直線的方程
直線的方程(精選10篇)
直線的方程 篇1
教學(xué)目標(biāo)
。1)掌握由一點(diǎn)和斜率導(dǎo)出直線方程的方法,掌握直線方程的點(diǎn)斜式、兩點(diǎn)式和直線方程的一般式,并能根據(jù)條件熟練地求出.
(2)理解直線方程幾種形式之間的內(nèi)在聯(lián)系,能在整體上把握.
(3)掌握直線方程各種形式之間的互化.
。4)通過(guò)直線方程一般式的教學(xué)培養(yǎng)學(xué)生全面、系統(tǒng)、周密地分析、討論問(wèn)題的能力.
。5)通過(guò)直線方程特殊式與一般式轉(zhuǎn)化的教學(xué),培養(yǎng)學(xué)生靈活的思維品質(zhì)和辯證唯物主義觀點(diǎn).
。6)進(jìn)一步理解直線方程的概念,理解直線斜率的意義和解析幾何的思想方法.
教學(xué)建議
1.教材分析 。1)知識(shí)結(jié)構(gòu) 由直線方程的概念和直線斜率的概念導(dǎo)出直線方程的點(diǎn)斜式;由直線方程的點(diǎn)斜式分別導(dǎo)出直線方程的斜截式和兩點(diǎn)式;再由兩點(diǎn)式導(dǎo)出截距式;最后都可以轉(zhuǎn)化歸結(jié)為直線的一般式;同時(shí)一般式也可以轉(zhuǎn)化成特殊式. (2)重點(diǎn)、難點(diǎn)分析 、俦竟(jié)的重點(diǎn)是直線方程的點(diǎn)斜式、兩點(diǎn)式、一般式,以及根據(jù)具體條件求出. 解析幾何有兩項(xiàng)根本性的任務(wù):一個(gè)是求曲線的方程;另一個(gè)就是用方程研究曲線.本節(jié)內(nèi)容就是求,因此是非常重要的內(nèi)容,它對(duì)以后學(xué)習(xí)用方程討論直線起著直接的作用,同時(shí)也對(duì)曲線方程的學(xué)習(xí)起著重要的作用. 直線的點(diǎn)斜式方程是平面解析幾何中所求出的第一個(gè)方程,是后面幾種特殊形式的源頭.學(xué)生對(duì)點(diǎn)斜式學(xué)習(xí)的效果將直接影響后繼知識(shí)的學(xué)習(xí). 、诒竟(jié)的難點(diǎn)是直線方程特殊形式的限制條件,直線方程的整體結(jié)構(gòu),直線與二元一次方程的關(guān)系證明. 2.教法建議 (1)教材中求直線方程采取先特殊后一般的思路,特殊形式的方程幾何特征明顯,但局限性強(qiáng);一般形式的方程無(wú)任何限制,但幾何特征不明顯.教學(xué)中各部分知識(shí)之間過(guò)渡要自然流暢,不生硬. 。2)直線方程的一般式反映了直線方程各種形式之間的統(tǒng)一性,教學(xué)中應(yīng)充分揭示直線方程本質(zhì)屬性,建立二元一次方程與直線的對(duì)應(yīng)關(guān)系,為繼續(xù)學(xué)習(xí)“曲線方程”打下基礎(chǔ). 直線一般式方程都是字母系數(shù),在揭示這一概念深刻內(nèi)涵時(shí),還需要進(jìn)行正反兩方面的分析論證.教學(xué)中應(yīng)重點(diǎn)分析思路,還應(yīng)抓住這一有利時(shí)使學(xué)生學(xué)會(huì)嚴(yán)謹(jǐn)科學(xué)的分類討論方法,從而培養(yǎng)學(xué)生全面、系統(tǒng)、辯證、周密地分析、討論問(wèn)題的能力,特別是培養(yǎng)學(xué)生邏輯思維能力,同時(shí)培養(yǎng)學(xué)生辯證唯物主義觀點(diǎn) (3)在強(qiáng)調(diào)幾種形式互化時(shí)要向?qū)W生充分揭示各種形式的特點(diǎn),它們的幾何特征,參數(shù)的意義等,使學(xué)生明白為什么要轉(zhuǎn)化,并加深對(duì)各種形式的理解. (4)教學(xué)中要使學(xué)生明白兩個(gè)獨(dú)立條件確定一條直線,如兩個(gè)點(diǎn)、一個(gè)點(diǎn)和一個(gè)方向或其他兩個(gè)獨(dú)立條件.