初二上冊數(shù)學知識點總結(jié)一次函數(shù)
初二上冊數(shù)學知識點總結(jié)一次函數(shù)
一、函數(shù):
一般地,在某一變化過程中有兩個變量x與y,如果給定一個x值,相應地就確定了一個y值,那么我們稱y是x的函數(shù),其中x是自變量,y是因變量。
二、自變量取值范圍
使函數(shù)有意義的自變量的取值的全體,叫做自變量的取值范圍。一般從整式(取全體實數(shù)),分式(分母不為0)、二次根式(被開方數(shù)為非負數(shù))、實際意義幾方面考慮。
三、函數(shù)的三種表示法及其優(yōu)缺點
。1)關系式(解析)法
兩個變量間的函數(shù)關系,有時可以用一個含有這兩個變量及數(shù)字運算符號的等式表示,這種表示法叫做關系式(解析)法。
。2)列表法
把自變量x的一系列值和函數(shù)y的對應值列成一個表來表示函數(shù)關系,這種表示法叫做列表法。
。3)圖象法
用圖象表示函數(shù)關系的.方法叫做圖象法。
四、由函數(shù)關系式畫其圖像的一般步驟
。1)列表:列表給出自變量與函數(shù)的一些對應值
。2)描點:以表中每對對應值為坐標,在坐標平面內(nèi)描出相應的點
。3)連線:按照自變量由小到大的順序,把所描各點用平滑的曲線連接起來。
五、正比例函數(shù)和一次函數(shù)
1、正比例函數(shù)和一次函數(shù)的概念
一般地,若兩個變量x,y間的關系可以表示成(k,b為常數(shù),k0)的形式,則稱y是x的一次函數(shù)(x為自變量,y為因變量)。
特別地,當一次函數(shù)中的b=0時(即)(k為常數(shù),k0),稱y是x的正比例函數(shù)。
2、一次函數(shù)的圖像:所有一次函數(shù)的圖像都是一條直線
3、一次函數(shù)、正比例函數(shù)圖像的主要特征:
一次函數(shù)的圖像是經(jīng)過點(0,b)的直線;正比例函數(shù)的圖像是經(jīng)過原點(0,0)的直線。
4、正比例函數(shù)的性質(zhì)
一般地,正比例函數(shù)有下列性質(zhì):
。1)當k>0時,圖像經(jīng)過第一、三象限,y隨x的增大而增大;
。2)當k<0時,圖像經(jīng)過第二、四象限,y隨x的增大而減小。
5、一次函數(shù)的性質(zhì)
一般地,一次函數(shù)有下列性質(zhì):
。1)當k>0時,y隨x的增大而增大
。2)當k<0時,y隨x的增大而減小
6、正比例函數(shù)和一次函數(shù)解析式的確定
確定一個正比例函數(shù),就是要確定正比例函數(shù)定義式(k0)中的常數(shù)k。確定一個一次函數(shù),需要確定一次函數(shù)定義式(k0)中的常數(shù)k和b。解這類問題的一般方法是待定系數(shù)法。
7、一次函數(shù)與一元一次方程的關系:
任何一個一元一次方程都可轉(zhuǎn)化為:kx+b=0(k、b為常數(shù),k≠0)的形式。而一次函數(shù)解析式形式正是y=kx+b(k、b為常數(shù),k≠0)。當函數(shù)值為0時,即kx+b=0就與一元一次方程完全相同。
結(jié)論:由于任何一元一次方程都可轉(zhuǎn)化為kx+b=0(k、b為常數(shù),k≠0)的形式。所以解一元一次方程可以轉(zhuǎn)化為:當一次函數(shù)值為0時,求相應的自變量的值。
從圖象上看,這相當于已知直線y=kx+b確定它與x軸交點的橫坐標值。
版權聲明:本文內(nèi)容由互聯(lián)網(wǎng)用戶自發(fā)貢獻,該文觀點僅代表作者本人。本站僅提供信息存儲空間服務,不擁有所有權,不承擔相關法律責任。如發(fā)現(xiàn)本站有涉嫌抄襲侵權/違法違規(guī)的內(nèi)容, 請發(fā)送郵件至 yyfangchan@163.com (舉報時請帶上具體的網(wǎng)址) 舉報,一經(jīng)查實,本站將立刻刪除