狠狠操网,91中文字幕在线观看,精品久久香蕉国产线看观看亚洲,亚洲haose在线观看

一元一次方程教案

一元一次方程教案

  作為一位兢兢業(yè)業(yè)的人民教師,通常會被要求編寫教案,教案是教學藍圖,可以有效提高教學效率。那么寫教案需要注意哪些問題呢?以下是小編幫大家整理的一元一次方程教案,僅供參考,希望能夠幫助到大家。

一元一次方程教案1

  教學目標

  1.使學生正確認識含有字母系數(shù)的一元一次方程.

  2.使學生掌握含有字母系數(shù)的一元一次方程的解法.

  3.使學生會進行簡單的公式變形.

  4.培養(yǎng)學生由特殊到一般、由一般到特殊的邏輯思維能力.5.通過公式變形例題,培養(yǎng)學生解決實際問題的能力,激發(fā)學生的求知欲望和學習興趣.

  教學重點:

  (1)含有字母系數(shù)的一元一次方程的解法.

  (2)公式變形.

  教學難點:

  (1)對字母函數(shù)的理解,并能準確區(qū)分字母系數(shù)與數(shù)字系數(shù)的區(qū)別與聯(lián)系.

  (2)在公式中會準確區(qū)分未知數(shù)與字母系數(shù),并進行正確的公式變形.

  教學方法

  啟發(fā)式教學和討論式教學相結(jié)合

  教學手段

  多媒體

  教學過程  (一)復習提問

  提出問題:

  1.什么是一元一次方程?

  在學生答的基礎上強調(diào):(1)“一元”——一個未知數(shù);“一次”——未知數(shù)的次數(shù)是1.

  2.解一元一次方程的步驟是什么?

  答:(1)去分母、去括號.

  (2)移項——未知項移到等號一邊常數(shù)項移到等號另一邊.

  注意:移項要變號.

  (3)合并同類項——提未知數(shù).

  (4)未知項系數(shù)化為1——方程兩邊同除以未知項系數(shù),從而解得方程.

  (二)引入新課

  提出問題:一個數(shù)的a倍(a≠0)等于b,求這個數(shù).

  引導學生列出方程:ax=b(a≠0).

  讓學生討論:

  (1)這個方程中的未知數(shù)是什么?已知數(shù)是什么?(a、b是已知數(shù),x是未知數(shù))

  (2)這個方程是不是一元一次方程?它與我們以前所見過的一元一次方程有什么區(qū)別與聯(lián)系?(這個方程滿足一元一次方程的定義,所以它是一元一次方程.)

  強調(diào)指出:ax=b(a≠0)這個一元一次方程與我們以前所見過的一元一次方程最大的區(qū)別在于已知數(shù)是a、b(字母).a是x的系數(shù),b是常數(shù)項.

  (三)新課

  1.含有字母系數(shù)的一元一次方程的定義

  ax=b(a≠0)中對于未知數(shù)x來說a是x的.系數(shù),叫做字母系數(shù),字母b是常數(shù)項,這個方程就是一個含有字母系數(shù)的一元一次方程,今天我們就主要研究這樣的方程.

  2.含有字母系數(shù)的一元一次方程的解法

  教師提問:ax=b(a≠0)是一元一次方程,而a、b是已知數(shù),就可以當成數(shù)看,就像解一般的一元一次方程一樣,如下解出方程:

  ax=b(a≠0).

  由學生討論這個解法的思路對不對,解的過程對不對?

  在學生討論的基礎上,教師歸納總結(jié)出含有字母函數(shù)的一元一次方程和過去學過的一元一次方程的解法的區(qū)別和聯(lián)系.

  含有字母系數(shù)的一元一次方程的解法和學過的含有數(shù)字系數(shù)的一元一次方程的解法相同.(即仍需要采用去分母、去括號、移項、合并同類項、方程兩邊同除以未知數(shù)的系數(shù)等步驟.)

  特別注意:用含有字母的式子去乘或者除方程的兩邊,這個式子的值不能為零.

  3.講解例題

  例1 解方程ax+b2=bx+a2(a≠b).

  解:移項,得 ax-bx=a2-b2,

  合并同類項,得(a-b)x=a2-b2.

  ∵a≠b,∴a-b≠0.

  x=a+b.

  注意:

  1.在沒有特別說明的情況下,一般x、y、z表示未知數(shù),a、b、c表示已知數(shù).

  2.在未知項系數(shù)化為1這一步是最易出錯的一步,一定要說明未知項系數(shù)(式)不為零之后才可以方程兩邊同除以未知項系數(shù)(式).

  3.方

  例2、解方程

  分析:去分母時,要方程兩邊同乘ab,而需ab≠0,那么題目中有沒有這個條件呢?有隱含條件a≠0,b≠0.

  解:b(x-b)=2ab-a(x-a)(a+b≠0).

  bx-b2=2ab-ax+a2(去分母注意“2”這項不要忘記乘以最簡公分母.)

  ba+ax=a2+2ab+b2

  (a+b)x=(a+b)2.

  ∵a+b≠0,

  ∴x=a+b.

  (四)課堂練習

  解下列方程:

  教材P.90.練習題1—4.

  補充練習:

  5.a2(x+b)=b2(x+a)(a2≠b2).

  解:a2x+a2b=b2x+ab2

  (a2-b2)x=ab(b-a).

  ∵a2≠b2,∴a2-b2≠0

  解:2x(a-3)-(a+2)(a-3)=x(a+2)

  (a-b)x=(a+2)(a-3).

  ∵a≠8,∴a-8≠0

  (五)小結(jié)

  1.這節(jié)課我們要理解含有字母系數(shù)的一元一次方程的概念,掌握含有字母系數(shù)的方程與數(shù)字系數(shù)方程的區(qū)別與聯(lián)系.

  2.含有字母系數(shù)的方程的解法與只含有數(shù)字系數(shù)的方程的解法相同.但必須注意:用含有字母的式子去乘或除方程的兩邊,這式子的值不能為零.

  六、布置作業(yè)

  教材P.93.A組1—6;B組1、

  注意:A組第6題要給些提示.

  七、板書設計

  探究活動

  a=bc 型數(shù)量關系

  問題引入:

  問題設置:有一大捆粗細均勻的電線,現(xiàn)要確定其中長度的值,怎樣做比較簡捷?(使用的工具不限,可以從中先取一段作為檢驗樣品)

  提示:由于電線的粗細均勻分布的,所以每段同樣長度的電線的質(zhì)量相等。

  1、由學生討論,得出結(jié)論。

  2、教師再加深一步提問:在我們討論的問題涉及的量中,如果電線的總質(zhì)量為a,總

  長度為b,單位長度的質(zhì)量為c,a,b,c之間有什么關系?

  由學生歸納出:a=bc。對于解決問題:可先取1米長的電線,稱出它的質(zhì)量 ,再稱

  出其余電線的總質(zhì)量 ,則 (米)是其余電線的長度,所以這捆電線的總長度為( )米。

  引出可題:探究活動:a=bc型數(shù)量關系。

  1、b、c之一為定值時.

  讀課本P.96—P.97并填表1和表2中發(fā)現(xiàn)a=bc型數(shù)量關系有什么規(guī)律和特點?

  (1)分析表1

  表1中,A=bc,b、c增加(或減小)A相應的增大(或減小)如矩形1和矩形2項比

  較:寬c=1,長由2變?yōu)?。

  面積也由2增加到4;矩形3,4類似,再看矩形1和矩形3:長都為b=2,寬由1增加到2,面積也變?yōu)樵瓉淼?倍,矩形2、4類似。

  得出結(jié)論,A=bc中,當b,c之一為定值(定量)時,A隨另一量的變化而變化,與之成正比例。

  (2)分析表2

  (1)表2從理論上證明了對表1的分析的結(jié)果。

  (2)矩形推拉窗的活動扇的通風面積A和拉開長度b成正比。(高為定值)

  (3)從實際中猜想,或由經(jīng)驗得出的結(jié)論,在經(jīng)理論上去驗證,再用于實際,這是

  我們數(shù)需解決問題常用的方法之一,是由實際到抽象再由抽象到實際的辯證唯物主義思想。

  2、為定值時

  讀書P.98—P.99,填P.99空,自己試著分析數(shù)據(jù),看到出什么結(jié)論?

