等差數(shù)列的前n項和教案
等差數(shù)列的前n項和教案
作為一名教學(xué)工作者,常常需要準(zhǔn)備教案,借助教案可以讓教學(xué)工作更科學(xué)化。優(yōu)秀的教案都具備一些什么特點呢?以下是小編為大家整理的等差數(shù)列的前n項和教案,希望能夠幫助到大家。
等差數(shù)列的前n項和教案1
一、知識與技能
1.掌握等差數(shù)列前n項和公式;
2.體會等差數(shù)列前n項和公式的推導(dǎo)過程;
3.會簡單運用等差數(shù)列前n項和公式。
二、過程與方法
1. 通過對等差數(shù)列前n項和公式的推導(dǎo),體會倒序相加求和的思想方法;
2. 通過公式的運用體會方程的思想。
三、情感態(tài)度與價值觀
結(jié)合具體模型,將教材知識和實際生活聯(lián)系起來,使學(xué)生感受數(shù)學(xué)的實用性,有效激發(fā)學(xué)習(xí)興趣,并通過對等差數(shù)列求和歷史的了解,滲透數(shù)學(xué)史和數(shù)學(xué)文化。
等差數(shù)列前n項和公式的推導(dǎo)和應(yīng)用。
在等差數(shù)列前n項和公式的推導(dǎo)過程中體會倒序相加的思想方法。
本課在設(shè)計上采用了由特殊到一般、從具體到抽象的教學(xué)策略。利用數(shù)形結(jié)合、類比歸納的思想,層層深入,通過學(xué)生自主探究、分析、整理出推導(dǎo)公式的思路,同時,借助多媒體的直觀演示,幫助學(xué)生理解,師生互動、講練結(jié)合,從而突出重點、突破教學(xué)難點。
多媒體軟件,電腦
一、明確數(shù)列前n項和的定義,確定本節(jié)課中心任務(wù):
本節(jié)課我們來學(xué)習(xí)《等差數(shù)列的前n項和》,那么什么叫數(shù)列的前n項和呢,對于數(shù)列{an}:a1,a2,a3,…,an,…我們稱a1+a2+a3+…+an為數(shù)列{an}的前n項和,用sn表示,記sn=a1+a2+a3+…+an,
如S1 =a1, S7 =a1+a2+a3+……+a7,下面我們來共同探究如何求等差數(shù)列的前n項和。
二、問題牽引,探究發(fā)現(xiàn)
問題1:(播放媒體資料情景引入)印度泰姬陵世界七大奇跡之一。傳說陵寢中有一個三角形圖案,以相同大小的圓寶石鑲飾而成,共有100層(見圖),奢靡之程度,可見一斑。你知道這個圖案一共花了多少圓寶石嗎?
即: S100=1+2+3+······+100=?
著名數(shù)學(xué)家高斯小時候就會算,聞名于世;那么小高斯是如何快速地得出答案的呢?請同學(xué)們思考高斯方法的特點,適合類型和方法本質(zhì)。
特點: 首項與末項的和: 1+100=101,
第2項與倒數(shù)第2項的和: 2+99 =101,
第3項與倒數(shù)第3項的和: 3+98 =101,
· · · · · ·
第50項與倒數(shù)第50項的和: 50+51=101,
于是所求的和是: 101×50=5050。
1+2+3+ ······ +100= 101×50 = 5050
同學(xué)們討論后總結(jié)發(fā)言:等差數(shù)列項數(shù)為偶數(shù)相加時首尾配對,變不同數(shù)的加法運算為相同數(shù)的乘法運算大大提高效率。高斯的方法很妙,如果等差數(shù)列的項數(shù)為奇數(shù)時怎么辦呢?
探索與發(fā)現(xiàn)1:假如讓你計算從第一層到第21層的珠寶數(shù),高斯的首尾配對法行嗎?
即計算S21=1+2+3+ ······ +21的值,在這個過程中讓學(xué)生發(fā)現(xiàn)當(dāng)項數(shù)為奇數(shù)時,首尾配對出現(xiàn)了問題,通過動畫演示引導(dǎo)幫助學(xué)生思考解決問題的辦法,為引出倒序相加法做鋪墊。
把“全等三角形”倒置,與原圖構(gòu)成平行四邊形。平行四邊形中的每行寶石的個數(shù)均為21個,共21行。有什么啟發(fā)?
1+ 2 + 3 + …… +20 +21
21 + 20 + 19 + …… + 2 +1
S21=1+2+3+…+21=(21+1)×21÷2=231
這個方法也很好,那么項數(shù)為偶數(shù)這個方法還行嗎?
探索與發(fā)現(xiàn)2:第5層到12層一共有多少顆圓寶石?
學(xué)生探究的同時通過動畫演示幫助學(xué)生思考剛才的方法是否同樣可行?請同學(xué)們自主探究一下(老師演示動畫幫助學(xué)生)
S8=5+6+7+8+9+10+11+12=
進(jìn)一步引導(dǎo)學(xué)生探究項數(shù)為偶數(shù)的等差數(shù)列求和時倒序相加是否可行。從而得出倒序相加法適合任意項數(shù)的等差數(shù)列求和,最終確立倒序相加的思想和方法!
