初一數(shù)學(xué)手抄報圖片大全簡單好看
初一數(shù)學(xué)手抄報圖片大全簡單好看
數(shù)學(xué)是非常有趣的,是值得我們深入探究的,做做一份數(shù)學(xué)手抄報是學(xué)習數(shù)學(xué)知識不錯的方法。下面是小編為大家收集的的數(shù)學(xué)手抄報內(nèi)容,希望對你有幫助!
好看的數(shù)學(xué)手抄報
數(shù)學(xué)手抄報資料:闡述數(shù)學(xué)的概念
結(jié)構(gòu)
許多如數(shù)、函數(shù)、集合等數(shù)學(xué)對象都有著內(nèi)含的結(jié)構(gòu)。這些對象的結(jié)構(gòu)性質(zhì)被探討于群、環(huán)、體及其他本身即為此物件的抽象系統(tǒng)中。此為抽象代數(shù)的領(lǐng)域。在此有一個很重要的概念,即向量,且廣義化至向量空間,并研究于線性代數(shù)中。向量的研究結(jié)合了數(shù)學(xué)的三個基本領(lǐng)域:數(shù)量、結(jié)構(gòu)及空間。向量分析則將其擴展至第四個基本的領(lǐng)域內(nèi),即變化。
空間
空間的研究源自于歐式幾何。三角學(xué)則結(jié)合了空間及數(shù),且包含有非常著名的勾股定理。現(xiàn)今對空間的研究更推廣到了更高維的幾何、非歐幾何及拓撲學(xué)。數(shù)和空間在解析幾何、微分幾何和代數(shù)幾何中都有著很重要的角色。在微分幾何中有著纖維叢及流形上的計算等概念。在代數(shù)幾何中有著如多項式方程的解集等幾何對象的描述,結(jié)合了數(shù)和空間的概念;亦有著拓撲群的研究,結(jié)合了結(jié)構(gòu)與空間。李群被用來研究空間、結(jié)構(gòu)及變化。
基礎(chǔ)
為了搞清楚數(shù)學(xué)基礎(chǔ),數(shù)學(xué)邏輯和集合論等領(lǐng)域被發(fā)展了出來。德國數(shù)學(xué)家康托爾(1845-1918)首創(chuàng)集合論,大膽地向“無窮大”進軍,為的是給數(shù)學(xué)各分支提供一個堅實的基礎(chǔ),而它本身的內(nèi)容也是相當豐富的,提出了實無窮的思想,為以后的數(shù)學(xué)發(fā)展作出了不可估量的貢獻。
集合論在20世紀初已逐漸滲透到了各個數(shù)學(xué)分支,成為了分析理論,測度論,拓撲學(xué)及數(shù)理科學(xué)中必不可少的工具。20世紀初,數(shù)學(xué)家希爾伯特在德國傳播了康托爾的思想,把集合論稱為“數(shù)學(xué)家的樂園”和“數(shù)學(xué)思想最驚人的產(chǎn)物”。英國哲學(xué)家羅素把康托的工作譽為“這個時代所能夸耀的最巨大的工作”。
邏輯
數(shù)學(xué)邏輯專注在將數(shù)學(xué)置于一堅固的公理架構(gòu)上,并研究此一架構(gòu)的成果。就其本身而言,其為哥德爾第二不完備定理的產(chǎn)地,而這或許是邏輯中最廣為流傳的成果,F(xiàn)代邏輯被分成遞歸論、模型論和證明論,且和理論計算機科學(xué)有著密切的關(guān)聯(lián)性。
符號
也許我國古代的算籌是世界上最早使用的符號之一,起源于商代的占卜。
我們現(xiàn)今所使用的大部分數(shù)學(xué)符號都是到了16世紀后才被發(fā)明出來的'。在此之前,數(shù)學(xué)是用文字書寫出來,這是個會限制住數(shù)學(xué)發(fā)展的刻苦程序。現(xiàn)今的符號使得數(shù)學(xué)對于人們而言更便于操作,但初學(xué)者卻常對此感到怯步。它被極度的壓縮:少量的符號包含著大量的訊息。如同音樂符號一般,現(xiàn)今的數(shù)學(xué)符號有明確的語法和難以以其他方法書寫的訊息編碼。
數(shù)學(xué)手抄報內(nèi)容:高等數(shù)學(xué)學(xué)習技巧
一、課前預(yù)習
跟高中時代一樣,做好課前預(yù)習很重要。大學(xué)里的講師們可能講課的速度比較快,此時預(yù)習就顯得格外重要。
二、認真聽課,做好筆記
老調(diào)重彈,上課一定要認真聽課,不要貪玩,貪睡。同時,該做筆記的,一定要記一下。
