的量.

  (2)數(shù)量:只有大小,沒有方向的量.

  (3)有向線段的三要素:起點、方向、長度.

  (4)零向量:長度為0的向量.

  (5)單位向量:長度等于1個單位的'向量.

  (6)*行向量(共線向量):方向相同或相反的非零向量.

  ※零向量與任一向量*行.

  (7)相等向量:長度相等且方向相同的向量.

  2.向量加法運算:

 、湃切畏▌t的特點:首尾相連.

 、*行四邊形法則的特點:共起點

高中數(shù)學(xué)知識點總結(jié)4

  第一講相似三角形的判定及有關(guān)性質(zhì)1.*行線等分線段定理

  *行線等分線段定理:如果一組*行線在一條直線上截得的線段相等,那么在其他直線上截得的線段也相等。

  推理1:經(jīng)過三角形一邊的中點與另一邊*行的直線必*分第三邊。推理2:經(jīng)過梯形一腰的中點,且與底邊*行的直線*分另一腰。

  2.*分線分線段成比例定理

  *分線分線段成比例定理:三條*行線截兩條直線,所得的對應(yīng)線段成比例。

  推論:*行于三角形一邊的直線截其他兩邊(或兩邊的延長線)所得的對應(yīng)線段成比例。

  3.相似三角形的判定及性質(zhì)

  相似三角形的判定:

  定義:對應(yīng)角相等,對應(yīng)邊成比例的兩個三角形叫做相似三角形。相似三角形對應(yīng)邊的比值叫做相似比(或相似系數(shù))。

  由于從定義出發(fā)判斷兩個三角形是否相似,需考慮6個元素,即三組對應(yīng)角是否分別相等,三組對應(yīng)邊是否分別成比例,顯然比較麻煩。所以我們曾經(jīng)給出過如下幾個判定兩個三角形相似的簡單方法:

 。1)兩角對應(yīng)相等,兩三角形相似;

 。2)兩邊對應(yīng)成比例且夾角相等,兩三角形相似;(3)三邊對應(yīng)成比例,兩三角形相似。

  預(yù)備定理:*行于三角形一邊的直線和其他兩邊(或兩邊的延長線)相交,所構(gòu)成的三角形與三角形相似。

  判定定理1:對于任意兩個三角形,如果一個三角形的兩個角與另一個三角形的兩個角對應(yīng)相等,那么這兩個三角形相似。簡述為:兩角對應(yīng)相等,兩三角形相似。

  判定定理2:對于任意兩個三角形,如果一個三角形的兩邊和另一個三角形的兩邊對應(yīng)成比例,并且夾角相等,那么這兩個三角形相似。簡述為:兩邊對應(yīng)成比例且夾角相等,兩三角形相似。

  判定定理3:對于任意兩個三角形,如果一個三角形的三條邊和另一個三角形的三條邊對應(yīng)成比例,那么這兩個三角形相似。簡述為:三邊對應(yīng)成比例,兩三角形相似。

  引理:如果一條直線截三角形的兩邊(或兩邊的延長線)所得的對應(yīng)線段成比例,那么這條直線*行于三角形的第三邊。定理:(1)如果兩個直角三角形有一個銳角對應(yīng)相等,那么它們相似;

 。2)如果兩個直角三角形的兩條直角邊對應(yīng)成比例,那么它們相似。

  定理:如果一個直角三角形的斜邊和一條直角邊與另一個三角形的斜邊和直角邊對應(yīng)成比例,那么這兩個直角三角形相似。相似三角形的性質(zhì):

 。1)相似三角形對應(yīng)高的比、對應(yīng)中線的比和對應(yīng)*分線的比都等于相似比;(2)相似三角形周長的.比等于相似比;

 。3)相似三角形面積的比等于相似比的*方。

  相似三角形外接圓的直徑比、周長比等于相似比,外接圓的面積比等于相似比的*方。

  4.直角三角形的射影定理

  射影定理:直角三角形斜邊上的高是兩直角邊在斜邊上射影的比例中項;兩直角邊分別是它們在斜邊上射影與斜邊的比例中項。

  第二講直線與圓的位置關(guān)系1.圓周定理

  圓周角定理:圓上一條弧所對的圓周角等于它所對的圓周角的一半。圓心角定理:圓心角的度數(shù)等于它所對弧的度數(shù)。

  推論1:同弧或等弧所對的圓周角相等;同圓或等圓中,相等的圓周角所對的弧相等。推論2:半圓(或直徑)所對的圓周角是直角;90°的圓周角所對的弦是直徑。

  2.圓內(nèi)接四邊形的性質(zhì)與判定定理

  定理1:圓的內(nèi)接四邊形的對角互補。

  定理2:圓內(nèi)接四邊形的外角等于它的內(nèi)角的對角。

  圓內(nèi)接四邊形判定定理:如果一個四邊形的對角互補,那么這個四邊形的四個頂點共圓。推論:如果四邊形的一個外角等于它的內(nèi)角的對角,那么這個四邊形的四個頂點共圓。

  3.圓的切線的性質(zhì)及判定定理

  切線的性質(zhì)定理:圓的切線垂直于經(jīng)過切點的半徑。推論1:經(jīng)過圓心且垂直于切線的直線必經(jīng)過切點。推論2:經(jīng)過切點且垂直于切線的直線必經(jīng)過圓心。

  切線的判定定理:經(jīng)過半徑的外端并且垂直于這條半徑的直線是圓的切線。

  4.弦切角的性質(zhì)

  弦切角定理:弦切角等于它所夾的弧所對的圓周角。

  5.與圓有關(guān)的比例線段

  相交弦定理:圓內(nèi)的兩條相交弦,被交點分成的兩條線段長的積相等。

  割線定理:從園外一點引圓的兩條割線,這一點到每條割線與圓的交點的兩條線段長的積相等。

  切割線定理:從圓外一點引圓的切線和割線,切線長是這點到割線與圓交點的兩條線段長的比例中項。

  切線長定理:從圓外一點引圓的兩條切線,它們的切線長相等,圓心和這一點的連線*分兩條切線的夾角。

  6.垂徑定理

  垂直于弦的直徑*分這條弦,并且*分弦所對的兩條弧。

  7.三角形的五心

  (1)內(nèi)心:三條角*分線的交點,也是三角形內(nèi)切圓的圓心。性質(zhì):到三邊距離相等。(2)外心:三條中垂線的交點,也是三角形外接圓的圓心。性質(zhì):到三個頂點距離相等。(3)重心:三條中線的交點。性質(zhì):三條中線的三等分點,到頂點距離為到對邊中點距離的2倍。

  (4)垂心:三條高所在直線的交點。

  (5)旁心:三角形任意兩角的外角*分線和第三個角的內(nèi)角*分線的交點。性質(zhì):到三邊的

  距離相等

  第三講圓錐曲線性質(zhì)的探究1.*面與圓柱面的截線:

  當*面與圓柱的兩底面*行時,截面是個圓;當*面與圓柱的兩底面不*行時,截面是個橢

  圓;定理1:圓柱形物體的斜截口是橢圓。

  定理2:在空間中,取直線l為軸,直線l’與l相交于O點,夾角為α,l’圍繞l旋轉(zhuǎn)得

  到以O(shè)為頂點,l’為母線的圓錐面,任取*面π,若它與軸l的夾角為β(當π與l*行時,記β=0),則截面不過頂點時:

  (1)β>α,*面π與圓錐的交線為橢圓;(2)β=α,*面π與圓錐的交線為拋物線;(3)

  β<α,*面π與圓錐的交線為雙曲線;截面過頂點時:(1)截面和圓錐面只相交于頂點,交線為一個點。

  (2)截面和圓錐面相交于兩條母線,交線為兩條相交曲線。(3)截面和圓錐面相切,交線為兩

高中數(shù)學(xué)知識點總結(jié)5

  什么是不等式?

  一般地,用純粹的大于號“>”、小于號“<”連接的不等式稱為嚴格不等式,用不小于號(大于或等于號)“≥”、不大于號(小于或等于號)“≤”連接的不等式稱為非嚴格不等式,或稱廣義不等式?偟膩碚f,用不等號(<,>,≥,≤,≠)連接的式子叫做不等式。

  通常不等式中的數(shù)是實數(shù),字母也**實數(shù),不等式的一般形式為F(x,y,……,z)≤G(x,y,……,z)(其中不等號也可以為<,≤,≥,>中某一個),兩邊的解析式的公共定義域稱為不等式的定義域,不等式既可以表達一個命題,也可以表示一個問題。

  數(shù)學(xué)知識點1、不等式性質(zhì)比較大小方法:

 。1)作差比較法(2)作商比較法

  不等式的基本性質(zhì)

 、賹ΨQ性:a > b,b > a

 、趥鬟f性:a > b,b > ca > c

  ③可加性:a > b a + c > b + c

 、芸煞e性:a > b,c > 0,ac > bc

 、菁臃ǚ▌t:a > b,c > d,a + c > b + d

 、蕹朔ǚ▌t:a > b > 0,c > d > 0,ac > bd

 、叱朔椒▌t:a > b > 0,an > bn(n∈N)

 、嚅_方法則:a > b > 0

  數(shù)學(xué)知識點2、算術(shù)*均數(shù)與幾何*均數(shù)定理:

 。1)如果a、b∈R,那么a2 + b2 ≥2ab;(當且僅當a=b時等號)

 。2)如果a、b∈R+,那么(當且僅當a=b時等號)推廣:

  如果為實數(shù),則重要結(jié)論

 。1)如果積xy是定值P,那么當x=y時,和x+y有最小值2;

 。2)如果和x+y是定值S,那么當x=y時,和xy有最大值S2/4。

  數(shù)學(xué)知識點3、證明不等式的常用方法:

  比較法:比較法是最基本、最重要的方法。

  當不等式的兩邊的.差能分解因式或能配成*方和的形式,則選擇作差比較法;當不等式的兩邊都是正數(shù)且它們的商能與1比較大小,則選擇作商比較法;碰到絕對值或根式,我們還可以考慮作*方差。

  綜合法:從已知或已證明過的不等式出發(fā),根據(jù)不等式的性質(zhì)推導(dǎo)出欲證的不等式。綜合法的放縮經(jīng)常用到均值不等式。

  分析法:不等式兩邊的聯(lián)系不夠清楚,通過尋找不等式成立的充分條件,逐步將欲證的不等式轉(zhuǎn)化,直到尋找到易證或已知成立的結(jié)論。

高中數(shù)學(xué)知識點總結(jié)6

  導(dǎo)數(shù)及其應(yīng)用

  一.導(dǎo)數(shù)概念的引入

  1.導(dǎo)數(shù)的物理意義:瞬時速率。一般的,函數(shù)yf(x)在xx0處的瞬時變化率是

  x0limf(x0x)f(x0),

  x我們稱它為函數(shù)yf(x)在xx0處的導(dǎo)數(shù),記作f(x0)或y|xx0,即f(x0)=limx0f(x0x)f(x0)

  x例1.在高臺跳水運動中,運動員相對于水面的高度h(單位:m)與起跳后的時間t(單位:

  s)存在函數(shù)關(guān)系

  h(t)4.9t26.5t10

  運動員在t=2s時的瞬時速度是多少?解:根據(jù)定義

  vh(2)limh(2x)h(2)13.1

  x0x即該運動員在t=2s是13.1m/s,符號說明方向向下

  2.導(dǎo)數(shù)的幾何意義:曲線的切線.通過圖像,我們可以看出當點Pn趨近于P時,直線PT與

  曲線相切。容易知道,割線PPn的斜率是knf(xn)f(x0),當點Pn趨近于P時,

  xnx0函數(shù)yf(x)在xx0處的導(dǎo)數(shù)就是切線PT的斜率k,即klimx0f(xn)f(x0)f(x0)

  xnx03.導(dǎo)函數(shù):當x變化時,f(x)便是x的一個函數(shù),我們稱它為f(x)的導(dǎo)函數(shù).yf(x)的導(dǎo)函數(shù)有時也記作y,即f(x)lim

  二.導(dǎo)數(shù)的計算

  1.函數(shù)yf(x)c的導(dǎo)數(shù)2.函數(shù)yf(x)x的導(dǎo)數(shù)3.函數(shù)yf(x)x的導(dǎo)數(shù)

  2x0f(xx)f(x)

  x

  4.函數(shù)yf(x)1的導(dǎo)數(shù)x基本初等函數(shù)的導(dǎo)數(shù)公式:

  1若f(x)c(c為常數(shù)),則f(x)0;

  2若f(x)x,則f(x)x1;

  3若f(x)sinx,則f(x)cosx

  4若f(x)cosx,則f(x)sinx;

  5若f(x)ax,則f(x)axlna6若f(x)e,則f(x)e

  xx1xlna18若f(x)lnx,則f(x)

  xx7若f(x)loga,則f(x)導(dǎo)數(shù)的運算法則

  1.[f(x)g(x)]f(x)g(x)

  2.[f(x)g(x)]f(x)g(x)f(x)g(x)

  3.[f(x)f(x)g(x)f(x)g(x)]g(x)[g(x)]

  2復(fù)合函數(shù)求導(dǎo)

  yf(u)和ug(x),稱則y可以表示成為x的函數(shù),即yf(g(x))為一個復(fù)合函數(shù)yf(g(x))g(x)

  三.導(dǎo)數(shù)在研究函數(shù)中的應(yīng)用

  1.函數(shù)的單調(diào)性與導(dǎo)數(shù):

  一般的,函數(shù)的單調(diào)性與其導(dǎo)數(shù)的**有如下關(guān)系:

  在某個區(qū)間(a,b)內(nèi),如果f(x)0,那么函數(shù)yf(x)在這個區(qū)間單調(diào)遞增;如果f(x)0,那么函數(shù)yf(x)在這個區(qū)間單調(diào)遞減.2.函數(shù)的極值與導(dǎo)數(shù)

  極值反映的是函數(shù)在某一點附近的大小情況.求函數(shù)yf(x)的極值的方法是:

  (1)如果在x0附近的左側(cè)f(x)0,右側(cè)f(x)0,那么f(x0)是極大值;

  (2)如果在x0附近的左側(cè)f(x)0,右側(cè)f(x)0,那么f(x0)是極小值;

  4.函數(shù)的`最大(小)值與導(dǎo)數(shù)

  函數(shù)極大值與最大值之間的關(guān)系.

  求函數(shù)yf(x)在[a,b]上的最大值與最小值的步驟

 。1)求函數(shù)yf(x)在(a,b)內(nèi)的極值;

 。2)將函數(shù)yf(x)的各極值與端點處的函數(shù)值f(a),f(b)比較,其中最大的是一個最大值,最小的是最小值.

  四.生活中的優(yōu)化問題

  利用導(dǎo)數(shù)的知識,求函數(shù)的最大(小)值,從而解決實際問題

  第二章推理與證明

  考點一合情推理與類比推理

  根據(jù)一類事物的部分對象具有某種性質(zhì),退出這類事物的所有對象都具有這種性質(zhì)的推理,叫做歸納推理,歸納是從特殊到一般的過程,它屬于合情推理

  根據(jù)兩類不同事物之間具有某些類似(或一致)性,推測其中一類事物具有與另外一類事物類似的性質(zhì)的推理,叫做類比推理.

  類比推理的一般步驟:

  (1)找出兩類事物的相似性或一致性;

  (2)用一類事物的性質(zhì)去推測另一類事物的性質(zhì),得出一個明確的命題(猜想);

  (3)一般的,事物之間的各個性質(zhì)并不是孤立存在的,而是相互制約的如果兩個事物在某些性質(zhì)上相同或相似,那么他們在另一寫性質(zhì)上也可能相同或類似,類比的結(jié)論可能是真的

  (4)一般情況下,如果類比的相似性越多,相似的性質(zhì)與推測的性質(zhì)之間越相關(guān),那么類比得出的命題越可靠.