好,這樣我們就找到了一個好方法——倒序相加法!現(xiàn)在來試一試如何求下面這個等差數(shù)列的前n項和?
問題2:等差數(shù)列1,2,3,…,n, … 的前n項和怎么求呢?
解:(根據(jù)前面的學(xué)習(xí),請學(xué)生自主思考獨立完成)
強化倒序相加法的理解和運用,為更一般的等差數(shù)列求和打下基礎(chǔ)。
至此同學(xué)們已經(jīng)掌握了倒序相加法,相信大家可以推導(dǎo)更一般的等差數(shù)列前n項和公式了。
問題3:對于一般的等差數(shù)列{an}首項為a1,公差為d,如何推導(dǎo)它的前n項和sn公式呢?
即求 =a1+a2+a3+……+an=
∴(1)+(2)可得:2
∴
公式變形:將代入可得:
學(xué)生在前面的探究基礎(chǔ)上水到渠成順理成章很快就可以推導(dǎo)出一般等差數(shù)列的前n項和公式,從而完成本節(jié)課的中心任務(wù)。在這個過程中放手讓學(xué)生自主推導(dǎo),同時也復(fù)習(xí)等差數(shù)列的通項公式和基本性質(zhì)。
三、公式的認(rèn)識與理解:
1、根據(jù)前面的推導(dǎo)可知等差數(shù)列求和的兩個公式為:
。ü揭唬
(公式二)
探究: 1、(1)相同點: 都需知道a1與n;
。2)不同點: 第一個還需知道an ,第二個還需知道d;
。3)明確若a1,d,n,an中已知三個量就可求Sn。
2、兩個公式共涉及a1, d, n, an,Sn五個量,“知三”可“求二”。
2、探索與發(fā)現(xiàn)3:等差數(shù)列前n項和公式與梯形面積公式有什么聯(lián)系?
用梯形面積公式記憶等差數(shù)列前 n 項和公式,這里對圖形進(jìn)行了割、補兩種處理,對應(yīng)著等差數(shù)列 n 項和的兩個公式.,請學(xué)生聯(lián)想思考總結(jié)來有助于記憶。
幫助學(xué)生類比聯(lián)想,拓展思維,增加興趣,強化記憶
四、公式應(yīng)用、講練結(jié)合
1、練一練:
有了兩個公式,請同學(xué)們來練一練,看誰做的快做的對!
根據(jù)下列各題中的條件,求相應(yīng)的等差數(shù)列{an}的Sn :
。1)a1=5,an=95,n=10
解:500
(2)a1=100,d=-2,n=50
解:
熟悉并強化公式的'理解和應(yīng)用,進(jìn)一步鞏固“知三求二”。
下面我們來看兩個例題:
2、例題1:
20xx年11月14日教育部下發(fā)了<<關(guān)于在中小學(xué)實施“校校通”工程的通知>>.某市據(jù)此提出了實施“校校通”工程的總目標(biāo):從20xx年起用10年時間,在全市中小學(xué)建成不同標(biāo)準(zhǔn)的校園網(wǎng). 據(jù)測算,20xx年該市用于“校校通”工程的經(jīng)費為500萬元.為了保證工程的順利實施,計劃每年投入的資金都比上一年增加50萬元.那么從20xx年起的未來10年內(nèi),該市在“校校通”工程中的總投入是多少?
解:設(shè)從20xx年起第n年投入的資金為an,根據(jù)題意,數(shù)列{an}是一個等差數(shù)列,其中 a1=500, d=50
那么,到20xx年(n=10),投入的資金總額為
答: 從20xx年起的未來10年內(nèi),該市在“校校通”工程中的總投入是7250萬元。
讓學(xué)生體會數(shù)列知識在生活中的應(yīng)用及簡單的數(shù)學(xué)建模思想方法。
3、例題2:
已知一個等差數(shù)列{an}的前10項的和是310,前20項的和是1220,由這些條件可以確定這個等差數(shù)列的前n項和的公式嗎?
解:
法1:由題意知
,
代入公式得:
解得,
法2:由題意知
,
代入公式得:
,
即,
、冖俚,,故
由得故
掌握并能靈活應(yīng)用公式并體會方程的思想方法。
4、反饋達(dá)標(biāo):
練習(xí)一:在等差數(shù)列{an}中,a1=20, an=54,sn =999,求n.