  分析:這組數(shù)據(jù)的前提:面積A一定,b,c之間的關系是反比例。

  可見,a=bc型數(shù)量關系不僅在實際生活中存在,而且有巨大的作用。

  這三個式子是同一種數(shù)量關系的三種不同形式,由其中一個式子可以得出另兩個式子。

  3、實際問題中,常見的a=bc型數(shù)量關系。

  (1)總價=單價×貨物數(shù)量;

  (2)利息=利率×本金;

  (3)路程=速度×時間;

  (4)工作量=效率×時間;

  (5)質(zhì)量=密度×體積。

  … 例1、每個同學購一本代數(shù)教科書,書的單價是2元,求總金額y(元)與學生數(shù)n(個)的關系。

  策略:總價=單價×數(shù)量。而數(shù)量等于學生人數(shù)n,故不難求得關系式。

  解:y=2n

  總結(jié):本題考查a=bc型關系式,解題關鍵是弄清數(shù)量關系。

  例2、一輛汽車以30km/h的速度行駛,行駛路程s(km)與行使的時間t(h)有怎樣的關系呢?請表示出來。

  解:s=30t

  例3、一種儲蓄的年利率為2.25%,寫出利息y(元)與存入本金x(元)之間的關系(假定存期一年)。

  解:y=2.25%x

  程的解是分式形式時,一般要化成最簡分式或整式.

一元一次方程教案2

  一、目標:

  知識目標:能熟練地求解數(shù)字系數(shù)的一元一次方程( 不含去括號、去分母)。

  過程方法目標:經(jīng)歷和體會解一元一次方程中“轉(zhuǎn)化”的思想方法。

  情感態(tài)度目標:在數(shù)學活動中獲得成功的喜悅,增強自信心和意志力,激發(fā)學習興趣。

  二、重難點:

  重點:學會解一元一次方程

  難點:移項

  三、學情分析:

  知識背景:學生已學過用等式的性質(zhì)來解一元一次方程。

  能力背景:能比較熟練地用等式的性質(zhì)來解一元一次方程。

  預測目標:能熟練地用移項的方法來解一元一次方 程。

  四、教學過程:

  (一)創(chuàng)設情景

  一頭半歲藍鯨的體 重是22t,90天后的體重是30.1t,藍鯨的體重平均每天增加多少?

  (二)實踐探索,揭示新知

  1.例2.解方程: 看誰算得又快:

  解:方程的兩邊同時加上 得 解: 6x ? 2=10

  移項得 6x =10+2

  即 合并同類項得

  化系數(shù)為1得

  大家看一下有什么規(guī)律可尋?可以討論

  2 .移項的概念: 根據(jù)等式的基本性質(zhì)方程中的某些項改變符號后,可以從方程的一邊移到另一邊 ,這樣的 變形叫做移項。

  看誰做得又快又準確!千萬不要忘記移項要變號。

  3.解方程:3x+3 =12,

  4.例3解方程: 例4解方程 :

  2x=5x-21 x- 3=4-

  5.觀察并思考:

 、僖祈椨惺裁刺攸c?

  ②移項后的化簡包括哪些

  (三)嘗試應用 ,反饋矯正

  1.下列解方程對嗎?

 。1)3x+5=4 7=x-5

  解: 3x+ 5 =4 解:7=x-5

  移項得: 3x =4+5 移項得:-x= 5+7

  合并同類項得 3x =9 合并同類項得 -x= 12

  化系數(shù)為1得 x =3 化系數(shù)為1得 x = -12

  2解方程

 。1). 10x+1=9 (2) 2—3x =4-2x;

  (四)歸納小結(jié)

 。.今天學習了什么?有什么新的簡便的'寫法?

  2.要注意什么?

  3. 解方程的 一般步驟是什么?

  4.. (1) 移項實際上 是對方程兩邊進行 , 使用的是

 。2)系數(shù) 化為 1 實際上是對方程兩邊進行 , 使用的是 。

 。3)移項的作用是什么?

  (五)作業(yè)

  1.課堂作業(yè):課本習題4.2第二題

  2.家作:評價手冊4.2第二課時

一元一次方程教案3

  

  本班學生在一個星期前已經(jīng)學習了等式的性質(zhì)、一元一次方程的概念、一元一次方程的解以及一元一次方程的解法,在學習過程中大部分同學能掌握上述知識,但學生不會自主復習知識,因此很容易遺忘,需復習鞏固。

  

  一、情感態(tài)度與價值觀

  1、在復習一元一次方程的過程中,體會學習方程的意義在于解決實際問題。

  2、在查漏補缺的過程中培養(yǎng)學生自我發(fā)現(xiàn)、自我歸納、善于分析、勇于探索的能力,循序漸進,激發(fā)學生求知欲,增強學生自信心,體會分類的數(shù)學思想。

  二、過程與方法

  1、以點撥——精講——精練的模式,完善知識的結(jié)構。

  2、盡力引導學生進行分析、歸納總結(jié)。

  三、知識與技能

  1、會運用等式的性質(zhì)解一元一次方程,并檢驗一個數(shù)是不是某個一元一次方程的解,在解方程時會對求出的解進行檢驗,養(yǎng)成良好的學習習慣,并加深對方程解的認識。

  2、會一元一次方程的簡單應用。

  

  重點:一元一次方程的解和解一元一次方程

  難點:能夠熟練準確地解一元一次方程和它的應用

  

  教學活動1:

  一、復習知識點:等式的性質(zhì)、一元一次方程的概念以及一元一次方程的解

  (1)基礎練習,回顧知識點:

  1、巳知a=b,下列四個式子中,不正確的是()

  A.2a=2bB.-2a=-2bC.a+2=b-2D.a-2=b-2

  2、下列四個方程中,一元一次方程是( )

  A、B、C、D、

  3、下列方程中,以4為解的方程是()

  A.B.C.D.

  (2)學生歸納,電腦呈現(xiàn)知識點

  教學活動2:

  一、復習知識點:一元一次方程的解法

  (1)練習回顧一元一次方程的解法步驟

  1.下列方程變形正確的是()

  A.由.B.由.

  C.由.

  D.由.

  2、解方程:(用實物投影學生的錯解)

  3、歸納解一元一次方程的.一般步驟是:

  ①______;②________;③________;④_________;⑤_______

  4、解一元一次方程時應注意哪些事項?(提問學生,用電腦顯示)

  教學活動3:見練習卷

  教學活動4:

  小結(jié):

  1、呈現(xiàn)知識結(jié)構:

  2、解一元一次方程的一般步驟以及注意事項

  變形名稱注意事項

  去分母防止漏乘(尤其整數(shù)項),注意分子要添括號

  去括號注意變號,防止漏乘

  移項移項要變號

  合并同類項計算要仔細,不要出差錯

  系數(shù)化成1計算要仔細,分子分母不要顛倒

  一、鞏固練習:

  題組一:

  (1)已知下列式子:(A)x+1=3(B)x-2y=3(C)x(x+1)=2(D)(E)

  (F)3x+3>1;其中是一元一次方程的有(填序號)

  (2)如果關于的方程是一元一次方程,那么。

  (3)寫一個以為根的一元一次方程是。(4)已知方程的解是,則。

  題組二:解下列方程:

  (1)(2)

  題組三:(方程的簡單應用)

  (1)若。

  (2)若是同類項,則2m-3n=。

  (3)代數(shù)式x+6與3(x+2)的值互為相反數(shù),則x的值為。

  (4)若與互為倒數(shù),則x=。

  二、拓展訓練:

  1、解關于的方程:

  2、解絕對值方程:

  課外作業(yè):姓名:學號班別

  1、下列各式中屬于一元一次方程的是()

  A.B.C.D.