  考點二演繹推理(俗稱三段論)

  由一般性的命題推出特殊命題的過程,這種推理稱為演繹推理.

  考點三數(shù)學(xué)歸納法

  1.它是一個遞推的數(shù)學(xué)論證方法.

  2.步驟:A.命題在n=1(或n0)時成立,這是遞推的基礎(chǔ);B.假設(shè)在n=k時命題成立C.證明n=k+1時命題也成立,

  完成這兩步,就可以斷定對任何自然數(shù)(或n>=n0,且nN)結(jié)論都成立。

  考點三證明

  1.反證法:

  2.分析法:

  3.綜合法:

  第一章數(shù)系的擴充和復(fù)數(shù)的概念考點一:復(fù)數(shù)的概念

  (1)復(fù)數(shù):形如abi(aR,bR)的數(shù)叫做復(fù)數(shù),a和b分別叫它的實部和虛部.

  (2)分類:復(fù)數(shù)abi(aR,bR)中,當b0,就是實數(shù);b0,叫做虛數(shù);當a0,b0時,叫做純虛數(shù).

  (3)復(fù)數(shù)相等:如果兩個復(fù)數(shù)實部相等且虛部相等就說這兩個復(fù)數(shù)相等.

  (4)共軛復(fù)數(shù):當兩個復(fù)數(shù)實部相等,虛部互為相反數(shù)時,這兩個復(fù)數(shù)互為共軛復(fù)數(shù).

  (5)復(fù)*面:建立直角坐標系來表示復(fù)數(shù)的*面叫做復(fù)*面,x軸叫做實軸,y軸除去原點的部分叫做虛軸。

  (6)兩個實數(shù)可以比較大小,但兩個復(fù)數(shù)如果不全是實數(shù)就不能比較大小。

高中數(shù)學(xué)知識點總結(jié)7

  高中數(shù)學(xué)(文)包含5本必修、2本選修,(理)包含5本必修、3本選修,每學(xué)期學(xué)**兩本書。

  必修一:1、集合與函數(shù)的概念 (這部分知識抽象,較難理解)2、基本的初等函數(shù)(指數(shù)函數(shù)、對數(shù)函數(shù))3、函數(shù)的性質(zhì)及應(yīng)用 (比較抽象,較難理解)

  必修二:1、立體幾何(1)、證明:垂直(多考查面面垂直)、*行(2)、求解:主要是夾角問題,包括線面角和面面角

  這部分知識是高一學(xué)生的難點,比如:一個角實際上是一個銳角,但是在圖中顯示的鈍角等等一些問題,需要學(xué)生的立體意識較強。這部分知識高考占22---27分

  2、直線方程:高考時不單獨命題,易和圓錐曲線結(jié)合命題

  3、圓方程:

  必修三:1、算法初步:高考必考內(nèi)容,5分(選擇或填空)2、統(tǒng)計:3、概率:高考必考內(nèi)容,09年理科占到15分,文科數(shù)學(xué)占到5分

  必修四:1、三角函數(shù):(圖像、性質(zhì)、高中重難點,)必考大題:15---20分,并且經(jīng)常和其他函數(shù)混合起來考查

  2、*面向量:高考不單獨命題,易和三角函數(shù)、圓錐曲線結(jié)合命題。09年理科占到5分,文科占到13分

  必修五:1、解三角形:(正、余弦定理、三角恒等變換)高考中理科占到22分左右,文科數(shù)學(xué)占到13分左右2、數(shù)列:高考必考,17---22分3、不等式:(線性規(guī)劃,聽課時易理解,但做題較復(fù)雜,應(yīng)掌握技巧。高考必考5分)不等式不單獨命題,一般和函數(shù)結(jié)合求最值、解集。

  文科:選修1—1、1—2

  選修1--1:重點:高考占30分

  1、邏輯用語:一般不考,若考也是和集合放一塊考2、圓錐曲線:3、導(dǎo)數(shù)、導(dǎo)數(shù)的應(yīng)用(高考必考)

  選修1--2:1、統(tǒng)計:2、推理證明:一般不考,若考會是填空題3、復(fù)數(shù):(新課標比老課本難的多,高考必考內(nèi)容)

  理科:選修2—1、2—2、2—3

  選修2--1:1、邏輯用語2、圓錐曲線3、空間向量:(利用空間向量可以把立體幾何做題簡便化)

  選修2--2:1、導(dǎo)數(shù)與微積分2、推理證明:一般不考3、復(fù)數(shù)

  選修2--3:1、計數(shù)原理:(排列組合、二項式定理)掌握這部分知識點需要大量做題找規(guī)律,無技巧。高考必考,10分2、隨機變量及其分布:不單獨命題3、統(tǒng)計:

  高考的知識板塊

  集合與簡單邏輯:5分或不考

  函數(shù):高考60分:①、指數(shù)函數(shù) ②對數(shù)函數(shù) ③二次函數(shù) ④三次函數(shù) ⑤三角函數(shù) ⑥抽象函數(shù)(無函數(shù)表達式,不易理解,難點)

  *面向量與解三角形

  立體幾何:22分左右

  不等式:(線性規(guī)則)5分必考

  數(shù)列:17分 (一道大題+一道選擇或填空)易和函數(shù)結(jié)合命題

  *面解析幾何:(30分左右)

  計算原理:10分左右

  概率統(tǒng)計:12分----17分

  復(fù)數(shù):5分

  推理證明

  一般高考大題分布

  1、17題:三角函數(shù)

  2、18、19、20 三題:立體幾何 、概率 、數(shù)列

  3、21、22 題:函數(shù)、圓錐曲線

  成績不理想一般是以下幾種情況:

  做題不細心,(會做,做不對)

  基礎(chǔ)知識沒有掌握

  解決問題不全面,知識的運用沒有系統(tǒng)化(如:一道題綜合了多個知識點)

  心理素質(zhì)不好

  總之學(xué)**數(shù)學(xué)一定要掌握科學(xué)的學(xué)**方法:1、筆記:記老師講的課本上沒有的知識點,尤其是數(shù)列性質(zhì),課本上沒有,但做題經(jīng)常用到 2、錯題收集、歸納總結(jié)

  高一年級

  必修一

  第一章 集合與函數(shù)概念

  第二章 基本初等函數(shù)(Ⅰ)

  第三章 函數(shù)的應(yīng)用

  必修二

  第一章 空間幾何體

  第二章 點、直線、*面之間的位置關(guān)系

  第三章 直線與方程

  必修三

  第一章 算法初步

  第二章 統(tǒng)計

  第三章 概率

  必修四

  第一章 三角函數(shù)

  第二章 *面向量

  第三章 三角恒等變換

  (二)教學(xué)要求

  在教學(xué)中,由于集合、函數(shù)等內(nèi)容比較抽象,三角函數(shù)在高考中占據(jù)重要地位,*面向量又是高考中數(shù)學(xué)必考內(nèi)容,教師在備課組協(xié)作的基礎(chǔ)上應(yīng)注意對各章知識的重難點的講解和釋疑,減輕學(xué)生自學(xué)的壓力,增強學(xué)生學(xué)好數(shù)學(xué)的信心。

  首先,在高中數(shù)學(xué)中,集合的初步知識以及與其它內(nèi)容的密切聯(lián)系。它們是學(xué)**、掌握和使用數(shù)學(xué)語言的基礎(chǔ),是高中數(shù)學(xué)學(xué)**的出發(fā)點。在教學(xué)中,應(yīng)注重引導(dǎo)學(xué)生更好的理解數(shù)學(xué)中出現(xiàn)的集合語言,使學(xué)生更好的使用集合語言表述數(shù)學(xué)問題,并且可以使學(xué)生運用集合的觀點,研究、處理數(shù)學(xué)問題。因此集合的基本概念、函數(shù)等有關(guān)內(nèi)容是教師重點講解的內(nèi)容。

  其次,函數(shù)作為中學(xué)數(shù)學(xué)中最重要的基本概念之一,教師應(yīng)注意運用有關(guān)的概念和函數(shù)的性質(zhì),培養(yǎng)學(xué)生的思維能力;通過指數(shù)與對數(shù),指數(shù)函數(shù)與對數(shù)函數(shù)之間的'內(nèi)在聯(lián)系,對學(xué)生進行辯證唯物**觀點的教育;通過聯(lián)系實際的引入問題和解決帶有實際意義的某些問題,培養(yǎng)學(xué)生的實踐能力和創(chuàng)新意識。

  第三,通過對三角函數(shù)的學(xué)**,學(xué)生將進一步了解符號與變元、集合與對應(yīng)、數(shù)形結(jié)合等基本的數(shù)學(xué)思想在研究三角函數(shù)時所起的重要作用,在式子與圖形的變化中,教師應(yīng)引導(dǎo)學(xué)生通過分析、探索、劃歸、類比、*行移動、伸長和縮短等常用的基本方法的學(xué)**,使學(xué)生在學(xué)**數(shù)學(xué)和應(yīng)用數(shù)學(xué)方面達到一個新的層次。

  第四,學(xué)***面向量,不但應(yīng)注意*面向量基本知識的講解,更要充分挖掘*面向量的工具作用,提高學(xué)生應(yīng)用數(shù)學(xué)知識解決實際問題的能力和實際操作的能力,使學(xué)生學(xué)會提出問題,明確研究方向,使學(xué)生學(xué)會交流,體驗數(shù)學(xué)活動的過程,培養(yǎng)創(chuàng)新精神和應(yīng)用能力。

  第五、在學(xué)**空間幾何體、點、直線、*面之間的位置關(guān)系時,重點要幫助學(xué)生逐步形成空間想象能力,嚴格遵循從整體到局部,從具體到抽象的原則,逐步掌握解決空間幾何體的相關(guān)問題。

  第六、要在*面解析幾何初步教學(xué)中,幫助學(xué)生經(jīng)歷如下的過程:首先將幾何問題代數(shù)化,用代數(shù)的語言描述幾何要素及其關(guān)系,進而將幾何問題轉(zhuǎn)化為代數(shù)問題;處理代數(shù)問題;分析代數(shù)結(jié)果的幾何含義,最終解決幾何問題。這種思想應(yīng)貫穿*面解析幾何教學(xué)的始終,幫助學(xué)生不斷地體會“數(shù)形結(jié)合”的思想方法。

  第七、在學(xué)**算法初步、統(tǒng)計等內(nèi)容的時候,要注意順序漸進,不可追求一步到位,特別要注意其思想的重要性。

  高二年級

  必修五

  第一章 解三角形

  第二章 數(shù)列

  第三章 不等式

  選修1-1

  第一章 常用邏輯用語

  第二章 圓錐曲線與方程

  第三章 導(dǎo)數(shù)及其應(yīng)用

  選修1-2

  第一章 統(tǒng)計案例

  第二章 推理與證明

  第三章 數(shù)系的擴充與復(fù)數(shù)的引入

  第四章 框圖

  選修2-1

  第一章 常用邏輯用語

  第二章 圓錐曲線與方程

  第三章 空間向量與立體幾何

  選修2-2

  第一章 導(dǎo)數(shù)及其應(yīng)用

  第二章 推理與證明

  第三章 數(shù)系的擴充與復(fù)數(shù)的引入

  選修2-3

  第一章 計數(shù)原理

  第二章 隨機變量及其分布

  第三章 統(tǒng)計案例

  (二)教學(xué)要求

  高二上

  必修5

  學(xué)生將在已有知識的基礎(chǔ)上,通過對任意三角形邊角關(guān)系的探究,發(fā)現(xiàn)并掌握三角形中的邊長與角度之間的數(shù)量關(guān)系,并認識到運用它們可以解決一些與測量和幾何計算有關(guān)的實際問題。

  數(shù)列作為一種特殊的函數(shù),是反映自然規(guī)律的基本數(shù)學(xué)模型。在本模塊中,學(xué)生將通過對日常生活中大量實際問題的分析,建立等差數(shù)列和等比數(shù)列這兩種數(shù)列模型,探索并掌握它們的一些基本數(shù)量關(guān)系,感受這兩種數(shù)列模型的廣泛應(yīng)用,并利用它們解決一些實際問題。

  不等關(guān)系與相等關(guān)系都是客觀事物的基本數(shù)量關(guān)系,是數(shù)學(xué)研究的重要內(nèi)容。建立不等觀念、處理不等關(guān)系與處理等量問題是同樣重要的。在本模塊中,學(xué)生將通過具體情境,感受在現(xiàn)實世界和日常生活中存在著大量的不等關(guān)系,理解不等式(組)對于刻畫不等關(guān)系的意義和價值;掌握求解一元二次不等式的基本方法,并能解決一些實際問題;能用二元一次不等式組表示*面區(qū)域,并嘗試解決一些簡單的二元線性規(guī)劃問題;認識基本不等式及其簡單應(yīng)用;體會不等式、方程及函數(shù)之間的聯(lián)系。

  選修1—1(文科)

  在本模塊中,學(xué)生將在義務(wù)教育階段的基礎(chǔ)上,學(xué)**常用邏輯用語,體會邏輯用語在表述和論證中的作用,利用這些邏輯用語準確地表達數(shù)學(xué)內(nèi)容,更好地進行交流。

  在必修課程學(xué)***面解析幾何初步的基礎(chǔ)上,在本模塊中,學(xué)生將學(xué)**圓錐曲線與方程,了解圓錐曲線與二次方程的關(guān)系,掌握圓錐曲線的基本幾何性質(zhì),感受圓錐曲線在刻畫現(xiàn)實世界和解決實際問題中的作用,進一步體會數(shù)形結(jié)合的思想。

  在本模塊中,學(xué)生將通過大量實例,經(jīng)歷由*均變化率到瞬時變化率的過程,刻畫現(xiàn)實問題,理解導(dǎo)數(shù)的含義,體會導(dǎo)數(shù)的思想及其內(nèi)涵;應(yīng)用導(dǎo)數(shù)探索函數(shù)的單調(diào)、極值等性質(zhì)及其在實際中的應(yīng)用,感受導(dǎo)數(shù)在解決數(shù)學(xué)問題和實際問題中的作用,體會微積分的產(chǎn)生對人類文化發(fā)展的價值。

  選修2-1(理科)

  在本模塊中,學(xué)生將學(xué)**常用邏輯用語、圓錐曲線與方程、空間中的向量(簡稱空間向量)與立體幾何。

  在本模塊中,學(xué)生將在義務(wù)教育階段的基礎(chǔ)上,學(xué)**常用邏輯用語,體會邏輯用語在表述和論證中的作用,利用這些邏輯用語準確地表達數(shù)學(xué)內(nèi)容,從而更好地進行交流。

  在必修階段學(xué)***面解析幾何初步的基礎(chǔ)上,在本模塊中,學(xué)生將學(xué)**圓錐曲線與方程,了解圓錐曲線與二次方程的關(guān)系,掌握圓錐曲線的基本幾何性質(zhì),感受圓錐曲線在刻畫現(xiàn)實世界和解決實際問題中的作用。結(jié)合已學(xué)過的曲線及其方程的實例,了解曲線與方程的對應(yīng)關(guān)系,進一步體會數(shù)形結(jié)合的思想。

  在本模塊中,學(xué)生將在學(xué)***面向量的基礎(chǔ)上,把*面向量及其運算推廣到空間,運用空間向量解決有關(guān)直線、*面位置關(guān)系的問題,體會向量方法在研究幾何圖形中的作用,進一步發(fā)展空間想像能力和幾何直觀能力。

高中數(shù)學(xué)知識點總結(jié)8

  一、求導(dǎo)數(shù)的方法

 。1)基本求導(dǎo)公式

 。2)導(dǎo)數(shù)的四則運算

 。3)復(fù)合函數(shù)的導(dǎo)數(shù)