解:由解n=27
練習(xí)2: 已知{an}為等差數(shù)列,,求公差。
解:由公式得
即d=2
進(jìn)一強化求和公式的靈活應(yīng)用及化歸的思想(化歸到首項和公差這兩個基本元)。
五、歸納總結(jié) 分享收獲:(活躍課堂氣氛,鼓勵學(xué)生大膽發(fā)言,培養(yǎng)總結(jié)和表達(dá)能力)
1、倒序相加法求和的思想及應(yīng)用;
2、等差數(shù)列前n項和公式的推導(dǎo)過程;
3、掌握等差數(shù)列的兩個求和公式,;
4、前n項和公式的靈活應(yīng)用及方程的思想。
…………
六、作業(yè)布置:
(一)書面作業(yè):
1.已知等差數(shù)列{an},其中d=2,n=15, an =-10,求a1及sn。
2.在a,b之間插入10個數(shù),使它們同這兩個數(shù)成等差數(shù)列,求這10個數(shù)的和。
(二)課后思考:
思考:等差數(shù)列的前n項和公式的推導(dǎo)方法除了倒序相加法還有沒有其它方法呢?
通過布置書面作業(yè)鞏固所學(xué)知識及方法,同時通過布置課后思考題來延伸知識拓展思維。
附:板書設(shè)計
等差數(shù)列的前n項和
1、數(shù)列前n項和的定義:
2、等差數(shù)列前n項和公式的推導(dǎo):
3、公式的認(rèn)識與理解:
公式一:
公式二:
四:例題及解答:
議練活動:
等差數(shù)列的前n項和教案2
教學(xué)目標(biāo)
1、通過教學(xué)使學(xué)生理解等差數(shù)列的前項和公式的推導(dǎo)過程,并能用公式解決簡單的問題。
2、通過公式推導(dǎo)的教學(xué)使學(xué)生進(jìn)一步體會從特殊到一般,再從一般到特殊的思想方法,通過公式的運用體會方程的思想。
教學(xué)重點,難點
教學(xué)重點是等差數(shù)列的前項和公式的推導(dǎo)和應(yīng)用,難點是獲得推導(dǎo)公式的思路。
教學(xué)用具
實物投影儀,多媒體軟件,電腦。
教學(xué)方法
講授法。
教學(xué)過程
一、新課引入
提出問題(播放媒體資料):一個堆放鉛筆的`V形架的最下面一層放一支鉛筆,往上每一層都比它下面一層多放一支,最上面一層放100支。這個V形架上共放著多少支鉛筆?(課件設(shè)計見課件展示)
問題就是(板書)“ ”
這是小學(xué)時就知道的一個故事,高斯的算法非常高明,回憶他是怎樣算的(由一名學(xué)生回答,再由學(xué)生討論其高明之處)高斯算法的高明之處在于他發(fā)現(xiàn)這100個數(shù)可以分為50組,第一個數(shù)與最后一個數(shù)一組,第二個數(shù)與倒數(shù)第二個數(shù)一組,第三個數(shù)與倒數(shù)第三個數(shù)一組,…,每組數(shù)的和均相等,都等于101,50個101就等于5050了。高斯算法將加法問題轉(zhuǎn)化為乘法運算,迅速準(zhǔn)確得到了結(jié)果。
我們希望求一般的等差數(shù)列的和,高斯算法對我們有何啟發(fā)?
二、講解新課
(板書)等差數(shù)列前項和公式
1、公式推導(dǎo)(板書)
問題(幻燈片):設(shè)等差數(shù)列的首項為,公差為,由學(xué)生討論,研究高斯算法對一般等差數(shù)列求和的指導(dǎo)意義。
思路一:運用基本量思想,將各項用和表示,得,有以下等式,問題是一共有多少個,似乎與的奇偶有關(guān)。這個思路似乎進(jìn)行不下去了。
思路二:
上面的等式其實就是,為回避個數(shù)問題,做一個改寫,,兩式左右分別相加,得,
于是有:。這就是倒序相加法。
思路三:受思路二的啟發(fā),重新調(diào)整思路一,可得,于是。
于是得到了兩個公式(投影片):和。
2、公式記憶
用梯形面積公式記憶等差數(shù)列前項和公式,這里對圖形進(jìn)行了割、補兩種處理,對應(yīng)著等差數(shù)列前項和的兩個公式。
3、公式的應(yīng)用
公式中含有四個量,運用方程的思想,知三求一。
例1、求和:(1);
。2)(結(jié)果用表示)
解題的關(guān)鍵是數(shù)清項數(shù),小結(jié)數(shù)項數(shù)的方法。
例2、等差數(shù)列中前多少項的和是9900?
本題實質(zhì)是反用公式,解一個關(guān)于的一元二次函數(shù),注意得到的項數(shù)必須是正整數(shù)。
三、小結(jié)
1、推導(dǎo)等差數(shù)列前項和公式的思路;
2、公式的應(yīng)用中的數(shù)學(xué)思想。
四、板書設(shè)計
版權(quán)聲明:本文內(nèi)容由互聯(lián)網(wǎng)用戶自發(fā)貢獻(xiàn),該文觀點僅代表作者本人。本站僅提供信息存儲空間服務(wù),不擁有所有權(quán),不承擔(dān)相關(guān)法律責(zé)任。如發(fā)現(xiàn)本站有涉嫌抄襲侵權(quán)/違法違規(guī)的內(nèi)容, 請發(fā)送郵件至 yyfangchan@163.com (舉報時請帶上具體的網(wǎng)址) 舉報,一經(jīng)查實,本站將立刻刪除