  2、下列方程變形中,正確的是()

  3、方程2x-4=x+2的解是()A.6B.8C.10D.-2

  4、研究下面解方程的過程

  去分母,得……①

  移項,得……②

  合并同類項,得……③

  將未知數(shù)的系數(shù)化為1,得……④

  對于上面的過程,你認為()

  A.完全正確B.變形錯誤的是①C.變形錯誤的是②D.變形錯誤的是③

  5、檢驗下列方程后面大括號內(nèi)所列各數(shù)是否為相應方程的解

  (1),{,}

  6、若是方程的解,則 .

  7、寫一個一元一次方程,使它的解為: .

  8、已知方程4x+2m=3x+1和方程3x+2m=6x+1的解相同,則m=。

  9、若和互為相反數(shù),則y=_______。.

  10、若與是同類項,則的值是。

  11、解方程

  (1)(2)(3)

  (4)(5)(6)

一元一次方程教案4

  教學設計說明:

  本節(jié)課的教學設計中堅持以學生發(fā)展為本。通過豐富的情境,活躍的討論,將教材中提供的幾個與生活密切相關的實際問題,抽象出相等的數(shù)量關系,建立數(shù)學模型。啟發(fā)學生逐層深入,多方位、多角度地思考問題,加強知識的綜合運用,尊重個體差異,幫助學生在自主探索與合作交流的過程中獲得數(shù)學活動經(jīng)驗,提高靈活解決實際問題的能力。

  教學分析:

  教學內(nèi)容分析

  本節(jié)課是人民教育出版社的`義務教育課程標準實驗教科書《數(shù)學》七年級上第二章第四節(jié)。列一元一次方程解決生產(chǎn)生活中的一些實際問題,是初中階段應用數(shù)學知識解決實際問題的開端,同時也是今后學習列其它方程或方程組解決實際問題的基礎。

  教學對象分析

  學生在小學學習時就已接觸過有關實際問題中的盈虧問題和省錢問題,掌握了盈虧問題和省錢問題的基本關系,并會解決一些簡單問題,同時,在本章前階段的學習中學習了一元一次方程的解法及列一元一次方程解實際問題建模的思想,但由于學生的認知起點和學習能力存在差異,部分學生對于抽象數(shù)學模型可能感到困難,因此,教學時要注意學生的學習傾向,挖掘積極因素,力求不同的學生獲得不同的發(fā)展。

  教學目標:

  知識與技能目標

  進一步掌握生活中實際問題的方程解法,能找出實際問題中已知數(shù)、未知數(shù)和全部的等量關系,列一元一次方程加以解決。

  過程與方法目標

  主動參與數(shù)學活動,通過問題的對比體會數(shù)學建模思想,形成良好的思維習慣。

  情感、態(tài)度和價值觀目標

  經(jīng)歷從生活中發(fā)現(xiàn)數(shù)學和應用數(shù)學解決實際問題的過程,樹立多種方法解決問題的創(chuàng)新意識,品嘗成功的喜悅,激發(fā)應用數(shù)學的熱情。

  教學重點難點:

  教學重點:1.體驗用多種方法解決實際問題的過程。

  2.列一元一次方程解決實際問題的方法。

  教學難點:體會實際問題的生活情節(jié),將數(shù)量關系抽象概括成為方程模型。

  教學關鍵:調(diào)動全體學生的積極性,讓學生參與實踐,在實踐中提問、交流、合作、探索,正確地列出方程,解決問題。

  教學媒體的選擇和應用

  利用多媒體課件引入問題,讓學生在實際背景下發(fā)現(xiàn)和理解數(shù)學問題。

  教學過程設計

  問題1:銷售中的盈虧:

  某商店在某一時間以每件60元的價格賣出兩件衣服,其中一件盈利25%,另一件虧損25%,賣這兩件衣服總的是盈利還是虧損,或是不盈不虧?

  分析:兩件衣服共賣了120(=60x2)元,是盈是虧要看這家商店買進這兩件衣服時花了多少錢,如果進價大于售價就虧損,反之就盈利。

  小組討論:

  問題2:用那種燈省錢

  小明想在兩種燈中選擇一種。其中一種是11瓦(即0.011千瓦)的節(jié)能燈,售價60元;另一種燈是60瓦(即0.06千瓦)的白熾燈,售價3元。兩種燈的照明效果一樣,使用壽命也相同(3000小時以下)。節(jié)能燈售價高,但是較省電;白熾燈售價低,但是用電多。如果電費是0.5元/(千瓦時),選哪種燈可以省費用(燈的售價加電費)?

  分析:問題中有基本的等量關系

  費用=燈的售價+電費

一元一次方程教案5

  教學目標:

  1、能說出什么叫一元一次方程;

  2、知道“元”和“次”的含義;

  3、熟練掌握最簡一元一次方程的解法及理論依據(jù);

  能力目標:

  1、培養(yǎng)學生準確運算的能力;

  2、培養(yǎng)學生觀察、分析和概括的能力;

  3、通過解方程的教學,了解化歸的數(shù)學思想、

  德育目標:

  1、滲透由特殊到一般的辯證唯物主義思想;

  2、通過對方程的解進行檢驗的習慣的培養(yǎng),培養(yǎng)學生嚴謹、細致的學習習慣和責任感;

  3、在學習和探索知識中提高學生的學習能力、合作精神及勇于探索的精神;

  重點:

  1、一元一次方程的概念;

  2、最簡方程的解法;

  難點:正確地解最簡方程。

  教學方法:引導發(fā)現(xiàn)法

  教學過程

  一、舊知識的復習:

  1、什么叫等式?等式具有哪些性質(zhì)?

  2、什么叫方程?方程的解?解方程?

  二、新知識的教學:

  觀察下列方程:…

  想一想:這些方程有什么共同特點?(學生思考后回答)

  特點:

 。1)只含有一個未知數(shù);

 。2)未知數(shù)的次數(shù)都是一次。

 。ò鍟n題,學生總結(jié)定義)

  定義:只含有一個未知數(shù)并且未知數(shù)的次數(shù)都是一次的方程叫做一元一次方程。

  強調(diào):“元”指什么?(未知數(shù)的個數(shù))

  “次”指什么?(方程中含有未知數(shù)項的最高次數(shù))

  想一想:

 。1)你認為最簡單的一元一次方程是什么樣的?

  (學生舉例說明后總結(jié)出最簡方程)

  最簡方程:我們把形如(其中是未知數(shù))的方

  程稱為最簡方程。

  強調(diào):為什么?

 。2)怎樣求最簡方程(其中是未知數(shù))的解?

  三、解下列方程

  ① ②

 、 ④

  (學生探討求解過程及理論依據(jù)后板書解題過程)

  解:①根據(jù)等式的基本性質(zhì)2,在方程兩邊同除以3,

  未知數(shù)系數(shù)化為1,得

  ②③④解法略

  強調(diào):檢驗解的方法。

  想一想:

  解最簡方程(其中是未知數(shù))時的主要思路是什么?解題的關鍵步驟是什么?