  設(shè)在點x處可導(dǎo),y=在點處可導(dǎo),則復(fù)合函數(shù)在點x處可導(dǎo),且即

  二、關(guān)于極限

  1、數(shù)列的極限:

  粗略地說,就是當數(shù)列的項n無限增大時,數(shù)列的項無限趨向于A,這就是數(shù)列極限的描述性定義。記作:=A。如:

  2、函數(shù)的極限:

  當自變量x無限趨近于常數(shù)時,如果函數(shù)無限趨近于一個常數(shù),就說當x趨近于時,函數(shù)的極限是,記作

  三、導(dǎo)數(shù)的概念

  1、在處的導(dǎo)數(shù)。

  2、在的導(dǎo)數(shù)。

  3。函數(shù)在點處的.導(dǎo)數(shù)的幾何意義:

  函數(shù)在點處的導(dǎo)數(shù)是曲線在處的切線的斜率,

  即k=,相應(yīng)的切線方程是

  注:函數(shù)的導(dǎo)函數(shù)在時的函數(shù)值,就是在處的導(dǎo)數(shù)。

  例、若=2,則=()A—1B—2C1D

  四、導(dǎo)數(shù)的綜合運用

 。ㄒ唬┣的切線

  函數(shù)y=f(x)在點處的導(dǎo)數(shù),就是曲線y=(x)在點處的切線的斜率。由此,可以利用導(dǎo)數(shù)求曲線的切線方程。具體求法分兩步:

 。1)求出函數(shù)y=f(x)在點處的導(dǎo)數(shù),即曲線y=f(x)在點處的切線的斜率k=

 。2)在已知切點坐標和切線斜率的條件下,求得切線方程為x。

高中數(shù)學(xué)知識點總結(jié)9

  1.多動腦思考

  2.強化自己學(xué)習(xí)訓(xùn)練

  要是想學(xué)好高中數(shù)學(xué),必須做的一件事就是做大量的題,數(shù)學(xué)不一定好,因襲要提高解題的效率,做題的目的在于檢查你學(xué)的知識,方法是否掌握得很好。如果你掌握得不準,甚至有偏差,那么多做題的結(jié)果,反而鞏固了你的缺欠,因此,要在準確地把握住基本知識和方法的.基礎(chǔ)上做一定量的定式訓(xùn)練是必要的。盡管復(fù)習(xí)時間緊張,但我們?nèi)匀灰⒁饣貧w課本。要抓綱悟本,對著課本目錄回憶和梳理知識,把重點放在掌握例題涵蓋的知識及解題方法上,選擇一些針對性極強的題目進行強化訓(xùn)練、復(fù)習(xí)才有實效。

  3.養(yǎng)成良好的學(xué)**慣

  學(xué)習(xí)高三數(shù)學(xué)必須養(yǎng)成良好的審解題解題習(xí)慣,如仔細閱讀題目,看清數(shù)字,規(guī)范解題格式,做到審題要慢解題要快,注重過程,書寫不規(guī)范,在正規(guī)考試中即使答案對了,由于過程不完整被扣分較多,導(dǎo)致“會而不對”,或是為了保證正確率,反復(fù)驗算,浪費很多時間,影響整體得分。這些問題都很難在短時間得以解決,必須在*時下功夫努力改正。其實這是一種不良的學(xué)**慣,必須在第一輪復(fù)習(xí)中逐步克服,否則,后患無窮?山Y(jié)合*時解題中存在的具體問題,逐題找出原因,看其是行為習(xí)慣方面的原因,還是知識方面的缺陷,再有針對性加以解決。必要時作些記錄,也就是錯題本,每位學(xué)生必備的,以便以后查詢。

高中數(shù)學(xué)知識點總結(jié)10

  1過兩點有且只有一條直線2兩點之間線段最短3同角或等角的補角相等?4同角或等角的余角相等

  5過一點有且只有一條直線和已知直線垂直6直線外一點與直線上各點連接的所有線段中,垂線段最短7*行公理經(jīng)過直線外一點,有且只有一條直線與這條直線*行8如果兩條直線都和第三條直線*行,這兩條直線也互相*行9同位角相等,兩直線*行10內(nèi)錯角相等,兩直線*行11同旁內(nèi)角互補,兩直線*行12兩直線*行,同位角相等13兩直線*行,內(nèi)錯角相等14兩直線*行,同旁內(nèi)角互補

  15定理三角形兩邊的和大于第三邊16推論三角形兩邊的差小于第三邊17三角形內(nèi)角和定理三角形三個內(nèi)角的和等于180°18推論1直角三角形的兩個銳角互余19推論2三角形的一個外角等于和它不相鄰的兩個內(nèi)角的和20推論3三角形的一個外角大于任何一個和它不相鄰的內(nèi)角21全等三角形的對應(yīng)邊、對應(yīng)角相等

  22邊角邊公理(SAS)有兩邊和它們的夾角對應(yīng)相等的兩個三角形全等23角邊角公理(ASA)有兩角和它們的夾邊對應(yīng)相等的兩個三角形全等24推論(AAS)有兩角和其中一角的對邊對應(yīng)相等的兩個三角形全等25邊邊邊公理(SSS)有三邊對應(yīng)相等的兩個三角形全等26斜邊、直角邊公理(HL)有斜邊和一條直角邊對應(yīng)相等的兩個直角三角形全等27定理1在角的*分線上的點到這個角的兩邊的距離相等

  28定理2到一個角的兩邊的距離相同的點,在這個角的*分線上29角的*分線是到角的兩邊距離相等的所有點的集合

  30等腰三角形的性質(zhì)定理等腰三角形的兩個底角相等(即等邊對等角)31推論1等腰三角形頂角的*分線*分底邊并且垂直于底邊

  32等腰三角形的頂角*分線、底邊上的中線和底邊上的高互相重合33推論3等邊三角形的各角都相等,并且每一個角都等于60°34等腰三角形的判定定理如果一個三角形有兩個角相等,那么這兩個角所對的邊也相等(等角對等邊)35推論1三個角都相等的三角形是等邊三角形36推論2有一個角等于60°的等腰三角形是等邊三角形

  37在直角三角形中,如果一個銳角等于30°那么它所對的直角邊等于斜邊的一半38直角三角形斜邊上的中線等于斜邊上的一半

  39定理線段垂直*分線上的點和這條線段兩個端點的距離相等

  40逆定理和一條線段兩個端點距離相等的點,在這條線段的垂直*分線上41線段的垂直*分線可看作和線段兩端點距離相等的所有點的集合42定理1關(guān)于某條直線對稱的兩個圖形是全等形43定理2如果兩個圖形關(guān)于某直線對稱,那么對稱軸是對應(yīng)點連線的'垂直*分線44定理3兩個圖形關(guān)于某直線對稱,如果它們的對應(yīng)線段或延長線相交,那么交點在對稱軸上45逆定理如果兩個圖形的對應(yīng)點連線被同一條直線垂直*分,那么這兩個圖形關(guān)于這條直線對稱46勾股定理直角三角形兩直角邊a、b的*方和、等于斜邊c的*方,即a^2+b^2=c^247勾股定理的逆定理如果三角形的三邊長a、b、c有關(guān)系a^2+b^2=c^2,那么這個三角形是直角三角形48定理四邊形的內(nèi)角和等于360°49四邊形的外角和等于360°

  50多邊形內(nèi)角和定理n邊形的內(nèi)角的和等于(n-2)×180°51推論任意多邊的外角和等于360°52*行四邊形性質(zhì)定理1*行四邊形的對角相等53*行四邊形性質(zhì)定理2*行四邊形的對邊相等54推論夾在兩條*行線間的*行線段相等55*行四邊形性質(zhì)定理3*行四邊形的對角線互相*分

  56*行四邊形判定定理1兩組對角分別相等的四邊形是*行四邊形57*行四邊形判定定理2兩組對邊分別相等的四邊形是*行四邊形58*行四邊形判定定理3對角線互相*分的四邊形是*行四邊形59*行四邊形判定定理4一組對邊*行相等的四邊形是*行四邊形

  60矩形性質(zhì)定理1矩形的四個角都是直角61矩形性質(zhì)定理2矩形的對角線相等

  62矩形判定定理1有三個角是直角的四邊形是矩形63矩形判定定理2對角線相等的*行四邊形是矩形64菱形性質(zhì)定理1菱形的四條邊都相等

  65菱形性質(zhì)定理2菱形的對角線互相垂直,并且每一條對角線*分一組對角66菱形面積=對角線乘積的一半,即S=(a×b)÷267菱形判定定理1四邊都相等的四邊形是菱形

  68菱形判定定理2對角線互相垂直的*行四邊形是菱形

  69正方形性質(zhì)定理1正方形的四個角都是直角,四條邊都相等

  70正方形性質(zhì)定理2正方形的兩條對角線相等,并且互相垂直*分,每條對角線*分一組對角71定理1關(guān)于中心對稱的兩個圖形是全等的

  72定理2關(guān)于中心對稱的兩個圖形,對稱點連線都經(jīng)過對稱中心,并且被對稱中心*分73逆定理如果兩個圖形的對應(yīng)點連線都經(jīng)過某一點,并且被這一點*分,那么這兩個圖形關(guān)于這一點對稱74等腰梯形性質(zhì)定理等腰梯形在同一底上的兩個角相等75等腰梯形的兩條對角線相等

  76等腰梯形判定定理在同一底上的兩個角相等的梯形是等腰梯形77對角線相等的梯形是等腰梯形

  78*行線等分線段定理如果一組*行線在一條直線上截得的線段相等,那么在其他直線上截得的線段也相等

  79推論1經(jīng)過梯形一腰的中點與底*行的直線,必*分另一腰

  80推論2經(jīng)過三角形一邊的中點與另一邊*行的直線,必*分第三邊81三角形中位線定理三角形的中位線*行于第三邊,并且等于它的一半82梯形中位線定理梯形的中位線*行于兩底,并且等于兩底和的一半L=(a+b)÷2S=L×h

  83(1)比例的基本性質(zhì)如果a:b=c:d,那么ad=bc如果ad=bc,那么a:b=c:dwc/S??

  84(2)合比性質(zhì)如果a/b=c/d,那么(a±b)/b=(c±d)/d85(3)等比性質(zhì)如果a/b=c/d=…=m/n(b+d+…+n≠0),那么(a+c+…+m)/(b+d+…+n)=a/b

  86*行線分線段成比例定理三條*行線截兩條直線,所得的對應(yīng)線段成比例87推論*行于三角形一邊的直線截其他兩邊(或兩邊的延長線),所得的對應(yīng)線段成比例

  88定理如果一條直線截三角形的兩邊(或兩邊的延長線)所得的對應(yīng)線段成比例,那么這條直線*行于三角形的第三邊

  89*行于三角形的一邊,并且和其他兩邊相交的直線,所截得的三角形的三邊與原三角形三邊對應(yīng)成比例90定理*行于三角形一邊的直線和其他兩邊(或兩邊的延長線)相交,所構(gòu)成的三角形與原三角形相似

  91相似三角形判定定理1兩角對應(yīng)相等,兩三角形相似(ASA)92直角三角形被斜邊上的高分成的兩個直角三角形和原三角形相似93判定定理2兩邊對應(yīng)成比例且夾角相等,兩三角形相似(SAS)94判定定理3三邊對應(yīng)成比例,兩三角形相似(SSS)

  95定理如果一個直角三角形的斜邊和一條直角邊與另一個直角三角形的斜邊和一條直角邊對應(yīng)成比例,那么這兩個直角三角形相似

  96性質(zhì)定理1相似三角形對應(yīng)高的比,對應(yīng)中線的比與對應(yīng)角*分線的比都等于相似比

  97性質(zhì)定理2相似三角形周長的比等于相似比

  98性質(zhì)定理3相似三角形面積的比等于相似比的*方99任意銳角的正弦值等于它的余角的余弦值,任意銳角的余弦值等于它的余角的正弦值

  100任意銳角的正切值等于它的余角的余切值,任意銳角的余切值等于它的余角的正切值

  101圓是定點的距離等于定長的點的集合

  102圓的內(nèi)部可以看作是圓心的距離小于半徑的點的集合103圓的外部可以看作是圓心的距離大于半徑的點的集合104同圓或等圓的半徑相等

  105到定點的距離等于定長的點的軌跡,是以定點為圓心,定長為半徑的圓106和已知線段兩個端點的距離相等的點的軌跡,是著條線段的垂直*分線107到已知角的兩邊距離相等的點的軌跡,是這個角的*分線

  108到兩條*行線距離相等的點的軌跡,是和這兩條*行線*行且距離相等的一條直線

  109定理不在同一直線上的三點確定一個圓。

  110垂徑定理垂直于弦的直徑*分這條弦并且*分弦所對的兩條弧

  111推論1①*分弦(不是直徑)的直徑垂直于弦,并且*分弦所對的兩條、谙业拇怪*分線經(jīng)過圓心,并且*分弦所對的兩條弧

 、*分弦所對的一條弧的直徑,垂直*分弦,并且*分弦所對的另一條弧112推論2圓的兩條*行弦所夾的弧相等113圓是以圓心為對稱中心的中心對稱圖形

  114定理在同圓或等圓中,相等的圓心角所對的弧相等,所對的弦相等,所對的弦的弦心距相等

  115推論在同圓或等圓中,如果兩個圓心角、兩條弧、兩條弦或兩弦的弦心距中有一組量相等那么它們所對應(yīng)的其余各組量都相等

  116定理一條弧所對的圓周角等于它所對的圓心角的一半117推論1同弧或等弧所對的圓周角相等;同圓或等圓中,相等的圓周角所對的弧也相等

  118推論2半圓(或直徑)所對的圓周角是直角;90°的圓周角所對的弦是直徑

  119推論3如果三角形一邊上的中線等于這邊的一半,那么這個三角形是直角三角形

  120定理圓的內(nèi)接四邊形的對角互補,并且任何一個外角都等于它的內(nèi)對角121①直線L和⊙O相交d<r②直線L和⊙O相切d=r③直線L和⊙O相離d>r

  122切線的判定定理經(jīng)過半徑的外端并且垂直于這條半徑的直線是圓的切線123切線的性質(zhì)定理圓的切線垂直于經(jīng)過切點的半徑124推論1經(jīng)過圓心且垂直于切線的直線必經(jīng)過切點125推論2經(jīng)過切點且垂直于切線的直線必經(jīng)過圓心

  126切線長定理從圓外一點引圓的兩條切線,它們的切線長相等,圓心和這一點的連線*分兩條切線的夾角

  127圓的外切四邊形的兩組對邊的和相等

  128弦切角定理弦切角等于它所夾的弧對的圓周角

  129推論如果兩個弦切角所夾的弧相等,那么這兩個弦切角也相等

  130相交弦定理圓內(nèi)的兩條相交弦,被交點分成的兩條線段長的積相等131推論如果弦與直徑垂直相交,那么弦的一半是它分直徑所成的兩條線段的比例中項

  132切割線定理從圓外一點引圓的切線和割線,切線長是這點到割線與圓交點的兩條線段長的比例中項

  133推論從圓外一點引圓的兩條割線,這一點到每條割線與圓的交點的兩條線段長的積相等

  134如果兩個圓相切,那么切點一定在連心線上135①兩圓外離d>R+r②兩圓外切d=R+r③兩圓相交R-r<d<R+r(R>r)

 、軆蓤A內(nèi)切d=R-r(R>r)⑤兩圓內(nèi)含d<R-r(R>r)136定理相交兩圓的連心線垂直*分兩圓的公*弦137定理把圓分成n(n≥3):

