平方根的教案 平方根教案第一課時
平方根的教案
在教學(xué)工作者開展教學(xué)活動前,常常要根據(jù)教學(xué)需要編寫教案,通過教案準(zhǔn)備可以更好地根據(jù)具體情況對教學(xué)進程做適當(dāng)?shù)谋匾恼{(diào)整。那么問題來了,教案應(yīng)該怎么寫?下面是小編整理的平方根的教案,希望能夠幫助到大家。
教學(xué)目標(biāo)
1、使學(xué)生了解數(shù)的平方根的概念和性質(zhì)。
2、使學(xué)生能夠根據(jù)平方根的定義正確的求出一非負數(shù)的平方根。
3、提高學(xué)生對數(shù)的認識。
教學(xué)重點
平方根的概念和求法
教學(xué)難點
非負數(shù)平方根的個數(shù)問題
教具學(xué)具
投影儀
教學(xué)方法
講練結(jié)合
。ㄑa 標(biāo) 小 結(jié))
教 學(xué) 過 程
。 展 標(biāo) 施 標(biāo) 查 標(biāo))
教 學(xué) 內(nèi) 容
教師活動
學(xué)生活動
一、引入新課
以正方形的面積和邊長的關(guān)系引入平方根的概念
展標(biāo)
投影:
1、已知一正方形面積為4cm2,則它的邊長為---------cm
2、已知一正方形面積為2cm2則它的邊長為---------cm
這兩個小題有什么共同特點?
這就是我們今天要來研究的一個新的概念——平方根
二、施標(biāo)
1、平方根的定義:
如果一個數(shù)的平方等于a,那么這個數(shù)就叫做a的平方根(二次方根)
求一個數(shù)的平方根的平方根的運算叫做開平方
2、平方根的性質(zhì)
。1)一個正數(shù)有幾個平方根?
。2)0有幾個平方根
。3)一個負數(shù)有幾個平方根?
3、平方根的表示方法
填空(投影)
1、( )2=9
2、( )2=0.25
3、( )2= 1625
4、( )2=0
5、( )2=0.0081
這五個小題形如x2=a
X叫做a的平方根(二次方根)
板書:
如果一個數(shù)的平方等于a,那么這個數(shù)就叫做a的平方根(二次方根)
求一個數(shù)的平方根的運叫做開平方
提問:
是不是每個數(shù)都有平方根?
如果有的話,有幾個?它們之間是什么關(guān)系?
討論總結(jié)
1、一個正數(shù)有兩個平方根,它們互為相反數(shù)。
2、0只有一個平方根,就是0本身。
3、負數(shù)沒有平方根。
平方根表示方法練習(xí)
4、求一個非負數(shù)的平方根
例1、求下列各數(shù)的平方根?
。1)361
。2)14449
(3)0.81
。4)23
讀作:正、負二次根號下a
a的正的平方根:+√a
a的負的平方根:-√a
投影練習(xí)題:
1、用正確的符號表示下列各數(shù)的平方根
、 26、②247、③0.2
、3、⑤783
2、+√7表示什么意思?
3、-√7表示什么意思?
4、±√7表示什么意思?
引導(dǎo)學(xué)生回答并板書解題步驟:
解:
(1)∵(±19)2=361
∴361的平方根為
±√361=±19
(2)∵(±127)2=14449
∴14449的平方根為±√14449=±19
(3)∵(±0.9)2=0.81
∴0.81的平方根為
±√0.81=±0.9
(4)23的平方根為±√23
(±19)2=361
(±127)2=14449
(±0.9)2=0.81
(±√23)2=23
三、查標(biāo) 四、小結(jié)
版權(quán)聲明:本文內(nèi)容由互聯(lián)網(wǎng)用戶自發(fā)貢獻,該文觀點僅代表作者本人。本站僅提供信息存儲空間服務(wù),不擁有所有權(quán),不承擔(dān)相關(guān)法律責(zé)任。如發(fā)現(xiàn)本站有涉嫌抄襲侵權(quán)/違法違規(guī)的內(nèi)容, 請發(fā)送郵件至 yyfangchan@163.com (舉報時請帶上具體的網(wǎng)址) 舉報,一經(jīng)查實,本站將立刻刪除