 。ㄒ龑W生思考后回答)

  主要思路:把最簡方程的'未知數(shù)的系數(shù)化為1,變形為的形式;

  解題的關鍵步驟:根據(jù)等式的基本性質(zhì)2,在方程兩邊都除以未知數(shù)的系數(shù)(或兩邊都乘以未知數(shù)的系數(shù)的倒數(shù)),使未知數(shù)的系數(shù)化為1,得到最簡方程的解。

  強調(diào):①方程兩邊都除以未知數(shù)的系數(shù)的步驟可以進行的條件是什么?()

  ②最簡方程一定有唯一的一個解。

  四、鞏固練習

  1、通過練習,請你總結(jié)一下,解方程(是未知數(shù))把系數(shù)化為1時,怎樣運用等式的性質(zhì)2,使計算比較簡單。

  2、檢測:

  3、課堂小結(jié):

  五、本節(jié)學習的主要內(nèi)容

  1、一元一次方程定義;

  2、最簡方程(其中是未知數(shù));

  3、解最簡方程的主要思路和解題的關鍵步驟及依據(jù)。

  六、課堂作業(yè)

  A、解下列方程:

  B、如果關于的方程是一元一次方程,求的值;

  C、解關于的方程:

一元一次方程教案6

  解一元一次方程

  教學目標知識技能

  1.用一元一次方程解決“數(shù)字型”問題;

  2.能熟練的通過合并,移項解一元一次方程;

  3.進一步學習、體會用一元一次方程解決實際問題.

  過程

  方法通過學生自主探究,師生共同研討,體驗將實際問題轉(zhuǎn)化成數(shù)學問題,學會探索數(shù)列中的規(guī)律,建立等量關系并加以解決,同時進一步滲透化歸思想.

  情感

  態(tài)度經(jīng)歷運用方程解決實際問題的過程,發(fā)展抽象、概括、分析和解決問題的能力,體會數(shù)學對實踐的指導意義.

  重點建立一元一次方程解決實際問題的模型.

  難點探索并發(fā)現(xiàn)實際問題中的等量關系,并列出方程.

  

  環(huán)節(jié)教學問題設計教學活動設計

  情

  境

  引

  入牽線搭橋,解下列方程:

  (1)-5x+5=-6x;(2);

  (3)0.5x+0.7=1.9x;

  總結(jié)解“ax+b=cx+d”類型的一元一次方程的步驟方法.

  引出問題即課本例3

  問:你能利用所學知識解決有關數(shù)列的問題嗎?教師:出示題目,提出要求.

  學生:獨立完成,根據(jù)講評核對、自我評價,了解掌握情況.

  探究一:數(shù)字問題

  例3有一列數(shù),按一定規(guī)律排列成1,-3,9,-27,81,-243……其中某三個相鄰數(shù)的和是-1701,這三個數(shù)各是多少?

  1.引導學生觀察這列數(shù)有什么規(guī)律?

 、贁(shù)值變化規(guī)律?②符號變化規(guī)律?

  結(jié)論:后面一個數(shù)是前一個數(shù)的-3倍.

  2.怎樣求出這三個數(shù)?

  ①設三個相鄰數(shù)中的第一個數(shù)為x,那么其它兩個數(shù)怎么表示?

 、诹谐龇匠蹋焊鶕(jù)三個數(shù)的和是-1701列出方程.

 、劢饴

  變式:你能設其它的數(shù)列方程解出嗎?試一試.比比較哪種設法簡單.

  探究二:百分比問題(習題3.2第8題)

  某鄉(xiāng)改種玉米為種優(yōu)質(zhì)雜糧后,今年農(nóng)民人均收入比去年提高20%.今年人均收入比去年的1.5倍少1200元.這個鄉(xiāng)去年農(nóng)民人均收入是多少元?

 、偃粼O這個鄉(xiāng)去年農(nóng)民人均收入是x元,今年人均收入比去年提高20%,那么今年的收入是_________元;

 、谝驗榻衲甑娜司杖氡热ツ甑1.5倍少1200元,所以今年的收入又可以表示為_________元.

 、鄹鶕(jù)“表示同一個量的兩個式子相等”可以列出方程為________________________.

  解答略教師:引導學生分析.

  2.本例是有關數(shù)列的數(shù)學問題,題要求出三個未知數(shù),這需要學生觀察發(fā)現(xiàn)它們的排列規(guī)律,問題具有一定的挑戰(zhàn)性,能激發(fā)學生學習探索規(guī)律類型的問題.

  學生:觀察、討論、闡述自己的發(fā)現(xiàn),并互相交流.

  根據(jù)分析列出方程并解出,求出所求三個數(shù).

  備注:尋找數(shù)的排列規(guī)律是難點,可讓學生小組內(nèi)討論發(fā)現(xiàn)、解決.

  變換設法,列出方程,比較優(yōu)劣、闡述發(fā)現(xiàn)和體會.

  教師:出示題目,引導學生,讓學生嘗試分析,多鼓勵.

  學生:根據(jù)引導思考、回答、闡述自己的觀點和認識.

  根據(jù)共同的分析,列出方程并解出,

  (說明:此題目數(shù)以百分比、增長率問題可根據(jù)實際情況安排,若沒時間,可在習題課上處理)

  嘗試應用

  1、填空

  (1)有個三位數(shù),個位上的數(shù)字是a,十位上的數(shù)字是b,百位上的數(shù)字是c,則這個三位數(shù)是:_______________.

  (2)有一數(shù)列,按一定規(guī)律排成1,-2,3,2,-4,6,3,-6,9,接下來的三個數(shù)為_____________________.

  (3)三個連續(xù)偶數(shù),設第一個為2x,那么第二個為_______,第三個為______,它們的和是__________;若設中間的一個為x,那么第一個為_____,第三個為______,它們的和是__________.

  2.一個三位數(shù),三個數(shù)位上的`數(shù)字的和為17,百位上的數(shù)字比十位上的數(shù)字大7,個位上的數(shù)字是十位上數(shù)字的3倍,你能求出這個三位數(shù)嗎?這是最經(jīng)常出現(xiàn)的一類數(shù)字問題:引導學生分析已知各位上的數(shù)字,怎么表示這個數(shù),理解為什么不能表示成cba?這是解決這類問題的基礎.

  通過(3)題理解連續(xù)數(shù)的表示法,并感受怎么表示最簡單.

  通過2題讓學生理解怎么設?以及怎么設簡單(舍都有聯(lián)系的一個),并感受用未知數(shù)表示多個未知量,順藤摸瓜,從而列出方程的順向思維方式.

  教師:結(jié)合完成題目,匯總講解,重點在于解法.

  成果

  展示1.通過本節(jié)所學你有哪些收獲?

  2.談談你掌握的方法和學習的感受,以及你對應用方程解決問題的體會.學生自我闡述,教師評價鼓勵、補充總結(jié).

  補償提高1.有一數(shù)列,按一定規(guī)律排成0,2,6,12,20,30,…,則第8個數(shù)為______,第n個數(shù)為_____.

  2.下面給出的是20xx年3月份的日歷表,任意圈出一豎列上相鄰的三個數(shù),請你運用方程思想來研究,圈出的三個數(shù)的和不可能是( ).

  A.69B.54C.27D.40

  通過練習,掌握數(shù)字問題的分類及不同解法,鞏固、體會用方程解決問題的思路和思維方式,學會用方程解決問題.

  題目設置是對前面學生所出現(xiàn)的問題進行針對性的補償和補充,也可對學有余力的學生拓展提高.

  根據(jù)學生完成情況靈活設置問題.

  作業(yè)

  設計作業(yè):

  必做題:課本4、5、第94頁6題.

  選做題:同步探究.教師布置作業(yè),并提出要求.

  學生課下獨立完成,延續(xù)課堂.

  授課教師:

  20xx年10月31日

一元一次方程教案7

  教學目標:

  一、知識和技能:

 、逯R目標:

  1、通過對典型實際問題的分析,學生體驗從算術方法到代數(shù)方法是一種進步.

  2、在學生根據(jù)問題尋找相等關系、根據(jù)相等關系列出方程的過程中,培養(yǎng)學生獲取信息、分析問題、處理問題的能力.