 、乓来芜B結(jié)各分點所得的多邊形是這個圓的內(nèi)接正n邊形⑵經(jīng)過各分點作圓的切線,以相鄰切線的交點為頂點的多邊形是這個圓的外切正n邊形

  138定理任何正多邊形都有一個外接圓和一個內(nèi)切圓,這兩個圓是同心圓139正n邊形的每個內(nèi)角都等于(n-2)×180°/n

  140定理正n邊形的半徑和邊心距把正n邊形分成2n個全等的直角三角形141正n邊形的面積Sn=pnrn/2p表示正n邊形的周長142正三角形面積√3a/4a表示邊長

  143如果在一個頂點周圍有k個正n邊形的角,由于這些角的和應(yīng)為360°,因此k×(n-2)180°/n=360°化為(n-2)(k-2)=4144弧長撲愎劍=n兀R/180

  145扇形面積公式:S扇形=n兀R^2/360=LR/2146內(nèi)公切線長=d-(R-r)外公切線長=d-(R+r)(還有一些,大家?guī)脱a充吧)實用工具:常用數(shù)學(xué)公式公式分類公式表達式

  乘法與因式分解a^2-b^2=(a+b)(a-b)a^3+b^3=(a+b)(a^2-ab+b^2)a^3-b^3=(a-b(a^2+ab+b^2)

  三角不等式|a+b|≤|a|+|b||a-b|≤|a|+|b||a|≤b-b≤a≤b|a-b|≥|a|-|b|-|a|≤a≤|a|

  一元二次方程的解-b+√(b^2-4ac)/2a-b-√(b^2-4ac)/2a根與系數(shù)的關(guān)系X1+X2=-b/aX1*X2=c/a注:韋達定理判別式

  b^2-4ac=0注:方程有兩個相等的實根b^2-4ac>0注:方程有兩個不等的實根b^2-4ac拋物線標準方程y^2=2pxy^2=-2pxx^2=2pyx^2=-2py直棱柱側(cè)面積S=c*h斜棱柱側(cè)面積S=c"*h

  正棱錐側(cè)面積S=1/2c*h"正棱臺側(cè)面積S=1/2(c+c")h"圓臺側(cè)面積S=1/2(c+c")l=pi(R+r)l球的表面積S=4pi*r2圓柱側(cè)面積S=c*h=2pi*h圓錐側(cè)面積S=1/2*c*l=pi*r*l

  弧長公式l=a*ra是圓心角的弧度數(shù)r>0扇形面積公式s=1/2*l*r錐體體積公式V=1/3*S*H圓錐體體積公式V=1/3*pi*r2h斜棱柱體積V=S"L注:其中,S"是直截面面積,L是側(cè)棱長柱體體積公式V=s*h圓柱體V=pi*r2h

高中數(shù)學(xué)知識點總結(jié)11

  1、命題的四種形式及其相互關(guān)系是什么?

  (互為逆否關(guān)系的命題是等價命題。)

  原命題與逆否命題同真、同假;逆命題與否命題同真同假。

  2、對映射的`概念了解嗎?映射f:A→B,是否注意到A中元素的任意性和B中與之對應(yīng)元素的唯一性,哪幾種對應(yīng)能構(gòu)成映射?

  (一對一,多對一,允許B中有元素無原象。)

  3、函數(shù)的三要素是什么?如何比較兩個函數(shù)是否相同?

 。ǘx域、對應(yīng)法則、值域)

  4、反函數(shù)存在的條件是什么?

  (一一對應(yīng)函數(shù))

  求反函數(shù)的步驟掌握了嗎?

 。á俜唇鈞;②互換x、y;③注明定義域)

  5、反函數(shù)的性質(zhì)有哪些?

  ①互為反函數(shù)的圖象關(guān)于直線y=x對稱;

 、诒4媪嗽瓉砗瘮(shù)的單調(diào)性、奇函數(shù)性;

  6、函數(shù)f(x)具有奇偶性的必要(非充分)條件是什么?

 。╢(x)定義域關(guān)于原點對稱)

高中數(shù)學(xué)知識點總結(jié)12

  有界性

  設(shè)函數(shù)f(x)在區(qū)間X上有定義,如果存在M>0,對于一切屬于區(qū)間X上的x,恒有|f(x)|≤M,則稱f(x)在區(qū)間X上有界,否則稱f(x)在區(qū)間上**.

  單調(diào)性

  設(shè)函數(shù)f(x)的定義域為D,區(qū)間I包含于D.如果對于區(qū)間**意兩點x1及x2,當x1f(x2),則稱函數(shù)f(x)在區(qū)間I上是單調(diào)遞減的.單調(diào)遞增和單調(diào)遞減的函數(shù)統(tǒng)稱為單調(diào)函數(shù).

  奇偶性

  設(shè)為一個實變量實值函數(shù),若有f(—x)=—f(x),則f(x)為奇函數(shù).

  幾何上,一個奇函數(shù)關(guān)于原點對稱,亦即其圖像在繞原點做180度旋轉(zhuǎn)后不會改變.

  奇函數(shù)的例子有x、sin(x)、sinh(x)和erf(x).

  設(shè)f(x)為一實變量實值函數(shù),若有f(x)=f(—x),則f(x)為偶函數(shù).

  幾何上,一個偶函數(shù)關(guān)于y軸對稱,亦即其圖在對y軸映射后不會改變.

  偶函數(shù)的例子有|x|、x2、cos(x)和cosh(x).

  偶函數(shù)不可能是個雙射映射.

  連續(xù)性

  在數(shù)學(xué)中,連續(xù)是函數(shù)的一種屬性.直觀上來說,連續(xù)的函數(shù)就是當輸入值的變化足夠小的時候,輸出的變化也會隨之足夠小的函數(shù).如果輸入值的.某種微小的變化會產(chǎn)生輸出值的一個突然的跳躍甚至無法定義,則這個函數(shù)被稱為是不連續(xù)的函數(shù)(或者說具有不連續(xù)性).

高中數(shù)學(xué)知識點總結(jié)13

  若A1、A2、B1、B2都不為零。

  注意:若A2或B2中含有字母,應(yīng)注意討論字母=0與0的情況。

  兩條直線的交點:兩條直線的交點的個數(shù)取決于這兩條直線的方程組成的`方程組的解的個數(shù)。

  5.直線方程的五種形式

  確定直線方程需要有兩個互相**的條件,確定直線方程的形式很多,但必須注意各種形式的直線方程的適用范圍。

  直線的點斜式與斜截式不能表示斜率不存在(垂直于x軸)的直線;兩點式不能表示*行或重合兩坐標軸的直線;截距式不能表示*行或重合兩坐標軸的直線及過原點的直線。

  6.直線的交點坐標與距離公式

  (1)兩直線的交點坐標

  一般地,將兩條直線的方程聯(lián)立,得方程組

  若方程組有唯一解,則兩條直線相交,解即為交點的坐標;若方程組無解,則兩條直線無公共點,此時兩條直線*行。

  (2)兩點間距離

  兩點P1(x1,y1),P2(x2,y2)間的距離公式

  特別地:軸,則、軸,則

  (3)點到直線的距離公式

  點到直線的距離為:

  (4)兩*行線間的距離公式:

  若,則:

  注意點:x,y對應(yīng)項系數(shù)應(yīng)相等。

高中數(shù)學(xué)知識點總結(jié)14

  一、高中數(shù)列基本公式:

  1、一般數(shù)列的通項an與前n項和Sn的關(guān)系:an=

  2、等差數(shù)列的通項公式:an=a1+(n-1)d an=ak+(n-k)d (其中a1為首項、ak為已知的第k項) 當d≠0時,an是關(guān)于n的一次式;當d=0時,an是一個常數(shù)。

  3、等差數(shù)列的前n項和公式:Sn=

  Sn=

  Sn=

  當d≠0時,Sn是關(guān)于n的二次式且常數(shù)項為0;當d=0時(a1≠0),Sn=na1是關(guān)于n的正比例式。

  4、等比數(shù)列的'通項公式: an= a1qn-1an= akqn-k

  (其中a1為首項、ak為已知的第k項,an≠0)

  5、等比數(shù)列的前n項和公式:當q=1時,Sn=n a1 (是關(guān)于n的正比例式);

  當q≠1時,Sn=

  Sn=

  二、高中數(shù)學(xué)中有關(guān)等差、等比數(shù)列的結(jié)論

  1、等差數(shù)列{an}的任意連續(xù)m項的和構(gòu)成的數(shù)列Sm、S2m-Sm、S3m-S2m、S4m- S3m、……仍為等差數(shù)列。

  2、等差數(shù)列{an}中,若m+n=p+q,則

  3、等比數(shù)列{an}中,若m+n=p+q,則

  4、等比數(shù)列{an}的任意連續(xù)m項的和構(gòu)成的數(shù)列Sm、S2m-Sm、S3m-S2m、S4m- S3m、……仍為等比數(shù)列。

  5、兩個等差數(shù)列{an}與{bn}的和差的數(shù)列{an+bn}、{an-bn}仍為等差數(shù)列。

  6、兩個等比數(shù)列{an}與{bn}的積、商、倒數(shù)組成的數(shù)列仍為等比數(shù)列。

  7、等差數(shù)列{an}的任意等距離的項構(gòu)成的數(shù)列仍為等差數(shù)列。

  8、等比數(shù)列{an}的任意等距離的項構(gòu)成的數(shù)列仍為等比數(shù)列。

  9、三個數(shù)成等差數(shù)列的設(shè)法:a-d,a,a+d;四個數(shù)成等差的設(shè)法:a-3d,a-d,,a+d,a+3d

  10、三個數(shù)成等比數(shù)列的設(shè)法:a/q,a,aq;

  四個數(shù)成等比的錯誤設(shè)法:a/q3,a/q,aq,aq3 (為什么?)

高中數(shù)學(xué)知識點總結(jié)15

  等比數(shù)列公式性質(zhì)知識點

  1.等比數(shù)列的有關(guān)概念

  (1)定義:

  如果一個數(shù)列從第2項起,每一項與它的前一項的比等于同一個常數(shù)(不為零),那么這個數(shù)列就叫做等比數(shù)列.這個常數(shù)叫做等比數(shù)列的公比,通常用字母q表示,定義的表達式為an+1/an=q(n∈N_,q為非零常數(shù)).

  (2)等比中項:

  如果a、G、b成等比數(shù)列,那么G叫做a與b的等比中項.即:G是a與b的等比中項a,G,b成等比數(shù)列G2=ab.

  2.等比數(shù)列的有關(guān)公式

  (1)通項公式:an=a1qn-1.

  3.等比數(shù)列{an}的常用性質(zhì)

  (1)在等比數(shù)列{an}中,若m+n=p+q=2r(m,n,p,q,r∈N_),則am·an=ap·aq=a.

  特別地,a1an=a2an-1=a3an-2=….

  (2)在公比為q的等比數(shù)列{an}中,數(shù)列am,am+k,am+2k,am+3k,…仍是等比數(shù)列,公比為qk;數(shù)列Sm,S2m-Sm,S3m-S2m,…仍是等比數(shù)列(此時q≠-1);an=amqn-m.

  4.等比數(shù)列的特征

  (1)從等比數(shù)列的定義看,等比數(shù)列的任意項都是非零的',公比q也是非零常數(shù).

  (2)由an+1=qan,q≠0并不能立即斷言{an}為等比數(shù)列,還要驗證a1≠0.

  5.等比數(shù)列的前n項和Sn

  (1)等比數(shù)列的前n項和Sn是用錯位相減法求得的,注意這種思想方法在數(shù)列求和中的運用.

  (2)在運用等比數(shù)列的前n項和公式時,必須注意對q=1與q≠1分類討論,防止因忽略q=1這一特殊情形導(dǎo)致解題失誤.

  等比數(shù)列知識點

  1.等比中項

  如果在a與b中間插入一個數(shù)G,使a,G,b成等比數(shù)列,那么G叫做a與b的等比中項。

  有關(guān)系:

  注:兩個非零同號的實數(shù)的等比中項有兩個,它們互為相反數(shù),所以G2=ab是a,G,b三數(shù)成等比數(shù)列的必要不充分條件。

  2.等比數(shù)列通項公式

  an=a1_q’(n-1)(其中首項是a1,公比是q)

  an=Sn-S(n-1)(n≥2)

  前n項和

  當q≠1時,等比數(shù)列的前n項和的公式為

  Sn=a1(1-q’n)/(1-q)=(a1-a1_q’n)/(1-q)(q≠1)

  當q=1時,等比數(shù)列的前n項和的`公式為

  Sn=na1

  3.等比數(shù)列前n項和與通項的關(guān)系

  an=a1=s1(n=1)

  an=sn-s(n-1)(n≥2)

  4.等比數(shù)列性質(zhì)

  (1)若m、n、p、q∈N_,且m+n=p+q,則am·an=ap·aq;

  (2)在等比數(shù)列中,依次每k項之和仍成等比數(shù)列。

  (3)從等比數(shù)列的定義、通項公式、前n項和公式可以推出:a1·an=a2·an-1=a3·an-2=…=ak·an-k+1,k∈{1,2,…,n}

  (4)等比中項:q、r、p成等比數(shù)列,則aq·ap=ar2,ar則為ap,aq等比中項。

  記πn=a1·a2…an,則有π2n-1=(an)2n-1,π2n+1=(an+1)2n+1

  另外,一個各項均為正數(shù)的等比數(shù)列各項取同底指數(shù)冪后構(gòu)成一個等差數(shù)列;反之,以任一個正數(shù)C為底,用一個等差數(shù)列的各項做指數(shù)構(gòu)造冪Can,則是等比數(shù)列。在這個意義下,我們說:一個正項等比數(shù)列與等差數(shù)列是“同構(gòu)”的。

  (5)等比數(shù)列前n項之和Sn=a1(1-q’n)/(1-q)

  (6)任意兩項am,an的關(guān)系為an=am·q’(n-m)

  (7)在等比數(shù)列中,首項a1與公比q都不為零。

  注意:上述公式中a’n表示a的n次方。

  等比數(shù)列知識點總結(jié)

  等比數(shù)列:如果一個數(shù)列從第2項起,每一項與它的前一項的比等于同一個常數(shù),這個數(shù)列就叫做等比數(shù)列。這個常數(shù)叫做等比數(shù)列的公比,公比通常用字母q表示(q≠0)。

  1:等比數(shù)列通項公式:an=a1_q^(n-1);推廣式:an=am·q^(n-m);

  2:等比數(shù)列求和公式:等比求和:Sn=a1+a2+a3+.......+an

  ①當q≠1時,Sn=a1(1-q^n)/(1-q)或Sn=(a1-an×q)÷(1-q)

 、诋攓=1時,Sn=n×a1(q=1)記πn=a1·a2…an,則有π2n-1=(an)2n-1,π2n+1=(an+1)2n+1

  3:等比中項:aq·ap=ar^2,ar則為ap,aq等比中項。

  4:性質(zhì):

 、偃鬽、n、p、q∈N,且m+n=p+q,則am·an=ap_aq;

 、谠诘缺葦(shù)列中,依次每k項之和仍成等比數(shù)列.