三、課后復(fù)習
前面說了,講師們講得可能比較快,此時,下課后就要自覺去復(fù)習了。遇到不懂的,可以跟同學(xué)討論一下。如果實在有些難理解的,可以上網(wǎng)找找資料,還可以再去其他班級蹭蹭課,多聽一遍,總該會了。
四、多做題
考試想要高數(shù)得高分一定離不開題海戰(zhàn)術(shù),做題,多多益善。如果沒耐力也一定要將課后題和章節(jié)測試AB好好練習。
五、舉一反三
學(xué)高等數(shù)學(xué),一定不能太死板。要學(xué)會舉一反三,同樣的考核目的,可以有不同的考核形式。在學(xué)習的過程中,一定要多用心,多去思考。
六、用心是關(guān)鍵
工科生和理科生其實學(xué)高等數(shù)學(xué)并不復(fù)雜,就跟學(xué)其他理工科目一樣,關(guān)鍵是要用心。大學(xué)里不應(yīng)該太放縱自己,而是要學(xué)會更多的技能。
七年級數(shù)學(xué)知識點
1、軸對稱圖形:如果一個圖形沿一條直線折疊后,直線兩旁的部分能夠完全重合,那么這個圖形叫做軸對稱圖形,這條直線叫做對稱軸。
2、軸對稱:對于兩個圖形,如果沿一條直線對折后,它們能互相重合,那么稱這兩個圖形成軸對稱,這條直線就是對稱軸。可以說成:這兩個圖形關(guān)于某條直線對稱。
3、軸對稱圖形與軸對稱的區(qū)別:軸對稱圖形是一個圖形,軸對稱是兩個圖形的關(guān)系。
聯(lián)系:它們都是圖形沿某直線折疊可以相互重合。
2、成軸對稱的兩個圖形一定全等。
3、全等的兩個圖形不一定成軸對稱。
4、對稱軸是直線。
5、角平分線的性質(zhì)
1、角平分線所在的直線是該角的對稱軸。
2、性質(zhì):角平分線上的點到這個角的兩邊的距離相等。
6、線段的垂直平分線
1、垂直于一條線段并且平分這條線段的直線叫做這條線段的垂直平分線,又叫線段的中垂線。
2、性質(zhì):線段垂直平分線上的點到這條線段兩端點的距離相等。
7、軸對稱圖形有:
等腰三角形(1條或3條)、等腰梯形(1條)、長方形(2條)、菱形(2條)、正方形(4條)、圓(無數(shù)條)、線段(1條)、角(1條)、正五角星。
8、等腰三角形性質(zhì):
、賰蓚底角相等。②兩個條邊相等。③“三線合一”。④底邊上的高、中線、頂角的平分線所在直線是它的對稱軸。
9、①“等角對等邊”∵∠B=∠C∴AB=AC
、凇暗冗厡Φ冉恰薄逜B=AC∴∠B=∠C
10、角平分線性質(zhì):
角平分線上的點到角兩邊的距離相等。
∵OA平分∠CADOE⊥AC,OF⊥AD∴OE=OF
11、垂直平分線性質(zhì):垂直平分線上的點到線段兩端點的距離相等。
∵OC垂直平分AB∴AC=BC
12、軸對稱的性質(zhì)
1、兩個圖形沿一條直線對折后,能夠重合的點稱為對應(yīng)點(對稱點),能夠重合的線段稱為對應(yīng)線段,能夠重合的角稱為對應(yīng)角。2、關(guān)于某條直線對稱的兩個圖形是全等圖形。
2、如果兩個圖形關(guān)于某條直線對稱,那么對應(yīng)點所連的線段被對稱軸垂直平分。
3、如果兩個圖形關(guān)于某條直線對稱,那么對應(yīng)線段、對應(yīng)角都相等。
13、鏡面對稱
1.當物體正對鏡面擺放時,鏡面會改變它的左右方向;
2.當垂直于鏡面擺放時,鏡面會改變它的上下方向;
3.如果是軸對稱圖形,當對稱軸與鏡面平行時,其鏡子中影像與原圖一樣;
學(xué)生通過討論,可能會找出以下解決物體與像之間相互轉(zhuǎn)化問題的辦法:
(1)利用鏡子照(注意鏡子的位置擺放);(2)利用軸對稱性質(zhì);
(3)可以把數(shù)字左右顛倒,或做簡單的軸對稱圖形;
(4)可以看像的背面;(5)根據(jù)前面的結(jié)論在頭腦中想象。
版權(quán)聲明:本文內(nèi)容由互聯(lián)網(wǎng)用戶自發(fā)貢獻,該文觀點僅代表作者本人。本站僅提供信息存儲空間服務(wù),不擁有所有權(quán),不承擔相關(guān)法律責任。如發(fā)現(xiàn)本站有涉嫌抄襲侵權(quán)/違法違規(guī)的內(nèi)容, 請發(fā)送郵件至 yyfangchan@163.com (舉報時請帶上具體的網(wǎng)址) 舉報,一經(jīng)查實,本站將立刻刪除