  3、使學生在方程的概念“含有未知數(shù)的等式”指引下經(jīng)歷把實際問題抽象為數(shù)學方程的過程,認識到方程是刻畫現(xiàn)實世界的一種有效的數(shù)學模型,初步體會建立數(shù)學模型的思想.

 、婺芰δ繕耍

  數(shù)學思考:能結(jié)合實際問題背景發(fā)現(xiàn)和提出數(shù)學問題。

  解決問題:能利用一元一次方程解決商品銷售中的一些實際問題

  二、過程與方法:

  經(jīng)歷“探究”的活動,激發(fā)學生的學習潛能,促使他們在自主探究與合作交流的過程中,理解和掌握基本的數(shù)學知識、技能,數(shù)學模型思想.

  三、情感態(tài)度與價值觀目標:

  1、引導學生關注生活及培養(yǎng)學生在生活中應用數(shù)學的意識.學生可能設的未知數(shù)不同,列出不同的方程,但很有利于培養(yǎng)學生的發(fā)散思維.

  2、學會與人交流,通過實際問題情景的體驗,讓學生增強學習數(shù)學的興趣?坍嬍挛镩g的相等關系.日常生活中的許多問題得以用數(shù)學方法解決,體驗到實際問題“數(shù)學化”的過程.

  教學重點:在學生自主分析題意的過程中能夠使已設未知數(shù)參與其中.

  教學難點:找到問題中的數(shù)量關系,將未知數(shù)參與其中的`代數(shù)式用 “=”連接起來,使之構成方程.

  教學關鍵:明確問題中的數(shù)量關系,找出等量關系.

  教學課型:新授課

  課時安排:一課時

  教學方法:啟發(fā)式講授,與學生探索相結(jié)合,情境教學法。

  教學準備:幻燈片出示探究題目,三四個可供標價的紙板

  教學過程:

  一、引入新課

  做一個游戲:可以讓同學自己當一回老板:進一次貨(例如:1000元)→→→→→→做一標價→→→→→→根據(jù)實際做出調(diào)整(沒人買怎么辦?搶購一空補貨又應怎么辦?) →→→→→→調(diào)整后進行銷售→→→→→→能算出是虧還是贏嗎,進而得出利潤率等數(shù)量之間的計算方法。

  (1)商品利潤=商品售價-商品進價.

  (2)商品利潤率= .

  (3)打x折的售價=原售價× .

  二、新授

  第一大部分

  探究1:銷售中的盈虧.

  某商店的某一時間以每件60元的價格賣出兩件衣服,其中一件盈利25%,另一件虧損25%,賣這兩件衣服總的是盈利還是虧損,或是不盈不虧?

 、儆蓪W生借以往經(jīng)驗解決(極有可能使用四則運算),作出判斷.

  ②要求應用方程

  再讀題過程中引導學生發(fā)現(xiàn)待用數(shù)量: 某商店的某一時間以每件60元的價格賣出兩件衣服,其中一件盈利25%,另一件虧損25%,賣這兩件衣服總的是盈利還是虧損,或是不盈不虧?

 、塾伞坝25%”和“虧損25%”找到合適的未知數(shù).并作出解設

  ④學生自主修整完成該方程,進而解決問題.

  解:設……………………

  ————————=——---

  ……………………

  ……………………

  答:…………………….

  另外:求出方程的解后,一定要檢驗解的合理性.

  題后點撥:不要認為一件盈利25%,一件虧損25%,結(jié)果不盈不虧,因為盈虧要看這兩件的進價.

  第一大部分附題

  隨堂練習1:

  劉伶以八折優(yōu)惠價購買了一件衣服,省了15元,那么她購買這件衣服實際用了多少錢?

  分析:——————由學生自主找到合適的未知數(shù)并能闡述設此未知數(shù)的原因,以及方程形成的過程。

  “劉伶以八折優(yōu)惠價購買了一件衣服,省了15元,那么她購買這件衣服實際用了多少錢?”適當?shù)目梢蕴崾荆菏裁吹陌苏?省了15元是什么意思?

  解:設……………………

  ————————=——---

  ……………………

  ……………………

  答:…………………….

  求出方程的解后,一定要檢驗解的合理性.

  隨堂練習2:較難的一道利潤問題

  某商品去年提價25%,今年要恢復原價,應下調(diào)幾個百分點?

  分析:Ⅰ 由題中的“提價25%”翻譯為————提高原價的25%,并由此可設原價為x.——————表示為(1+25%)x翻譯為:今年的執(zhí)行價格如此表示.

 、 由題中的“恢復原價” 翻譯為————方程中的等量關系出現(xiàn)了,即————﹌﹌﹌﹌﹌﹌=x

 、 問題隨之出現(xiàn),下調(diào)的百分點又是一個新的未知量,故可設下調(diào)

  m個百分點.

  Ⅳ

一元一次方程教案8

  教學

  目標⒈通過對多種實際問題的分析,感受方程作為刻畫現(xiàn)實世界的有效模型的意義.

 、餐ㄟ^觀察,歸納一元一次方程的概念.

 、丑w會解決問題的一種重要的思想方法——嘗試檢驗法.

  ⒋理解等式的兩個性質(zhì),并初步學會利用等式的兩個性質(zhì)解一元一次方程.

  教學

  重點利用等式的兩個性質(zhì)解一元一次方程.教學

  難點一元一次方程的概念和用嘗試檢驗法求方程的.解

  教學

  方法教學

  用具多媒體

  教學過程

  集體備課稿個案補充

  一、創(chuàng)設情境,引入新課

  kitty與小熊是一對好朋友!他們決定本月8號要去離家很遠的游樂場旅行……

  問題1:今天是2號,再過幾天是8號呢?

  問題2:終于盼來這一天了。坐出租車到車站花了5元,又買了兩張去游樂場的車票,總共花去了13元.去游樂場的每張車票要多少元?

  問題3:門票的原價是多少?

  大家一起來說一說!

  同桌為一組,我們一起來找找這些方程有什么共同的特點

  1、方程的兩邊都是整式2、只有一個未知數(shù)3、未知數(shù)的指數(shù)是一次。這樣的方程叫做一元一次方程!!

  二、講授新課

  1、問題4:1、kitty與小熊玩的第一種游戲射擊(限一人射2次),第二次射擊成績是9環(huán),問第一次是幾環(huán)?

  只取整數(shù)環(huán)

  由已知得,x為自然數(shù)且只能取0,1,2,3,4,5,6.把這些值分別代入方程左邊得。這種方法叫嘗試檢驗法

  x0123456

  使方程左右兩邊的值相等的未知數(shù)的值叫做方程的解。

  練習:判斷下列t的值是不是方程2t+1=7-t的解:

  (1)t=2(2)t=-2

  2、課堂練習:見課件

  3、小結(jié):

  4、作業(yè):見作業(yè)本

一元一次方程教案9

  1.移項法則

  (1)定義

  把原方程中的某些項改變符號后,從方程的一邊移到另一邊,這種變形叫做移項.

  例如:

  (2)移項的依據(jù):等式的基本性質(zhì)1.

  辨誤區(qū)移項時的注意事項

  ①移項是將方程中某一項從方程的一邊移到另一邊,不是左邊或右邊某些項的交換;②移項時要變號,不能出現(xiàn)不變號就移項的情況.

  下列方程中,移項正確的是().

  A.方程10-x=4變形為-x=10-4

  B.方程6x-2=4x+4變形為6x-4x=4+2

  C.方程10=2x+4-x變形為10=2x-x+4

  D.方程3-4x=x+8變形為x-4x=8-3

  解析:選項A中應變形為-x=4-10;選項C中不是移項,只是交換了兩項的位置,正確的移項是-2x+x=4-10;選項D中應變形為-4x-x=8-3,只有選項B是正確的.

  答案:B

  2.解一元一次方程的一般步驟

  (1)解一元一次方程的步驟

  去分母→去括號→移項→合并同類項→未知數(shù)的系數(shù)化為1.