  例題:設(shè)ak,al,am,an是等比數(shù)列中的第k、l、m、n項,若k+l=m+n,求證:ak_al=am_an

  證明:設(shè)等比數(shù)列的首項為a1,公比為q,則ak=a1·q^(k-1),al=a1·q^(l-1),am=a1·q^(m-1),an=a1·q^(n-1)

  所以:ak_al=a^2_q^(k+l-2),am_an=a^2_q(m+n-2),故:ak_al=am_an

  說明:這個例題是等比數(shù)列的一個重要性質(zhì),它在解題中常常會用到。它說明等比數(shù)列中距離兩端(首末兩項)距離等遠的兩項的乘積等于首末兩項的乘積,即:a(1+k)·a(n-k)=a1·an

  對于等差數(shù)列,同樣有:在等差數(shù)列中,距離兩端等這的兩項之和等于首末兩項之和。即:a(1+k)+a(n-k)=a1+an


高中數(shù)學(xué)復(fù)數(shù)知識點總結(jié) (菁選3篇)(擴展4)

——高中數(shù)學(xué)知識點總結(jié)10篇

高中數(shù)學(xué)知識點總結(jié)1

  考點一、映射的概念

  1.了解對應(yīng)大千世界的對應(yīng)共分四類,分別是:一對一多對一一對多多對多

  2.映射:設(shè)A和B是兩個非空集合,如果按照某種對應(yīng)關(guān)系f,對于集合A中的任意一個元素x,在集合B中都存在的一個元素y與之對應(yīng),那么,就稱對應(yīng)f:A→B為集合A到集合B的一個映射(mapping).映射是特殊的對應(yīng),簡稱“對一”的對應(yīng).包括:一對一多對一

  考點二、函數(shù)的概念

  1.函數(shù):設(shè)A和B是兩個非空的數(shù)集,如果按照某種確定的對應(yīng)關(guān)系f,對于集合A中的任意一個數(shù)x,在集合B中都存在確定的數(shù)y與之對應(yīng),那么,就稱對應(yīng)f:A→B為集合A到集合B的一個函數(shù).記作y=f(x),xA.其中x叫自變量,x的取值范圍A叫函數(shù)的定義域;與x的值相對應(yīng)的y的值函數(shù)值,函數(shù)值的集合叫做函數(shù)的值域.函數(shù)是特殊的映射,是非空數(shù)集A到非空數(shù)集B的映射.

  2.函數(shù)的三要素:定義域、值域、對應(yīng)關(guān)系.這是判斷兩個函數(shù)是否為同一函數(shù)的依據(jù).

  3.區(qū)間的概念:設(shè)a,bR,且a

 、伲╝,b)={xa

 、荩╝,+∞)={>a}⑥[a,+∞)={≥a}⑦(—∞,b)={

  考點三、函數(shù)的表示方法

  1.函數(shù)的三種表示方法列表法圖象法解析法

  2.分段函數(shù):定義域的不同部分,有不同的對應(yīng)法則的函數(shù).注意兩點:①分段函數(shù)是一個函數(shù),不要誤認為是幾個函數(shù).②分段函數(shù)的定義域是各段定義域的并集,值域是各段值域的并集.

  考點四、求定義域的幾種情況

  ①若f(x)是整式,則函數(shù)的定義域是實數(shù)集R;

 、谌鬴(x)是分式,則函數(shù)的定義域是使分母不等于0的實數(shù)集;

  ③若f(x)是二次根式,則函數(shù)的定義域是使根號內(nèi)的式子大于或等于0的實數(shù)集合;

 、苋鬴(x)是對數(shù)函數(shù),真數(shù)應(yīng)大于零.

  ⑤.因為零的零次冪沒有意義,所以底數(shù)和指數(shù)不能同時為零.

 、奕鬴(x)是由幾個部分的數(shù)學(xué)式子構(gòu)成的,則函數(shù)的定義域是使各部分式子都有意義的實數(shù)集合;

 、呷鬴(x)是由實際問題抽象出來的函數(shù),則函數(shù)的定義域應(yīng)符合實際問題

高中數(shù)學(xué)知識點總結(jié)2

  1.一些基本概念:

  (1)向量:既有大小,又有方向的量.

  (2)數(shù)量:只有大小,沒有方向的量.

  (3)有向線段的三要素:起點、方向、長度.

  (4)零向量:長度為0的向量.

  (5)單位向量:長度等于1個單位的向量.

  (6)*行向量(共線向量):方向相同或相反的非零向量.

  ※零向量與任一向量*行.

  (7)相等向量:長度相等且方向相同的向量.

  2.向量加法運算:

 、湃切畏▌t的特點:首尾相連.

 、*行四邊形法則的特點:共起點

高中數(shù)學(xué)知識點總結(jié)3

  一、*面的基本性質(zhì)與推論

  1、*面的基本性質(zhì):

  公理1如果一條直線的兩點在一個*面內(nèi),那么這條直線在這個*面內(nèi);

  公理2過不在一條直線上的三點,有且只有一個*面;

  公理3如果兩個不重合的*面有一個公共點,那么它們有且只有一條過該點的公共直線。

  2、空間點、直線、*面之間的位置關(guān)系:

  直線與直線—*行、相交、異面;

  直線與*面—*行、相交、直線屬于該*面(線在面內(nèi),最易忽視);

  *面與*面—*行、相交。

  3、異面直線:

  *面外一點A與*面一點B的連線和*面內(nèi)不經(jīng)過點B的直線是異面直線(判定);

  所成的角范圍(0,90)度(*移法,作*行線相交得到夾角或其補角);

  兩條直線不是異面直線,則兩條直線*行或相交(反證);

  異面直線不同在任何一個*面內(nèi)。

  求異面直線所成的角:*移法,把異面問題轉(zhuǎn)化為相交直線的夾角

  二、空間中的*行關(guān)系

  1、直線與*面*行(核心)

  定義:直線和*面沒有公共點

  判定:不在一個*面內(nèi)的一條直線和*面內(nèi)的一條直線*行,則該直線*行于此*面(由線線*行得出)

  性質(zhì):一條直線和一個*面*行,經(jīng)過這條直線的*面和這個*面相交,則這條直線就和兩*面的交線*行

  2、*面與*面*行

  定義:兩個*面沒有公共點

  判定:一個*面內(nèi)有兩條相交直線*行于另一個*面,則這兩個*面*行

  性質(zhì):兩個*面*行,則其中一個*面內(nèi)的直線*行于另一個*面;如果兩個*行*面同時與第三個*面相交,那么它們的交線*行。

  3、常利用三角形中位線、*行四邊形對邊、已知直線作一*面找其交線

  三、空間中的垂直關(guān)系

  1、直線與*面垂直

  定義:直線與*面內(nèi)任意一條直線都垂直

  判定:如果一條直線與一個*面內(nèi)的兩條相交的直線都垂直,則該直線與此*面垂直

  性質(zhì):垂直于同一直線的兩*面*行

  推論:如果在兩條*行直線中,有一條垂直于一個*面,那么另一條也垂直于這個*面

  直線和*面所成的角:【0,90】度,*面內(nèi)的一條斜線和它在*面內(nèi)的射影說成的銳角,特別規(guī)定垂直90度,在*面內(nèi)或者*行0度

  2、*面與*面垂直

  定義:兩個*面所成的二面角(從一條直線出發(fā)的兩個半*面所組成的圖形)是直二面角(二面角的*面角:以二面角的棱**一點為端點,在兩個半*面內(nèi)分別作垂直于棱的兩條射線所成的角)

  判定:一個*面過另一個*面的垂線,則這兩個*面垂直

  性質(zhì):兩個*面垂直,則一個*面內(nèi)垂直于交線的直線與另一個*面垂直

高中數(shù)學(xué)知識點總結(jié)4

  一、集合、簡易邏輯

  1、集合;

  2、子集;

  3、補集;

  4、交集;

  5、并集;

  6、邏輯連結(jié)詞;

  7、四種命題;

  8、充要條件。

  二、函數(shù)

  1、映射;

  2、函數(shù);

  3、函數(shù)的單調(diào)性;

  4、反函數(shù);

  5、互為反函數(shù)的函數(shù)圖象間的關(guān)系;

  6、指數(shù)概念的擴充;

  7、有理指數(shù)冪的運算;

  8、指數(shù)函數(shù);

  9、對數(shù);

  10、對數(shù)的運算性質(zhì);

  11、對數(shù)函數(shù)。

  12、函數(shù)的應(yīng)用舉例。

  三、數(shù)列(12課時,5個)

  1、數(shù)列;

  2、等差數(shù)列及其通項公式;

  3、等差數(shù)列前n項和公式;

  4、等比數(shù)列及其通頂公式;

  5、等比數(shù)列前n項和公式。

  四、三角函數(shù)

  1、角的概念的推廣;

  2、弧度制;

  3、任意角的三角函數(shù);

  4、單位圓中的三角函數(shù)線;

  5、同角三角函數(shù)的基本關(guān)系式;

  6、正弦、余弦的誘導(dǎo)公式;

  7、兩角和與差的正弦、余弦、正切;

  8、二倍角的正弦、余弦、正切;

  9、正弦函數(shù)、余弦函數(shù)的圖象和性質(zhì);

  10、周期函數(shù);

  11、函數(shù)的奇偶性;

  12、函數(shù)的圖象;

  13、正切函數(shù)的圖象和性質(zhì);

  14、已知三角函數(shù)值求角;

  15、正弦定理;

  16、余弦定理;

  17、斜三角形解法舉例。

  五、*面向量

  1、向量;

  2、向量的加法與減法;

  3、實數(shù)與向量的積;

  4、*面向量的坐標表示;

  5、線段的定比分點;

  6、*面向量的數(shù)量積;

  7、*面兩點間的距離;

  8、*移。

  六、不等式

  1、不等式;

  2、不等式的'基本性質(zhì);

  3、不等式的證明;

  4、不等式的解法;

  5、含絕對值的不等式。

  七、直線和圓的方程

  1、直線的傾斜角和斜率;

  2、直線方程的點斜式和兩點式;

  3、直線方程的一般式;

  4、兩條直線*行與垂直的條件;

  5、兩條直線的交角;

  6、點到直線的距離;

  7、用二元一次不等式表示*面區(qū)域;

  8、簡單線性規(guī)劃問題;

  9、曲線與方程的概念;

  10、由已知條件列出曲線方程;

  11、圓的標準方程和一般方程;

  12、圓的參數(shù)方程。

  八、圓錐曲線

  1、橢圓及其標準方程;

  2、橢圓的簡單幾何性質(zhì);

  3、橢圓的參數(shù)方程;

  4、雙曲線及其標準方程;

  5、雙曲線的簡單幾何性質(zhì);

  6、拋物線及其標準方程;

  7、拋物線的簡單幾何性質(zhì)。

  九、直線、*面、簡單何體

  1、*面及基本性質(zhì);

  2、*面圖形直觀圖的畫法;

  3、*面直線;

  4、直線和*面*行的判定與性質(zhì);

  5、直線和*面垂直的判定與性質(zhì);

  6、三垂線定理及其逆定理;

  7、兩個*面的位置關(guān)系;

  8、空間向量及其加法、減法與數(shù)乘;

  9、空間向量的坐標表示;

  10、空間向量的數(shù)量積;

  11、直線的方向向量;

  12、異面直線所成的角;

  13、異面直線的公垂線;

  14、異面直線的距離;

  15、直線和*面垂直的性質(zhì);

  16、*面的法向量;

  17、點到*面的距離;

  18、直線和*面所成的角;

  19、向量在*面內(nèi)的射影;

  20、*面與*面*行的性質(zhì);

  21、*行*面間的距離;

  22、二面角及其*面角;

  23、兩個*面垂直的判定和性質(zhì);

  24、多面體;

  25、棱柱;

  26、棱錐;

  27、正多面體;

  28、球。

  十、排列、組合、二項式定理

  1、分類計數(shù)原理與分步計數(shù)原理;

  2、排列;

  3、排列數(shù)公式;

  4、組合;

  5、組合數(shù)公式;

  6、組合數(shù)的兩個性質(zhì);

  7、二項式定理;

  8、二項展開式的性質(zhì)。

  十一、概率

  1、隨機事件的概率;

  2、等可能事件的概率;

  3、互斥事件有一個發(fā)生的概率;

  4、相互**事件同時發(fā)生的概率;

  5、**重復(fù)試驗。

  必修一函數(shù)重點知識整理

  1、函數(shù)的奇偶性

 。1)若f(x)是偶函數(shù),那么f(x)=f(—x);

  (2)若f(x)是奇函數(shù),0在其定義域內(nèi),則f(0)=0(可用于求參數(shù));

 。3)判斷函數(shù)奇偶性可用定義的等價形式:f(x)±f(—x)=0或(f(x)≠0);

  (4)若所給函數(shù)的解析式較為復(fù)雜,應(yīng)先化簡,再判斷其奇偶性;

  (5)奇函數(shù)在對稱的單調(diào)區(qū)間內(nèi)有相同的單調(diào)性;偶函數(shù)在對稱的單調(diào)區(qū)間內(nèi)有相反的單調(diào)性;

  2、復(fù)合函數(shù)的有關(guān)問題

 。1)復(fù)合函數(shù)定義域求法:若已知的定義域為[a,b],其復(fù)合函數(shù)f[g(x)]的定義域由不等式a≤g(x)≤b解出即可;若已知f[g(x)]的定義域為[a,b],求f(x)的定義域,相當于x∈[a,b]時,求g(x)的值域(即f(x)的定義域);研究函數(shù)的問題一定要注意定義域優(yōu)先的原則。

 。2)復(fù)合函數(shù)的單調(diào)性由“同增異減”判定;

  3、函數(shù)圖像(或方程曲線的對稱性)

 。1)證明函數(shù)圖像的對稱性,即證明圖像**意點關(guān)于對稱中心(對稱軸)的對稱點仍在圖像上;

 。2)證明圖像C1與C2的對稱性,即證明C1**意點關(guān)于對稱中心(對稱軸)的對稱點仍在C2上,反之亦然;

 。3)曲線C1:f(x,y)=0,關(guān)于y=x+a(y=—x+a)的對稱曲線C2的方程為f(y—a,x+a)=0(或f(—y+a,—x+a)=0);

 。4)曲線C1:f(x,y)=0關(guān)于點(a,b)的對稱曲線C2方程為:f(2a—x,2b—y)=0;

  (5)若函數(shù)y=f(x)對x∈R時,f(a+x)=f(a—x)恒成立,則y=f(x)圖像關(guān)于直線x=a對稱;

 。6)函數(shù)y=f(x—a)與y=f(b—x)的圖像關(guān)于直線x=對稱;

  4、函數(shù)的周期性

 。1)y=f(x)對x∈R時,f(x +a)=f(x—a)或f(x—2a)=f(x)(a>0)恒成立,則y=f(x)是周期為2a的周期函數(shù);

  (2)若y=f(x)是偶函數(shù),其圖像又關(guān)于直線x=a對稱,則f(x)是周期為2︱a︱的周期函數(shù);

  (3)若y=f(x)奇函數(shù),其圖像又關(guān)于直線x=a對稱,則f(x)是周期為4︱a︱的周期函數(shù);

 。4)若y=f(x)關(guān)于點(a,0),(b,0)對稱,則f(x)是周期為2的周期函數(shù);

 。5)y=f(x)的圖象關(guān)于直線x=a,x=b(a≠b)對稱,則函數(shù)y=f(x)是周期為2的周期函數(shù);

 。6)y=f(x)對x∈R時,f(x+a)=—f(x)(或f(x+a)=,則y=f(x)是周期為2的周期函數(shù);

  5、方程k=f(x)有解k∈D(D為f(x)的值域);

  6、a≥f(x)恒成立a≥[f(x)]max,;a≤f(x)恒成立a≤[f(x)]min;

  7、(1)(a>0,a≠1,b>0,n∈R+);

 。2)l og a N=(a>0,a≠1,b>0,b≠1);

  (3)l og a b的符號由口訣“同正異負”記憶;

  (4)a log a N= N(a>0,a≠1,N>0);

  8、判斷對應(yīng)是否為映射時,抓住兩點:

 。1)A中元素必須都有象且唯一;

 。2)B中元素不一定都有原象,并且A中不同元素在B中可以有相同的象;