  上述步驟中,都是一元一次方程的變形方法,經(jīng)過這些變形,方程變得簡單易解,而方程的解并未改變.

  (2)解一元一次方程的具體做法

  變形

  名稱具體做法變形依據(jù)注意事項

  去分母兩邊同時乘各分母的最小公倍數(shù)等式的基本性質(zhì)2不要漏乘不含分母的項

  去括號先去小括號,再去中括號,最后去大括號去括號法則、乘法分配律不要漏乘括號內(nèi)的每一項,注意符號

  移項含有未知數(shù)的項移到方程的一邊,常數(shù)項移到另一邊等式的基本性質(zhì)1移項要變號,不要漏項

  合并

  同類

  項把方程化成ax=b(a≠0)的形式合并同類項法則系數(shù)相加,字母及指數(shù)不變

  系數(shù)

  化為1兩邊都除以未知數(shù)的系數(shù)等式的基本性質(zhì)2分子、分母不要顛倒

  解方程:4x+5=-3+2x.

  分析:按以下步驟解方程:

  解:移項,得4x-2x=-3-5.

  合并同類項,得2x=-8.

  系數(shù)化為1,得x=-4.

  解方程65100(y-1)=37100(y+1)+0.1.

  分析:方程中既含有分母,又含有括號,根據(jù)方程的形式特點,還是先去分母比較簡便.

  解:去分母,得65(y-1)=37(y+1)+10.

  去括號,得65y-65=37y+37+10.

  移項,得65y-37y=37+10+65.

  合并同類項,得28y=112.

  系數(shù)化為1,得y=4.

  點評:解一元一次方程,要注意根據(jù)方程的特點靈活運用解一元一次方程的一般步驟,不一定非按這個“一般步驟”的順序,適合先去分母的要先去分母,適合先去括號的要先去括號,去分母、去括號時,注意不要出現(xiàn)漏乘,尤其是注意不要漏乘常數(shù)項,移項時要注意變號.

  3.分子、分母中含有小數(shù)的一元一次方程的解法

  當分子、分母中含有小數(shù)時,一般是先根據(jù)分數(shù)的基本性質(zhì),將分數(shù)的分子、分母同乘以一個適當?shù)恼麛?shù),將其中的小數(shù)化為整數(shù)再解方程.需要注意的`是這一步變形根據(jù)的是分數(shù)的基本性質(zhì),而不是等式的基本性質(zhì);變形時是分數(shù)的分子、分母同乘以一個適當?shù)恼麛?shù),而不是在方程的兩邊同乘以一個整數(shù).

  解方程0.4x+0.90.5-0.03+0.02x0.03=1.

  分析:原方程的分子、分母中都含有小數(shù),利用分數(shù)的基本性質(zhì),方程中0.4x+0.90.5的分子、分母都乘以10,0.03+0.02x0.03的分子、分母都乘以100,就能將方程中的所有小數(shù)化為整數(shù).

  解:原方程可化為4x+95-3+2x3=1.

  去分母,得3(4x+9)-5(3+2x)=15.

  去括號,得12x+27-15-10x=15.

  移項、合并同類項,得2x=3.

  系數(shù)化為1,得x=32.

  4.帶多層括號的一元一次方程的解法

  一元一次方程,除個別題外,一般都有幾層括號,一般方法是按照“由內(nèi)到外”的順序去括號,即先去小括號,再去中括號,最后去大括號.每去一層括號合并同類項一次,以簡化運算.

  有時可根據(jù)方程的特征,靈活選擇去括號的順序,從而達到快速解題的目的.

  在解具體的某個方程時,要仔細觀察方程的特點,根據(jù)方程的特點靈活選擇解法.

  233212(x-1)-3-3=3.

  分析:若先去小括號,再去中括號,再去大括號,然后再運算比較麻煩.注意到32×23=1,因而可先去大括號,在去大括號的同時也去掉了中括號,這樣既簡化了解題過程,又能避開一些常見解題錯誤的發(fā)生.

  解:去大括號,得12(x-1)-3-2=3.

  去小括號,得12x-12-3-2=3.

  移項,得12x=12+3+2+3.

  合并同類項,得12x=172.

  系數(shù)化為1,得x=17.

  5.含有字母系數(shù)的一元一次方程的解法

  含有字母系數(shù)的一元一次方程的解法與一般一元一次方程的解法步驟完全相同:去分母→去括號→移項→合并同類項→系數(shù)化為1.要特別注意的是系數(shù)化為1時,當未知數(shù)的系數(shù)是字母時,要分情況討論.

  關于x的方程ax=b的解的情況:

  ①當a≠0時,方程有唯一的解x=ba;②當a=0,且b=0時,方程有無數(shù)解;③當a=0,且b≠0時,方程無解.

  解關于x的方程3x-2=mx.

  分析:本題中未知數(shù)是x,m是已知數(shù),先通過移項、合并同類項把方程變形為ax=b的形式,再討論.

  解:移項,得3x-mx=2,

  即(3-m)x=2.

  當3-m≠0時,兩邊都除以3-m,

  得x=23-m.

  當3-m=0時,則有0x=2,此時,方程無解.

  點評:解含有字母系數(shù)的方程要不要討論,關鍵是看解方程的最后一步,在系數(shù)化為1的時候,當未知數(shù)的系數(shù)是數(shù)字時,不用討論,當未知數(shù)的系數(shù)含有字母時,必須分情況討論.

一元一次方程教案10

  一、素質(zhì)教育目標

  (一)知識教學點

  1.要求學生學會用移項解方程的方法.

  2.使學生掌握移項變號的基本原則.

  (二)能力訓練點

  由移項變形方法的教學,培養(yǎng)學生由算術解法過渡到代數(shù)解法的解方程的基本能力.

  (三)德育滲透點

  用代數(shù)方法解方程中,滲透了數(shù)學中的化未知為已知的重要數(shù)學思想.

  (四)美育滲透點

  用移項法解方程明顯比用前面的方法解方程方便,體現(xiàn)了數(shù)學的方法美.

  二、學法引導

  1.教學方法:采用引導發(fā)現(xiàn)法發(fā)現(xiàn)法則,課堂訓練體現(xiàn)學生的主體地位,引進競爭機制,調(diào)動課堂氣氛.

  2.學生學法:練習→移項法制→練習

  三、重點、難點、疑點及解決辦法

  1.重點:移項法則的掌握.

  2.難點:移項法解一元一次方程的步驟.

  3.疑點:移項變號的掌握.

  四、課時安排

  3課時

   五、教具學具準備

  投影儀或電腦、自制膠片、復合膠片.

  六、師生互動活動設計

  教師出示探索性練習題,學生觀察討論得出移項法則,教師出示鞏固性練習,學生以多種形式完成.

  七、教學步驟

  (一)創(chuàng)設情境,復習導入

  師提出問題:上節(jié)課我們研究了方程、方程的解和解方程的有關知識,請同學們首先回顧上節(jié)課的有關內(nèi)容;回答下面問題.

  (出示投影1)

  利用等式的性質(zhì)解方程

  (1)

  ; (2)

  ;

  解:方程的兩邊都加7, 解:方程的兩邊都減去

  ,

  得

  , 得

  ,

  即

  . 合并同類項得

  .

  通過上面兩小題,對用等式性質(zhì)解方程進行鞏固、回憶,為講解新方法奠定基礎.

  提出問題:下面我們觀察上面方程的變形過程,從中觀察變化的項的規(guī)律是什么?

  (二)探索新知,講授新課

  投影展示上面變形的過程,用制作復合式運動膠片將上面的變形展示如下,讓學生觀察在變形過程中,變化的項的變化規(guī)律,引出新知識.

  (出示投影2)

  師提出問題:1.上述演示中,兩個題目中的哪些項改變了在原方程中的位置?怎樣變的?