  9、能熟練地用定義證明函數(shù)的單調(diào)性,求反函數(shù),判斷函數(shù)的奇偶性。

  10、對于反函數(shù),應(yīng)掌握以下一些結(jié)論:

 。1)定義域上的單調(diào)函數(shù)必有反函數(shù);

  (2)奇函數(shù)的反函數(shù)也是奇函數(shù);

 。3)定義域為非單元素集的偶函數(shù)不存在反函數(shù);

 。4)周期函數(shù)不存在反函數(shù);

  (5)互為反函數(shù)的兩個函數(shù)具有相同的單調(diào)性;

  (6)y=f(x)與y=f—1(x)互為反函數(shù),設(shè)f(x)的定義域為A,值域為B,則有f[f——1(x)]=x(x∈B),f——1[f(x)]=x(x∈A)。

  11、處理二次函數(shù)的問題勿忘數(shù)形結(jié)合;二次函數(shù)在閉區(qū)間上必有最值,求最值問題用“兩看法”:一看開口方向;二看對稱軸與所給區(qū)間的相對位置關(guān)系;

  12、依據(jù)單調(diào)性,利用一次函數(shù)在區(qū)間上的保號性可解決求一類參數(shù)的范圍問題

  13、恒成立問題的處理方法:

  (1)分離參數(shù)法;

  (2)轉(zhuǎn)化為一元二次方程的根的分布列不等式(組)求解。

  拓展閱讀:高中數(shù)學(xué)復(fù)習(xí)方法

  1、把答案蓋住看例題

  例題不能帶著答案去看,不然會認為自己就是這么,其實自己并沒有理解透徹。

  所以,在看例題時,把解答蓋住,自己去做,做完或做不出時再去看。這時要想一想,自己做的哪里與解答不同,哪里沒想到,該注意什么,哪一種方法更好,還有沒有另外的解法。

  經(jīng)過上面的訓(xùn)練,自己的思維空間擴展了,看問題也全面了。如果把題目徹底搞清了,在題后精煉幾個批注,說明此題的“題眼”及巧妙之處,收獲會更大。

  2、研究每題都考什么

  數(shù)學(xué)能力的提高離不開做題,“熟能生巧”這個簡單的道理大家都懂。但做題不是搞題海戰(zhàn)術(shù),而是要通過一題聯(lián)想到很多題。

  3、錯一次反思一次

  每次業(yè)及考試或多或少會發(fā)生些錯誤,這并不可怕,要緊的是避免類似的錯誤再次重現(xiàn)。因此*時注意把錯題記下來。

  學(xué)生若能將每次考試或練習(xí)中出現(xiàn)的錯誤記錄下來分析,并盡力保證在下次考試時不發(fā)生同樣錯誤,那么以后人生中最重要的高考也就能避免犯錯了。

  4、分析試卷總結(jié)經(jīng)驗

  每次考試結(jié)束試卷發(fā)下來,要認真分析得失,總結(jié)經(jīng)驗教訓(xùn)。特別是將試卷中出現(xiàn)的錯誤進行分類。

高中數(shù)學(xué)知識點總結(jié)5

  一、直線與方程高考考試內(nèi)容及考試要求:

  考試內(nèi)容:

  1.直線的傾斜角和斜率;直線方程的點斜式和兩點式;直線方程的一般式;

  2.兩條直線*行與垂直的條件;兩條直線的交角;點到直線的距離;

  考試要求:

  1.理解直線的傾斜角和斜率的概念,掌握過兩點的直線的斜率公式,掌握直線方程的點斜式、兩點式、一般式,并能根據(jù)條件熟練地求出直線方程;

  2.掌握兩條直線*行與垂直的條件,兩條直線所成的角和點到直線的距離公式能夠根據(jù)直線的方程判斷兩條直線的位置關(guān)系;

  二、直線與方程

  課標要求:

  1.在*面直角坐標系中,結(jié)合具體圖形,探索確定直線位置的幾何要素;

  2.理解直線的傾斜角和斜率的概念,經(jīng)歷用代數(shù)方法刻畫直線斜率的過程,掌握過兩點的直線斜率的計算公式;

  3.根據(jù)確定直線位置的幾何要素,探索并掌握直線方程的幾種形式(點斜式、兩點式及一般式),體會斜截式與一次函數(shù)的關(guān)系;

  4.會用代數(shù)的方法解決直線的有關(guān)問題,包括求兩直線的交點,判斷兩條直線的位置關(guān)系,求兩點間的距離、點到直線的距離以及兩條*行線之間的距離等。

  要點精講:

  1.直線的傾斜角:當直線l與x軸相交時,取x軸作為基準,x軸正向與直線l向上方向之間所成的角α叫做直線l的傾斜角。特別地,當直線l與x軸*行或重合時,規(guī)定α= 0°.

  傾斜角α的取值范圍:0°≤α<180°. 當直線l與x軸垂直時, α= 90°.

  2.直線的斜率:一條直線的傾斜角α(α≠90°)的正切值叫做這條直線的斜率,斜率常用小寫字母k表示,也就是k = tanα

 。1)當直線l與x軸*行或重合時,α=0°,k = tan0°=0;

 。2)當直線l與x軸垂直時,α= 90°,k 不存在。

  由此可知,一條直線l的傾斜角α一定存在,但是斜率k不一定存在。

  3.過兩點p1(x1,y1),p2(x2,y2)(x1≠x2)的直線的斜率公式:

 。ㄈ魓1=x2,則直線p1p2的斜率不存在,此時直線的傾斜角為90°)。

  4.兩條直線的*行與垂直的判定

  (1)若l1,l2均存在斜率且不重合:

 、;②

  注: 上面的等價是在兩條直線不重合且斜率存在的前提下才成立的,缺少這個前提,結(jié)論并不成立。

 。2)

  若A1、A2、B1、B2都不為零。

  注意:若A2或B2中含有字母,應(yīng)注意討論字母=0與0的情況。

  兩條直線的交點:兩條直線的交點的個數(shù)取決于這兩條直線的方程組成的方程組的解的個數(shù)。

  5.直線方程的五種形式

  確定直線方程需要有兩個互相**的條件,確定直線方程的形式很多,但必須注意各種形式的直線方程的適用范圍。

  直線的點斜式與斜截式不能表示斜率不存在(垂直于x 軸)的直線;兩點式不能表示*行或重合兩坐標軸的直線;截距式不能表示*行或重合兩坐標軸的直線及過原點的直線。

  6.直線的交點坐標與距離公式

 。1)兩直線的交點坐標

  一般地,將兩條直線的方程聯(lián)立,得方程組

  若方程組有唯一解,則兩條直線相交,解即為交點的坐標;若方程組無解,則兩條直線無公共點,此時兩條直線*行。

 。2)兩點間距離

  兩點P1(x1,y1),P2(x2,y2)間的距離公式

  特別地:軸,則、軸,則

 。3)點到直線的距離公式

  點到直線的距離為:

 。4)兩*行線間的距離公式:

  若,則:

  注意點:x,y對應(yīng)項系數(shù)應(yīng)相等。

高中數(shù)學(xué)知識點總結(jié)6

  集合的分類:

 。1)按元素屬性分類,如點集,數(shù)集。

  (2)按元素的個數(shù)多少,分為有/無限集

  關(guān)于集合的概念:

 。1)確定性:作為一個集合的元素,必須是確定的,這就是說,不能確定的對象就不能構(gòu)成集合,也就是說,給定一個集合,任何一個對象是不是這個集合的元素也就確定了。

 。2)互異性:對于一個給定的集合,集合中的元素一定是不同的(或說是互異的),這就是說,集合中的任何兩個元素都是不同的對象,相同的對象歸入同一個集合時只能算作集合的一個元素。

 。3)無序性:判斷一些對象時候構(gòu)成集合,關(guān)鍵在于看這些對象是否有明確的標準。

  集合可以根據(jù)它含有的元素的個數(shù)分為兩類:

  含有有限個元素的集合叫做有限集,含有無限個元素的集合叫做無限集。

  非負整數(shù)全體構(gòu)成的集合,叫做自然數(shù)集,記作N。

  在自然數(shù)集內(nèi)排除0的集合叫做正整數(shù)集,記作N+或NX。

  整數(shù)全體構(gòu)成的集合,叫做整數(shù)集,記作Z。

  有理數(shù)全體構(gòu)成的集合,叫做有理數(shù)集,記作Q。(有理數(shù)是整數(shù)和分數(shù)的統(tǒng)稱,一切有理數(shù)都可以化成分數(shù)的形式。)

  實數(shù)全體構(gòu)成的集合,叫做實數(shù)集,記作R。(包括有理數(shù)和無理數(shù)。其中無理數(shù)就是無限不循環(huán)小數(shù),有理數(shù)就包括整數(shù)和分數(shù)。數(shù)學(xué)上,實數(shù)直觀地定義為和數(shù)軸上的點一一對應(yīng)的數(shù)。)

  1、列舉法:如果一個集合是有限集,元素又不太多,常常把集合的所有元素都列舉出來,寫在花括號“{}”內(nèi)表示這個集合,例如,由兩個元素0,1構(gòu)成的集合可表示為{0,1}。

  有些集合的元素較多,元素的排列又呈現(xiàn)一定的規(guī)律,在不致于發(fā)生誤解的情況下,也可以列出幾個元素作為**,其他元素用省略號表示。

  例如:不大于100的自然數(shù)的全體構(gòu)成的集合,可表示為{0,1,2,3,…,100}。

  無限集有時也用上述的列舉法表示,例如,自然數(shù)集N可表示為{1,2,3,…,n,…}。

  2、描述法:一種更有效地描述集合的方法,是用集合中元素的特征性質(zhì)來描述。

  例如:正偶數(shù)構(gòu)成的集合,它的每一個元素都具有性質(zhì):“能被2整除,且大于0”

  而這個集合外的其他元素都不具有這種性質(zhì),因此,我們可以用上述性質(zhì)把正偶數(shù)集合表示為{x∈R│x能被2整除,且大于0}或{x∈R│x=2n,n∈N+},大括號內(nèi)豎線左邊的X表示這個集合的任意一個元素,元素X從實數(shù)集合中取值,在豎線右邊寫出只有集合內(nèi)的元素x才具有的性質(zhì)。

  一般地,如果在集合I中,屬于集合A的任意一個元素x都具有性質(zhì)p(x),而不屬于集合A的元素都不具有的性質(zhì)p(x),則性質(zhì)p(x)叫做集合A的一個特征性質(zhì)。于是,集合A可以用它的性質(zhì)p(x)描述為{x∈I│p(x)}它表示集合A是由集合I中具有性質(zhì)p(x)的所有元素構(gòu)成的,這種表示集合的方法,叫做特征性質(zhì)描述法,簡稱描述法。

  例如:集合A={x∈R│x2—1=0}的特征是X2—1=0

高中數(shù)學(xué)知識點總結(jié)7

  1、命題的四種形式及其相互關(guān)系是什么?

 。ɑ槟娣耜P(guān)系的命題是等價命題。)

  原命題與逆否命題同真、同假;逆命題與否命題同真同假。

  2、對映射的概念了解嗎?映射f:A→B,是否注意到A中元素的任意性和B中與之對應(yīng)元素的唯一性,哪幾種對應(yīng)能構(gòu)成映射?

 。ㄒ粚σ,多對一,允許B中有元素無原象。)

  3、函數(shù)的三要素是什么?如何比較兩個函數(shù)是否相同?

 。ǘx域、對應(yīng)法則、值域)

  4、反函數(shù)存在的條件是什么?

  (一一對應(yīng)函數(shù))

  求反函數(shù)的步驟掌握了嗎?

  (①反解x;②互換x、y;③注明定義域)

  5、反函數(shù)的性質(zhì)有哪些?

 、倩榉春瘮(shù)的圖象關(guān)于直線y=x對稱;

 、诒4媪嗽瓉砗瘮(shù)的單調(diào)性、奇函數(shù)性;

  6、函數(shù)f(x)具有奇偶性的必要(非充分)條件是什么?

 。╢(x)定義域關(guān)于原點對稱)

高中數(shù)學(xué)知識點總結(jié)8

  考點一:集合與簡易邏輯

  集合部分一般以選擇題出現(xiàn),屬容易題。重點考查集合間關(guān)系的理解和認識。**的試題加強了對集合計算化簡能力的考查,并向無限集發(fā)展,考查抽象思維能力。在解決這些問題時,要注意利用幾何的直觀性,并注重集合表示方法的轉(zhuǎn)換與化簡。簡易邏輯考查有兩種形式:一是在選擇題和填空題中直接考查命題及其關(guān)系、邏輯聯(lián)結(jié)詞、“充要關(guān)系”、命題真?zhèn)蔚呐袛唷⑷Q命題和特稱命題的否定等,二是在解答題中深層次考查常用邏輯用語表達數(shù)學(xué)解題過程和邏輯推理。

  考點二:函數(shù)與導(dǎo)數(shù)

  函數(shù)是高考的重點內(nèi)容,以選擇題和填空題的為載體針對性考查函數(shù)的定義域與值域、函數(shù)的性質(zhì)、函數(shù)與方程、基本初等函數(shù)(一次和二次函數(shù)、指數(shù)、對數(shù)、冪函數(shù))的應(yīng)用等,分值約為10分,解答題與導(dǎo)數(shù)交匯在一起考查函數(shù)的性質(zhì)。導(dǎo)數(shù)部分一方面考查導(dǎo)數(shù)的運算與導(dǎo)數(shù)的幾何意義,另一方面考查導(dǎo)數(shù)的簡單應(yīng)用,如求函數(shù)的單調(diào)區(qū)間、極值與最值等,通常以客觀題的形式出現(xiàn),屬于容易題和中檔題,三是導(dǎo)數(shù)的綜合應(yīng)用,主要是和函數(shù)、不等式、方程等聯(lián)系在一起以解答題的形式出現(xiàn),如一些不等式恒成立問題、參數(shù)的取值范圍問題、方程根的個數(shù)問題、不等式的證明等問題。

  考點三:三角函數(shù)與*面向量

  一般是2道小題,1道綜合解答題。小題一道考查*面向量有關(guān)概念及運算等,另一道對三角知識點的補充。大題中如果沒有涉及正弦定理、余弦定理的應(yīng)用,可能就是一道和解答題相互補充的三角函數(shù)的圖像、性質(zhì)或三角恒等變換的題目,也可能是考查*面向量為主的試題,要注意數(shù)形結(jié)合思想在解題中的應(yīng)用。向量重點考查*面向量數(shù)量積的概念及應(yīng)用,向量與直線、圓錐曲線、數(shù)列、不等式、三角函數(shù)等結(jié)合,解決角度、垂直、共線等問題是“新熱點”題型。

  考點四:數(shù)列與不等式

  不等式主要考查一元二次不等式的解法、一元二次不等式組和簡單線性規(guī)劃問題、基本不等式的應(yīng)用等,通常會在小題中設(shè)置1到2道題。對不等式的工具性穿插在數(shù)列、解析幾何、函數(shù)導(dǎo)數(shù)等解答題中進行考查.在選擇、填空題中考查等差或等比數(shù)列的概念、性質(zhì)、通項公式、求和公式等的靈活應(yīng)用,一道解答題大多凸顯以數(shù)列知識為工具,綜合運用函數(shù)、方程、不等式等解決問題的能力,它們都屬于中、高檔題目。

  考點五:立體幾何與空間向量

  一是考查空間幾何體的結(jié)構(gòu)特征、直觀圖與三視圖;二是考查空間點、線、面之間的位置關(guān)系;三是考查利用空間向量解決立體幾何問題:利用空間向量證明線面*行與垂直、求空間角等(文科不要求).在高考試卷中,一般有1~2個客觀題和一個解答題,多為中檔題。

  考點六:解析幾何

  一般有1~2個客觀題和1個解答題,其中客觀題主要考查直線斜率、直線方程、圓的方程、直線與圓的位置關(guān)系、圓錐曲線的定義應(yīng)用、標準方程的求解、離心率的計算等,解答題則主要考查直線與橢圓、拋物線等的位置關(guān)系問題,經(jīng)常與*面向量、函數(shù)與不等式交匯,考查一些存在性問題、證明問題、定點與定值、最值與范圍問題等。

  考點七:算法復(fù)數(shù)推理與證明

  高考對算法的考查以選擇題或填空題的形式出現(xiàn),或給解答題披層“外衣”.考查的熱點是流程圖的識別與算法語言的閱讀理解.算法與數(shù)列知識的網(wǎng)絡(luò)交匯命題是考查的主流.復(fù)數(shù)考查的重點是復(fù)數(shù)的有關(guān)概念、復(fù)數(shù)的代數(shù)形式、運算及運算的幾何意義,一般是選擇題、填空題,難度不大.推理證明部分命題的方向主要會在函數(shù)、三角、數(shù)列、立體幾何、解析幾何等方面,單獨出題的可能性較小。對于理科,數(shù)學(xué)歸納法可能作為解答題的一小問。

高中數(shù)學(xué)知識點總結(jié)9

  一、求動點的軌跡方程的基本步驟

 、苯⑦m當?shù)淖鴺讼,設(shè)出動點M的坐標;

  ⒉寫出點M的集合;

 、沉谐龇匠=0;

  ⒋化簡方程為最簡形式;

 、禉z驗。

  二、求動點的軌跡方程的常用方法:求軌跡方程的方法有多種,常用的有直譯法、定義法、相關(guān)點法、參數(shù)法和交軌法等。

 、敝弊g法:直接將條件翻譯成等式,整理化簡后即得動點的軌跡方程,這種求軌跡方程的方法通常叫做直譯法。

 、捕x法:如果能夠確定動點的軌跡滿足某種已知曲線的定義,則可利用曲線的定義寫出方程,這種求軌跡方程的方法叫做定義法。

 、诚嚓P(guān)點法:用動點Q的坐標x,y表示相關(guān)點P的坐標x0、y0,然后代入點P的坐標(x0,y0)所滿足的曲線方程,整理化簡便得到動點Q軌跡方程,這種求軌跡方程的方法叫做相關(guān)點法。

 、磪(shù)法:當動點坐標x、y之間的'直接關(guān)系難以找到時,往往先尋找x、y與某一變數(shù)t的關(guān)系,得再消去參變數(shù)t,得到方程,即為動點的軌跡方程,這種求軌跡方程的方法叫做參數(shù)法。

  ⒌交軌法:將兩動曲線方程中的參數(shù)消去,得到不含參數(shù)的方程,即為兩動曲線交點的軌跡方程,這種求軌跡方程的方法叫做交軌法。

  -直譯法:求動點軌跡方程的一般步驟

 、俳ㄏ怠⑦m當?shù)淖鴺讼?

  ②設(shè)點——設(shè)軌跡上的任一點P(x,y);

 、哿惺健谐鰟狱cp所滿足的關(guān)系式;

 、艽鷵Q——依條件的特點,選用距離公式、斜率公式等將其轉(zhuǎn)化為關(guān)于X,Y的方程式,并化簡;

 、葑C明——證明所求方程即為符合條件的動點軌跡方程。

高中數(shù)學(xué)知識點總結(jié)10

  一、直線與方程高考考試內(nèi)容及考試要求:

  考試內(nèi)容:

  1.直線的傾斜角和斜率;直線方程的點斜式和兩點式;直線方程的一般式;

  2.兩條直線*行與垂直的條件;兩條直線的交角;點到直線的距離;

  考試要求:

  1.理解直線的傾斜角和斜率的概念,掌握過兩點的直線的斜率公式,掌握直線方程的點斜式、兩點式、一般式,并能根據(jù)條件熟練地求出直線方程;

  2.掌握兩條直線*行與垂直的條件,兩條直線所成的角和點到直線的距離公式能夠根據(jù)直線的方程判斷兩條直線的位置關(guān)系;

  二、直線與方程

  課標要求:

  1.在*面直角坐標系中,結(jié)合具體圖形,探索確定直線位置的幾何要素;

  2.理解直線的傾斜角和斜率的概念,經(jīng)歷用代數(shù)方法刻畫直線斜率的過程,掌握過兩點的直線斜率的計算公式;

  3.根據(jù)確定直線位置的幾何要素,探索并掌握直線方程的幾種形式(點斜式、兩點式及一般式),體會斜截式與一次函數(shù)的關(guān)系;

  4.會用代數(shù)的方法解決直線的有關(guān)問題,包括求兩直線的交點,判斷兩條直線的位置關(guān)系,求兩點間的距離、點到直線的距離以及兩條*行線之間的距離等。

  要點精講:

  1.直線的傾斜角:當直線l與x軸相交時,取x軸作為基準,x軸正向與直線l向上方向之間所成的角α叫做直線l的傾斜角。特別地,當直線l與x軸*行或重合時,規(guī)定α= 0°.

  傾斜角α的取值范圍:0°≤α<180°. 當直線l與x軸垂直時, α= 90°.

  2.直線的斜率:一條直線的傾斜角α(α≠90°)的正切值叫做這條直線的斜率,斜率常用小寫字母k表示,也就是k = tanα

 。1)當直線l與x軸*行或重合時,α=0°,k = tan0°=0;

  (2)當直線l與x軸垂直時,α= 90°,k 不存在。

  由此可知,一條直線l的傾斜角α一定存在,但是斜率k不一定存在。

  3.過兩點p1(x1,y1),p2(x2,y2)(x1≠x2)的直線的斜率公式:

 。ㄈ魓1=x2,則直線p1p2的斜率不存在,此時直線的傾斜角為90°)。

  4.兩條直線的*行與垂直的判定

  (1)若l1,l2均存在斜率且不重合:

 、;②

  注: 上面的等價是在兩條直線不重合且斜率存在的前提下才成立的,缺少這個前提,結(jié)論并不成立。

 。2)

  若A1、A2、B1、B2都不為零。

  注意:若A2或B2中含有字母,應(yīng)注意討論字母=0與0的情況。

  兩條直線的交點:兩條直線的交點的個數(shù)取決于這兩條直線的方程組成的方程組的解的個數(shù)。

  5.直線方程的五種形式

  確定直線方程需要有兩個互相**的條件,確定直線方程的形式很多,但必須注意各種形式的直線方程的適用范圍。

  直線的點斜式與斜截式不能表示斜率不存在(垂直于x 軸)的直線;兩點式不能表示*行或重合兩坐標軸的直線;截距式不能表示*行或重合兩坐標軸的直線及過原點的直線。

  6.直線的交點坐標與距離公式

 。1)兩直線的交點坐標

  一般地,將兩條直線的方程聯(lián)立,得方程組

  若方程組有唯一解,則兩條直線相交,解即為交點的坐標;若方程組無解,則兩條直線無公共點,此時兩條直線*行。

  (2)兩點間距離

  兩點P1(x1,y1),P2(x2,y2)間的距離公式

  特別地:軸,則、軸,則

  (3)點到直線的距離公式

  點到直線的距離為:

 。4)兩*行線間的距離公式:

  若,則:

  注意點:x,y對應(yīng)項系數(shù)應(yīng)相等。


高中數(shù)學(xué)復(fù)數(shù)知識點總結(jié) (菁選3篇)(擴展5)

——高中數(shù)學(xué)基本知識點總結(jié)3篇

高中數(shù)學(xué)基本知識點總結(jié)1

  空間兩條直線只有三種位置關(guān)系:*行、相交、異面。

  按是否共面可分為兩類:

  (1)共面:*行、相交

  (2)異面:

  異面直線的定義:不同在任何一個*面內(nèi)的兩條直線或既不*行也不相交。

  異面直線判定定理:用*面內(nèi)一點與*面外一點的直線,與*面內(nèi)不經(jīng)過該點的直線是異面直線。

  兩異面直線所成的角:范圍為(0°,90°)esp?臻g向量法。

  兩異面直線間距離:公垂線段(有且只有一條)esp。空間向量法。

  若從有無公共點的角度看可分為兩類:

 。1)有且僅有一個公共點——相交直線;(2)沒有公共點——*行或異面。

  直線和*面的位置關(guān)系:

  直線和*面只有三種位置關(guān)系:在*面內(nèi)、與*面相交、與*面*行。

  ①直線在*面內(nèi)——有無數(shù)個公共點

 、谥本和*面相交——有且只有一個公共點

  直線與*面所成的角:*面的一條斜線和它在這個*面內(nèi)的射影所成的銳角。

  空間向量法(找*面的法向量)

  規(guī)定:a、直線與*面垂直時,所成的角為直角;b、直線與*面*行或在*面內(nèi),所成的角為0°角。

  由此得直線和*面所成角的取值范圍為[0°,90°]。

  最小角定理:斜線與*面所成的角是斜線與該*面內(nèi)任一條直線所成角中的最小角。

  三垂線定理及逆定理:如果*面內(nèi)的一條直線,與這個*面的一條斜線的射影垂直,那么它也與這條斜線垂直。

  直線和*面垂直

  直線和*面垂直的定義:如果一條直線a和一個*面內(nèi)的任意一條直線都垂直,我們就說直線a和*面互相垂直。直線a叫做*面的垂線,*面叫做直線a的垂面。

  直線與*面垂直的判定定理:如果一條直線和一個*面內(nèi)的兩條相交直線都垂直,那么這條直線垂直于這個*面。

  直線與*面垂直的性質(zhì)定理:如果兩條直線同垂直于一個*面,那么這兩條直線*行。直線和*面*行——沒有公共點

  直線和*面*行的定義:如果一條直線和一個*面沒有公共點,那么我們就說這條直線和這個*面*行。

  直線和*面*行的判定定理:如果*面外一條直線和這個*面內(nèi)的一條直線*行,那么這條直線和這個*面*行。

  直線和*面*行的性質(zhì)定理:如果一條直線和一個*面*行,經(jīng)過這條直線的*面和這個*面相交,那么這條直線和交線*行。

高中數(shù)學(xué)基本知識點總結(jié)2

  空間兩條直線只有三種位置關(guān)系:*行、相交、異面

  按是否共面可分為兩類:

  (1)共面:*行、相交

  (2)異面:

  異面直線的定義:不同在任何一個*面內(nèi)的兩條直線或既不*行也不相交。

  異面直線判定定理:用*面內(nèi)一點與*面外一點的直線,與*面內(nèi)不經(jīng)過該點的直線是異面直線。

  兩異面直線所成的角:范圍為(0°,90°)esp.空間向量法

  兩異面直線間距離:公垂線段(有且只有一條)esp.空間向量法

  若從有無公共點的角度看可分為兩類:

  (1)有且僅有一個公共點——相交直線;

  (2)沒有公共點——*行或異面

  直線和*面的位置關(guān)系:

  直線和*面只有三種位置關(guān)系:在*面內(nèi)、與*面相交、與*面*行

 、僦本在*面內(nèi)——有無數(shù)個公共點

 、谥本和*面相交——有且只有一個公共點

  直線與*面所成的角:*面的一條斜線和它在這個*面內(nèi)的射影所成的銳角。

  空間向量法(找*面的法向量)

  規(guī)定:

  a、直線與*面垂直時,所成的角為直角,

  b、直線與*面*行或在*面內(nèi),所成的角為0°角

  由此得直線和*面所成角的取值范圍為[0°,90°]

  最小角定理:斜線與*面所成的角是斜線與該*面內(nèi)任一條直線所成角中的最小角

  三垂線定理及逆定理:如果*面內(nèi)的一條直線,與這個*面的一條斜線的射影垂直,那么它也與這條斜線垂直

  直線和*面垂直

  直線和*面垂直的定義:如果一條直線a和一個*面內(nèi)的任意一條直線都垂直,我們就說直線a和*面互相垂直.直線a叫做*面的垂線,*面叫做直線a的垂面。

  直線與*面垂直的判定定理:如果一條直線和一個*面內(nèi)的兩條相交直線都垂直,那么這條直線垂直于這個*面。

  直線與*面垂直的性質(zhì)定理:如果兩條直線同垂直于一個*面,那么這兩條直線*行。③直線和*面*行——沒有公共點

  直線和*面*行的定義:如果一條直線和一個*面沒有公共點,那么我們就說這條直線和這個*面*行。

  直線和*面*行的判定定理:如果*面外一條直線和這個*面內(nèi)的一條直線*行,那么這條直線和這個*面*行。

  直線和*面*行的性質(zhì)定理:如果一條直線和一個*面*行,經(jīng)過這條直線的*面和這個*面相交,那么這條直線和交線*行。

高中數(shù)學(xué)基本知識點總結(jié)3

  一、集合有關(guān)概念

  1、集合的含義:某些指定的對象集在一起就成為一個集合,其中每一個對象叫元素。

  2、集合的中元素的三個特性:

  1.元素的確定性;

  2.元素的互異性;

  3.元素的無序性

  說明:(1)對于一個給定的集合,集合中的`元素是確定的,任何一個對象或者是或者不是這個給定的集合的元素。

  (2)任何一個給定的集合中,任何兩個元素都是不同的對象,相同的對象歸入一個集合時,僅算一個元素。

  (3)集合中的元素是*等的,沒有先后順序,因此判定兩個集合是否一樣,僅需比較它們的元素是否一樣,不需考查排列順序是否一樣。

  (4)集合元素的三個特性使集合本身具有了確定性和整體性。

  3、集合的表示:{…}如{我校的籃球隊員},{太*洋大西洋印度洋北冰洋}

  1.用拉丁字母表示集合:A={我校的籃球隊員}B={12345}

  2.集合的表示方法:列舉法與描述法。

  注意。撼S脭(shù)集及其記法:

  非負整數(shù)集(即自然數(shù)集)記作:N

  正整數(shù)集Nx或N+整數(shù)集Z有理數(shù)集Q實數(shù)集R

  關(guān)于“屬于”的概念

  集合的元素通常用小寫的拉丁字母表示,如:a是集合A的元素,就說a屬于集合A記作a∈A,相反,a不屬于集合A記作a:A

  列舉法:把集合中的元素一一列舉出來,然后用一個大括號括上。

  描述法:將集合中的元素的公共屬性描述出來,寫在大括號內(nèi)表示集合的方法。用確定的條件表示某些對象是否屬于這個集合的方法。

 、僬Z言描述法:例:{不是直角三角形的三角形}

 、跀(shù)學(xué)式子描述法:例:不等式x-3>2的解集是{x?R|x-3>2}或{x|x-3>2}

  4、集合的分類:

  1.有限集含有有限個元素的集合

  2.無限集含有無限個元素的集合

  3.空集不含任何元素的集合例:{x|x2=-5}

  二、集合間的基本關(guān)系

  1.“包含”關(guān)系子集

  注意:有兩種可能(1)A是B的一部分,;(2)A與B是同一集合。

  反之:集合A不包含于集合B或集合B不包含集合A記作AB或BA

  2.“相等”關(guān)系(5≥5,且5≤5,則5=5)

  實例:設(shè)A={x|x2-1=0}B={-11}“元素相同”

  結(jié)論:對于兩個集合A與B,如果集合A的任何一個元素都是集合B的元素,同時集合B的任何一個元素都是集合A的元素,我們就說集合A等于集合B,即:A=B

 、偃魏我粋集合是它本身的子集。A?A

  ②真子集:如果A?B且A?B那就說集合A是集合B的真子集,記作AB(或BA)

  ③如果A?BB?C那么A?C

 、苋绻鸄?B同時B?A那么A=B

  3.不含任何元素的集合叫做空集,記為Φ

  規(guī)定:空集是任何集合的子集,空集是任何非空集合的真子集。

  三、集合的運算

  1.交集的定義:一般地,由所有屬于A且屬于B的元素所組成的集合叫做AB的交集.