  2.改變的項有什么變化?

  學生活動:分學習小組討論,各組把討論的結(jié)果派代表上報教師,最好分四組,這樣節(jié)省時間.

  師總結(jié)學生活動的結(jié)果:大家討論的結(jié)論,有如下共同點:①方程(1)的已知項從左邊移到了方程右邊,方程(2)的'

  項從右邊移到了左邊;②這些位置變化的項都改變了原來的符號.

  在這里的投影變化中,教師要抓住時機,讓學生發(fā)現(xiàn)變化的規(guī)律,準確掌握這種變化的法則,也是為以后解更復雜方程打下好的基礎.

  師歸納:像上面那樣,把方程中的某項改變符號后,從方程的一邊移到另一邊的變形叫做移項.這里應注意移項要改變符號.

  (三)嘗試反饋,鞏固練習

  師提出問題:我們可以回過頭來,想一想剛解過的兩個方程哪個變化過程可以叫做移項.

  學生活動:要求學生對課前解方程的變形能說出哪一過程是移項.

  可由學生對前面兩個解方程問題用移項過程,重新寫一遍,以理解解方程的步驟和格式.

  對比練習:(出示投影3)

  解方程:(1)

  ; (2)

  ;

  (3)

  ; (4)

  .

  學生活動:把學生分四組練習此題,一組、二組同學(1)(2)題用等式性質(zhì)解,(3)(4)題移項變形解;三、四組同學(1)(2)題用移項變形解,(3)(4)題用等式性質(zhì)解.

  師提出問題:用哪種方法解方程更簡便?解方程的步驟是什么?(答:移項法;移項、合并同類項、檢驗.)

  這部分教學旨在于使學生學會用移項這一手段解方程的方法,通過學生動手嘗試,理解解方程的步驟,從而掌握移項這一法則.

  鞏固練習:(出示投影4)

一元一次方程教案11

  數(shù)學思考:

  1、學習分析問題找到相等關系并通過列方程解決問題的方法;

  2、通過學習移項解一元一次方程,體會到式子變形的轉(zhuǎn)化作用。

  解決問題:體會解方程中的化歸思想,會移項、合并解ax+b=cx+d型的方程,進一步認識如何用方程解決實際問題。

  情感態(tài)度:通過學習“合并”和“移項”,體會古老的代數(shù)書中的“對消”和“還原”的`思想,激發(fā)數(shù)學學習的熱情。

  教學重點:

  1、找相等關系列一元一次方程;

  2、用移項、合并等解一元一次方程。

  教學難點:找相等關系列方程,正確地移項解一元一次方程。

  教學過程:

  [活動1]展示問題、創(chuàng)設情境

  把一些圖書分給某班學生閱讀,如果每人分3本,則剩余20本;如果每人分4本,則還缺25本,這個班有多少學生?

 。▽W生自主分析后,教師提問:)

  1、本題怎樣設未知數(shù)?

  2、這批書的總數(shù)有幾種表示法?它們之間有什么關系?

  3、本題哪個相等關系可以作為列方程的依據(jù)呢?

 。◣熒餐谐龇匠。)

  解:設有x名學生,則可列方程得:

  3x+20=4x—2  [活動2]學習“移項”解方程

  提問:如何解方程3x+20=4x—25呢?

 。▽W生分組討論:①解方程的。目標是什么?②利用什么知識可以實現(xiàn)這種轉(zhuǎn)化?)

  引導學生分析方程的變化:

  3x+20=4x—25

  3x—4x=—25—20

  觀察:上面方程的變形有些什么變化?

  歸納:像這樣把等式一邊的某項變號后移到另一邊叫做移項。

  [活動3]總結(jié)

  解這個方程的具體過程:

  3x+20=4x—25

一元一次方程教案12

  教學目標

  知識與能力

  1.通過對典型實際問題的分析,體驗從算術方法到代數(shù)方法是一種進步.

  2.在根據(jù)問題尋找相等關系、根據(jù)相等關系列出方程的過程中,培養(yǎng)獲取信息、分析問題、處理問題的.能力.

  3.在方程的概念“含有未知數(shù)的等式”指引下經(jīng)歷把實際問題抽象為數(shù)學方程的過程,認識到方程是刻畫現(xiàn)實世界的一種有效的數(shù)學模型,初步體會建立數(shù)學模型的思想.

  教學目標

  過程與方法

  1.能結(jié)合實際問題情境發(fā)現(xiàn)并提出數(shù)學問題.

  2.通過學習進一步體會方程是刻畫現(xiàn)實世界的有效數(shù)學模型,增強從實際問題出發(fā)建立數(shù)學模型的能力.

  情感態(tài)度與價值觀目標

  1.勤于思考,樂于探究,敢于發(fā)表自己的觀點;

  2.以積極的態(tài)度與同伴合作,從解決實際問題中體驗數(shù)學價值.

  教學重難點

  重點

  會用一元一次方程解決實際問題.

  難點

  將實際問題轉(zhuǎn)化為數(shù)學問題,通過列方程解決問題.

一元一次方程教案13

  教學目標

  (一)知識認知要求

  1、認識一元一次方程與一次函數(shù)問題的轉(zhuǎn)化關系;

  2、學會用圖象法求解方程;

  3、進一步理解數(shù)形結(jié)合思想;

  (二)能力訓練要求

  1、通過一元一次方程與一次函數(shù)的圖象之間的結(jié)合,培養(yǎng)學生的數(shù)形結(jié)合意識;

  2、訓練大家能利用數(shù)學知識去解決實際問題的能力。

 。ㄈ┣楦信c價值觀要求

  體驗數(shù)、圖形是有效地描述現(xiàn)實世界的重要手段,認識到數(shù)學是解決問題和進行交流的重要工具,了解數(shù)學對促進社會進步和發(fā)展人類理性精神的作用。

  教學重點與難點

  1、理解一元一次不方程與一次函數(shù)的.轉(zhuǎn)化及本質(zhì)聯(lián)系。

  2、掌握用圖象求解方程的方法。

  教學過程

  一、提出問題

  (1)方程2x+20=0;(2)函數(shù)y=2x+20

  觀察思考:二者之間有什么聯(lián)系?

  從數(shù)上看:方程2x+20=0的解,是函數(shù)y=2x+20的值為0時,對應自變量x的值

  從形上看:函數(shù)y=2x+20與x軸交點的橫坐標即為方程2x+20=0的解

  根據(jù)上述問題,教師啟發(fā)學生思考:

  根據(jù)學生回答,教師總結(jié):

  由于任何一元一次方程都可以轉(zhuǎn)化為ax+b=0(a,b為常數(shù),a≠0)的形式,所以解一元一次方程可以轉(zhuǎn)化為:當某一個函數(shù)的值為0時,求相應的自變量的值。從圖象上看,這相當于已知直線y=ax+b,確定它也x軸交點的橫坐標的值。

  二、典型例題:

  例1、(書中例1)一個物體現(xiàn)在的速度是5米/秒,其速度每秒增加2米/秒,再過幾秒它的速度為17米/秒?