  記作A∩B(讀作”A交B”),即A∩B={x|x∈A,且x∈B}.

  2、并集的定義:一般地,由所有屬于集合A或?qū)儆诩螧的元素所組成的集合,叫做AB的并集。記作:A∪B(讀作”A并B”),即A∪B={x|x∈A,或x∈B}.

  3、交集與并集的性質(zhì):A∩A=AA∩φ=φA∩B=B∩A,A∪A=A

  A∪φ=AA∪B=B∪A.

  4、全集與補集

  (1)補集:設(shè)S是一個集合,A是S的一個子集(即),由S中所有不屬于A的元素組成的集合,叫做S中子集A的補集(或余集)

  記作:CSA即CSA={x?x?S且x?A}

  (2)全集:如果集合S含有我們所要研究的各個集合的全部元素,這個集合就可以看作一個全集。通常用U來表示。

  (3)性質(zhì):⑴CU(CUA)=A⑵(CUA)∩A=Φ⑶(CUA)∪A=U


高中數(shù)學(xué)復(fù)數(shù)知識點總結(jié) (菁選3篇)(擴展6)

——高中數(shù)學(xué)解三角形知識點 (菁選2篇)

高中數(shù)學(xué)解三角形知識點1

  (一) 解斜三角形

  1、解斜三角形的主要定理:正弦定理和余弦定理和余弦的射影公式和各種形式的面積的公式。

  2、能解決的四類型的問題:(1)已知兩角和一條邊(2)已知兩邊和夾角(3)已知三邊(4) 已知兩邊和其中一邊的對角。

  (二) 解直角三角形

  1、解直角三角形的主要定理:在直角三角形ABC中,直角為角C,角A和角B是它的兩銳角,所對的邊a、b、c,(1) 角A和角B的和是90度;

  (2) 勾股定理:a的*方加上+b的*方=c的*方;(3) 角A的正弦等于a比上c,角A的余弦等于b比上c,角B的正弦等于b比上c,角B的余弦等于a比上c;(4)面積的公式s=ab/2;此外還有射影定理,內(nèi)外切接圓的半徑。

  2、解直角三角形的四種類型:

  (1)已知兩直角邊:根據(jù)勾股定理先求出斜邊,用三角函數(shù)求出兩銳角中的一角,再用互余關(guān)系求出另一角或用三角函數(shù)求出兩銳角中的兩角;

  (2)已知一直角邊和斜邊,根據(jù)勾股定理先求出另一直角邊,問題轉(zhuǎn)化為(1);

  (3)已知一直角邊和一銳角,可求出另一銳角,運用正弦或余弦,算出斜邊,用勾股定理算出另一直角邊;(4)已知斜邊和一銳角,先算出已知角的對邊,根據(jù)勾股定理先求出另一直角邊,問題轉(zhuǎn)化為(1)。

  如何學(xué)好高中數(shù)學(xué)

  1.先看筆記后做作業(yè)。 有的高中學(xué)生感到。老師講過的,自己已經(jīng)聽得明明白白了。但是,為什么自己一做題就困難重重了呢?其原因在于,學(xué)生對教師所講的內(nèi)容的理解,還沒能達到教師所要求的層次。因此,每天在做作業(yè)之前,一定要把課本的有關(guān)內(nèi)容和當天的課堂筆記先看一看。能否堅持如此,常常是好學(xué)生與差學(xué)生的最大區(qū)別。尤其練習(xí)題不太配套時,作業(yè)中往往沒有老師剛剛講過的題目類型,因此不能對比消化。如果自己又不注意對此落實,天長日久,就會造成極大損失。

  2.做題之后加強反思。 學(xué)生一定要明確,現(xiàn)在正坐著的題,一定不是考試的題目。而是要運用現(xiàn)在正做著的題目的解題思路與方法。因此,要把自己做過的每道題加以反思?偨Y(jié)一下自己的收獲。要總結(jié)出,這是一道什么內(nèi)容的題,用的是什么方法。做到知識成片,問題成串,日久天長,構(gòu)建起一個內(nèi)容與方法的科學(xué)的網(wǎng)絡(luò)系統(tǒng)。

  3.主動復(fù)*結(jié)提高。 進行章節(jié)總結(jié)是非常重要的。初中時是教師替學(xué)生做總結(jié),做得細致,深刻,完整。高中是自己給自己做總結(jié),老師不但不給做,而且是講到哪,考到哪,不留復(fù)習(xí)時間,也沒有明確指出做總結(jié)的時間。

  倍角公式

  Sin2A=2SinA?CosA

  Cos2A=CosA^2-SinA^2=1-2SinA^2=2CosA^2-1

  tan2A=(2tanA)/(1-tanA^2)

  (注:SinA^2是sinA的*方sin2(A))

高中數(shù)學(xué)解三角形知識點2

  判斷解法

  已知條件:一邊和兩角

  一般解法:由A+B+C=180°,求角A,由正弦定理求出b與c,在有解時,有一解。

  已知條件:兩邊和夾角

  一般解法:由余弦定理求第三邊c,由正弦定理求出小邊所對的角,再由A+B+C=180°求出另一角,在有解時有一解。

  已知條件:三邊

  一般解法:由余弦定理求出角A、B,再利用A+B+C=180°,求出角C在有解時只有一解。

  已知條件:兩邊和其中一邊的對角

  一般解法:由正弦定理求出角B,由A+B+C=180°求出角C,再利用正弦定理求出C邊,可有兩解、一解或無解。(或利用余弦定理求出c邊,再求出其余兩角B、C)

 、偃鬭>b,則A>B有唯一解;

 、谌鬮>a,且b>a>bsinA有兩解;

 、廴鬭

  常用定理

  正弦定理

  a/sinA=b/sinB=c/sinC=2R(2R在同一個三角形中是恒量,R是此三角形外接圓的半徑)。

  變形公式

  (1)a=2RsinA,b=2RsinB,c=2RsinC

  (2)sinA:sinB:sinC=a:b:c

  (3)asinB=bsinA,asinC=csinA,bsinC=csinB

  (4)sinA=a/2R,sinB=b/2R,sinC=c/2R

  面積公式(5)S=1/2bcsinA=1/2acsinB=1/2absinC S=1/2底·h(原始公式)

  余弦定理

  a?=b?+c?-2bccosA

  b?=a?+c?-2accosB

  c?=a?+b?-2abcosC

  注:勾股定理其實是余弦定理的一種特殊情況。

  變形公式

  cosC=(a?+b?-c?)/2ab

  cosB=(a?+c?-b?)/2ac

  cosA=(c?+b?-a?)/2bc

  高三數(shù)學(xué)知識點有哪些

  1、混淆命題的否定與否命題

  命題的“否定”與命題的“否命題”是兩個不同的概念,命題p的否定是否定命題所作的判斷,而“否命題”是對“若p,則q”形式的命題而言,既要否定條件也要否定結(jié)論。

  2、忽視集合元素的三性致誤

  集合中的元素具有確定性、無序性、互異性,集合元素的三性中互異性對解題的影響最大,特別是帶有字母參數(shù)的集合,實際上就隱含著對字母參數(shù)的一些要求。

  3、判斷函數(shù)奇偶性忽略定義域致誤

  判斷函數(shù)的奇偶性,首先要考慮函數(shù)的定義域,一個函數(shù)具備奇偶性的必要條件是這個函數(shù)的定義域關(guān)于原點對稱,如果不具備這個條件,函數(shù)一定是非奇非偶函數(shù)。

  4、函數(shù)零點定理使用不當致誤

  如果函數(shù)y=f(x)在區(qū)間[a,b]上的圖像是一條連續(xù)的曲線,并且有f(a)f(b)<0,那么,函數(shù)y=f(x)在區(qū)間(a,b)內(nèi)有零點,但f(a)f(b)>0時,不能否定函數(shù)y=f(x)在(a,b)內(nèi)有零點。函數(shù)的零點有“變號零點”和“不變號零點”,對于“不變號零點”函數(shù)的零點定理是“**為力”的,在解決函數(shù)的零點問題時要注意這個問題。

  5、函數(shù)的單調(diào)區(qū)間理解不準致誤

  在研究函數(shù)問題時要時時刻刻想到“函數(shù)的圖像”,學(xué)會從函數(shù)圖像上去分析問題、尋找解決問題的方法。對于函數(shù)的幾個不同的單調(diào)遞增(減)區(qū)間,切忌使用并集,只要指明這幾個區(qū)間是該函數(shù)的單調(diào)遞增(減)區(qū)間即可。

  6、三角函數(shù)的單調(diào)性判斷致誤

  對于函數(shù)y=Asin(ωx+φ)的單調(diào)性,當ω>0時,由于內(nèi)層函數(shù)u=ωx+φ是單調(diào)遞增的,所以該函數(shù)的單調(diào)性和y=sin x的單調(diào)性相同,故可完全按照函數(shù)y=sin x的單調(diào)區(qū)間解決;但當ω<0時,內(nèi)層函數(shù)u=ωx+φ是單調(diào)遞減的,此時該函數(shù)的單調(diào)性和函數(shù)y=sinx的單調(diào)性相反,就不能再按照函數(shù)y=sinx的單調(diào)性解決,一般是根據(jù)三角函數(shù)的奇偶性將內(nèi)層函數(shù)的系數(shù)變?yōu)檎龜?shù)后再加以解決。對于帶有絕對值的三角函數(shù)應(yīng)該根據(jù)圖像,從直觀上進行判斷。

  7、向量夾角范圍不清致誤

  解題時要全面考慮問題。數(shù)學(xué)試題中往往隱含著一些容易被考生所忽視的因素,能不能在解題時把這些因素考慮到,是解題成功的關(guān)鍵,如當a·b<0時,a與b的夾角不一定為鈍角,要注意θ=π的情況。

  8、忽視零向量致誤

  零向量是向量中最特殊的向量,規(guī)定零向量的長度為0,其方向是任意的,零向量與任意向量都共線。它在向量中的位置正如實數(shù)中0的位置一樣,但有了它容易引起一些混淆,稍微考慮不到就會出錯,考生應(yīng)給予足夠的重視。

  9、對數(shù)列的定義、性質(zhì)理解錯誤

  等差數(shù)列的前n項和在公差不為零時是關(guān)于n的常數(shù)項為零的二次函數(shù);一般地,有結(jié)論“若數(shù)列{an}的前n項和Sn=an2+bn+c(a,b,c∈R),則數(shù)列{an}為等差數(shù)列的充要條件是c=0”;在等差數(shù)列中,Sm,S2m-Sm,S3m-S2m(m∈N_)是等差數(shù)列。

  10、an與Sn關(guān)系不清致誤

  在數(shù)列問題中,數(shù)列的通項an與其前n項和Sn之間存在下列關(guān)系:an=S1,n=1,Sn-Sn-1,n≥2。這個關(guān)系對任意數(shù)列都是成立的,但要注意的是這個關(guān)系式是分段的,在n=1和n≥2時這個關(guān)系式具有完全不同的表現(xiàn)形式,這也是解題中經(jīng)常出錯的一個地方,在使用這個關(guān)系式時要牢牢記住其“分段”的特點。


高中數(shù)學(xué)復(fù)數(shù)知識點總結(jié) (菁選3篇)(擴展7)

——高中數(shù)學(xué)數(shù)列知識點 (菁選2篇)

高中數(shù)學(xué)數(shù)列知識點1


  1.定義:如果一個數(shù)列,從第二項開始它的每一項與前一項之差都等于同一常數(shù),這個數(shù)列就叫等差數(shù)列, 這個常數(shù)叫做等差數(shù)列的公差,通常用字母d來表示。同樣為數(shù)列的等比數(shù)列的性質(zhì)與等差數(shù)列也有相通之處。

  2.數(shù)列為等差數(shù)列的充要條件是:數(shù)列的前n項和S 可以寫成S = an^2 + bn的形式(其中a、b為常數(shù)).等差數(shù)列練習(xí)題

  3.性質(zhì)1:公差為d的等差數(shù)列,各項同乘以常數(shù)k所得數(shù)列仍是等差數(shù)列,其公差為kd.

  4.性質(zhì)2:公差為d的等差數(shù)列,各項同加一數(shù)所得數(shù)列仍是等差數(shù)列,其公差仍為d.

  5.性質(zhì)3:當公差d>0時,等差數(shù)列中的數(shù)隨項數(shù)的增大而增大;當d<0時,等差數(shù)列中的數(shù)隨項數(shù)的減少而減小;d=0時,等差數(shù)列中的數(shù)等于一個常數(shù).

高中數(shù)學(xué)數(shù)列知識點2

  一般地,如果一個數(shù)列從第2項起,每一項與它的前一項的差等于同一個常數(shù),那么這個數(shù)列就叫做等差數(shù)列,這個常數(shù)叫做公差,用符號語言表示為an+1-an=d。

  等差數(shù)列的性質(zhì):

 。1)若公差d>0,則為遞增等差數(shù)列;若公差d<0,則為遞減等差數(shù)列;若公差d=0,則為常數(shù)列;

 。2)有窮等差數(shù)列中,與首末兩端“等距離”的兩項和相等,并且等于首末兩項之和;

 。3)m,n∈N*,則am=an+(m-n)d;

 。4)若s,t,p,q∈N*,且s+t=p+q,則as+at=ap+aq,其中as,at,ap,aq是數(shù)列中的項,特別地,當s+t=2p時,高一,有as+at=2ap;

 。5)若數(shù)列{an},{bn}均是等差數(shù)列,則數(shù)列{man+kbn}仍為等差數(shù)列,其中m,k均為常數(shù)。

 。6)從第二項開始起,每一項是與它相鄰兩項的等差中項,也是與它等距離的前后兩項的等差中項,即

  對等差數(shù)列定義的理解:

  ①如果一個數(shù)列不是從第2項起,而是從第3項或某一項起,每一項與它前一項的差是同一個常數(shù),那么此數(shù)列不是等差數(shù)列,但可以說從第2項或某項開始是等差數(shù)列.

 、谇蠊頳時,因為d是這個數(shù)列的'后一項與前一項的差,故有 還有

 、酃頳∈R,當d=0時,數(shù)列為常數(shù)列(也是等差數(shù)列);當d>0時,數(shù)列為遞增數(shù)列;當d<0時,數(shù)列為遞減數(shù)列;

  ④ 是證明或判斷一個數(shù)列是否為等差數(shù)列的依據(jù);

  ⑤證明一個數(shù)列是等差數(shù)列,只需證明an+1-an是一個與n無關(guān)的常數(shù)即可。

  等差數(shù)列求解與證明的基本方法:

  (1)學(xué)會運用函數(shù)與方程思想解題;

  (2)抓住首項與公差是解決等差數(shù)列問題的關(guān)鍵;

  (3)等差數(shù)列的通項公式、前n項和公式涉及五個量:a1,d,n,an,Sn,知道其中任意三個就可以列方程組求出另外兩個(俗稱“知三求二’).

版權(quán)聲明:本文內(nèi)容由互聯(lián)網(wǎng)用戶自發(fā)貢獻,該文觀點僅代表作者本人。本站僅提供信息存儲空間服務(wù),不擁有所有權(quán),不承擔相關(guān)法律責任。如發(fā)現(xiàn)本站有涉嫌抄襲侵權(quán)/違法違規(guī)的內(nèi)容, 請發(fā)送郵件至 yyfangchan@163.com (舉報時請帶上具體的網(wǎng)址) 舉報,一經(jīng)查實,本站將立刻刪除