一元一次方程教案14

  一、學習目標

  1.知道解一元一次方程的去分母步驟,并能熟練地解一元一次方程。

  2.通過討論、探索解一元一次方程的一般步驟和容易產(chǎn)生的問題,培養(yǎng)學生觀察、歸納和概括能力。

  二、重點:

  解一元一次方程中去分母的方法;培養(yǎng)學生自己發(fā)現(xiàn)問題、解決問題的能力。

  難點:去分母法則的正確運用。

  三、學習過程:

 。ㄒ唬、復習導入

  1、解方程:(1);(2)2(x-2)-(4x-1)=3(1-x)

  2、回顧:解一元一次方程的一般步驟及每一步的依據(jù)

  3、(只列不解)為改善生態(tài)環(huán)境,避免水土流失,某村積極植樹造林,原計劃每天植樹60棵,實際每天植樹80棵,結(jié)果比預計時間提前4天完成植樹任務,則計劃植樹_____棵。

  (二)學生自學p99--100

  根據(jù)等式性質(zhì),方程兩邊同乘以,得

  即得不含分母的方程:4x-3x=960

  X=960

  像這樣在方程兩邊同時乘以,去掉分數(shù)的分母的'變形過程叫做。依據(jù)是

  (三)例題:

  例1解方程:

  解:去分母,得依據(jù)

  去括號,得依據(jù)

  移項,得依據(jù)

  合并同類項,得依據(jù)

  系數(shù)化為1,得依據(jù)

  注意:1)、分數(shù)線具有

  2)、不含分母的項也要乘以(即不要漏乘)

  討論:小明是個“小馬虎”下面是他做的題目,我們看看對不對?如果不對,請幫他改正。

 。1)方程去分母,得

 。2)方程去分母,得

 。3)方程去分母,得

  (4)方程去分母,得

  通過這幾節(jié)課的學習,你能歸納小結(jié)一下解一元一次方程的一般步驟嗎?

  解一元一次方程的一般步驟是:

  1.依據(jù);

  2.依據(jù);

  3.依據(jù);

  4.化成的形式;依據(jù);

  5.兩邊同除以未知數(shù)的系數(shù),得到方程的解;依據(jù);

  練一練:見P101練習解下列方程:(1)(2)

 。3)思考:如何求方程

  小明的解法:解:去百分號,得同學看看有沒有異議?

  四、小結(jié):

  談談這節(jié)課有什么收獲以及解帶有分母的一元一次方程要注意的一些問題。

  五、課堂檢測:

  1、去分母時,在方程的左右兩邊同時乘以各個分母的_____________,從而去掉分母,去分母時,每一項都要乘,不要漏乘,特別是不含分母的項,注意含分母的項約去分母分子必須加括號,由于分數(shù)線具有

  2、解方程(1)2x+5=5x-7(2)4-3(2-x)=5x(3)=3x-1

  (4)=+1(5)

  六、作業(yè)

  P102:3,10.

一元一次方程教案15

  每一門功課都有它自身的規(guī)律,有它自身的特點,數(shù)學當然也不例外。下面是有關七年級上冊數(shù)學第五章知識點的內(nèi)容,供你學習參考!

  一、方程的有關概念

  1.方程:含有未知數(shù)的等式就叫做方程.

  2.一元一次方程:只含有一個未知數(shù)(元)x,未知數(shù)x的指數(shù)都是1(次),這樣的方程叫做一元一次方程.例如:1700+50x=1800,2(x+1.5x)=5等都是一元一次方程.

  3.方程的解:使方程中等號左右兩邊相等的未知數(shù)的值,叫做方程的解.

  注:⑴方程的解和解方程是不同的概念,方程的解實質(zhì)上是求得的結(jié)果,它是一個數(shù)值(或幾個數(shù)值),而解方程的含義是指求出方程的解或判斷方程無解的過程.⑵方程的解的檢驗方法,首先把未知數(shù)的值分別代入方程的左、右兩邊計算它們的值,其次比較兩邊的值是否相等從而得出結(jié)論.

  二、等式的性質(zhì)

  等式的性質(zhì)(1):等式兩邊都加上(或減去)同個數(shù)(或式子),結(jié)果仍相等.用式子形式表示為:如果a=b,那么ac=bc

  (2)等式的性質(zhì)(2):等式兩邊乘同一個數(shù),或除以同一個不為0的數(shù),結(jié)果仍相等,用式子形式表示為:如果a=b,那么ac=bc;如果a=b(c0),那么ac=bc

  三、移項法則:把等式一邊的某項變號后移到另一邊,叫做移項.

  四、去括號法則

  1.括號外的因數(shù)是正數(shù),去括號后各項的符號與原括號內(nèi)相應各項的符號相同.

  2.括號外的因數(shù)是負數(shù),去括號后各項的`符號與原括號內(nèi)相應各項的符號改變.

  五、解方程的一般步驟

  1、去分母(方程兩邊同乘各分母的最小公倍數(shù))

  2、去括號(按去括號法則和分配律)

  3、移項(把含有未知數(shù)的項移到方程一邊,其他項都移到方程的另一邊,移項要變號)

  4、合并(把方程化成ax=b(a0)形式)

  5.系數(shù)化為1(在方程兩邊都除以未知數(shù)的系數(shù)a,得到方程的解x=ba).

  六、用方程思想解決實際問題的一般步驟

  1、審:審題,分析題中已知什么,求什么,明確各數(shù)量之間的關系.

  2.、設:設未知數(shù)(可分直接設法,間接設法)

  3、列:根據(jù)題意列方程.

  4、解:解出所列方程.

  5、檢:檢驗所求的解是否符合題意.

  6、答:寫出答案(有單位要注明答案)

  七、有關常用應用類型題及各量之間的關系

  1、和、差、倍、分問題:

  (1)倍數(shù)關系:通過關鍵詞語是幾倍,增加幾倍,增加到幾倍,增加百分之幾,增長率來體現(xiàn).

  (2)多少關系:通過關鍵詞語多、少、和、差、不足、剩余來體現(xiàn).

  2、等積變形問題:

  等積變形是以形狀改變而體積不變?yōu)榍疤?常用等量關系為:

  ①形狀面積變了,周長沒變;

 、谠象w積=成品體積.

  3、勞力調(diào)配問題:

  這類問題要搞清人數(shù)的變化,常見題型有:

  (1)既有調(diào)入又有調(diào)出;

  (2)只有調(diào)入沒有調(diào)出,調(diào)入部分變化,其余不變;

  (3)只有調(diào)出沒有調(diào)入,調(diào)出部分變化,其余不變

  4、數(shù)字問題

  (1)要搞清楚數(shù)的表示方法:一個三位數(shù)的百位數(shù)字為a,十位數(shù)字是b,個位數(shù)字為c(其中a、b、c均為整數(shù),且19,09,09)則這個三位數(shù)表示為:100a+10b+c.

  (2)數(shù)字問題中一些表示:兩個連續(xù)整數(shù)之間的關系,較大的比較小的大1;偶數(shù)用2n表示,連續(xù)的偶數(shù)用2n+2或2n2表示;奇數(shù)用2n+1或2n1表示.

  5、工程問題:

  工程問題中的三個量及其關系為:工作總量=工作效率工作時間

  6、行程問題:

  (1)行程問題中的三個基本量及其關系:路程=速度時間.

  (2)基本類型有

  ①相遇問題;

 、谧芳皢栴};常見的還有:相背而行;行船問題;環(huán)形跑道問題.

  7、商品銷售問題

  有關關系式:

  商品利潤=商品售價商品進價=商品標價折扣率商品進價

  商品利潤率=商品利潤/商品進價

  商品售價=商品標價折扣率

  8、儲蓄問題

 、蓬櫩痛嫒脬y行的錢叫做本金,銀行付給顧客的酬金叫利息,本金和利息合稱本息和,存入銀行的時間叫做期數(shù),利息與本金的比叫做利率.利息的20%付利息稅

 、评=本金利率期數(shù)

  本息和=本金+利息

  利息稅=利息稅率(20%)

版權聲明:本文內(nèi)容由互聯(lián)網(wǎng)用戶自發(fā)貢獻,該文觀點僅代表作者本人。本站僅提供信息存儲空間服務,不擁有所有權,不承擔相關法律責任。如發(fā)現(xiàn)本站有涉嫌抄襲侵權/違法違規(guī)的內(nèi)容, 請發(fā)送郵件至 yyfangchan@163.com (舉報時請帶上具體的網(wǎng)址) 舉報,一經(jīng)查實,本站將立刻刪除