兩點(diǎn)確定一條直線,這是學(xué)生很早就接觸的幾何公理,然而在解析幾何,平面向量等理論中,直線或向量的方向是極其重要的要素,解析幾何中刻畫直線方向的量化形式就是斜率.因此,直線方程的兩點(diǎn)式和點(diǎn)斜式在直線方程的幾種形式中占有很重要的地位,而已知兩點(diǎn)可以求得斜率,所以點(diǎn)斜式又可推出兩點(diǎn)式(斜截式和截距式僅是它們的特例),因此點(diǎn)斜式最重要.教學(xué)中應(yīng)突出點(diǎn)斜式、兩點(diǎn)式和一般式三個(gè)教學(xué)高潮. 求直線方程需要兩個(gè)獨(dú)立的條件,要依不同的幾何條件選用不同形式的方程.根據(jù)兩個(gè)條件運(yùn)用待定系數(shù)法和方程思想求直線方程. 。5)注意正確理解截距的概念,截距不是距離,截距是直線(也是曲線)與坐標(biāo)軸交點(diǎn)的相應(yīng)坐標(biāo),它是有向線段的數(shù)量,因而是一個(gè)實(shí)數(shù);距離是線段的長(zhǎng)度,是一個(gè)正實(shí)數(shù)(或非負(fù)實(shí)數(shù)). 。6)本節(jié)中有不少與函數(shù)、不等式、三角函數(shù)有關(guān)的問(wèn)題,是函數(shù)、不等式、三角與直線的重要知識(shí)交匯點(diǎn)之一,教學(xué)中要適當(dāng)選擇一些有關(guān)的問(wèn)題指導(dǎo)學(xué)生練習(xí),培養(yǎng)學(xué)生的綜合能力. (7)直線方程的理論在其他學(xué)科和生產(chǎn)生活實(shí)際中有大量的應(yīng)用.教學(xué)中注意聯(lián)系實(shí)際和其它學(xué)科,教師要注意引導(dǎo),增強(qiáng)學(xué)生用數(shù)學(xué)的意識(shí)和能力. 。8)本節(jié)不少內(nèi)容可安排學(xué)生自學(xué)和討論,還要適當(dāng)增加練習(xí),使學(xué)生能更好地掌握,而不是僅停留在觀念上. 教學(xué)設(shè)計(jì)示例 直線方程的一般形式 教學(xué)目標(biāo): 。1)掌握直線方程的一般形式,掌握直線方程幾種形式之間的互化. 。2)理解直線與二元一次方程的關(guān)系及其證明 (3)培養(yǎng)學(xué)生抽象概括能力、分類討論能力、逆向思維的習(xí)慣和形成特殊與一般辯證統(tǒng)一的觀點(diǎn). 教學(xué)重點(diǎn)、難點(diǎn):直線方程的一般式.直線與二元一次方程 ( 、 不同時(shí)為0)的對(duì)應(yīng)關(guān)系及其證明. 教學(xué)用具:計(jì)算機(jī) 教學(xué)方法:?jiǎn)l(fā)引導(dǎo)法,討論法 教學(xué)過(guò)程 下面給出教學(xué)實(shí)施過(guò)程設(shè)計(jì)的簡(jiǎn)要思路: 教學(xué)設(shè)計(jì)思路: 。ㄒ唬┮氲脑O(shè)計(jì) 前邊學(xué)習(xí)了如何根據(jù)所給條件求出直線方程的方法,看下面問(wèn)題: 問(wèn):說(shuō)出過(guò)點(diǎn) (2,1),斜率為2的,并觀察方程屬于哪一類,為什么? 答:直線方程是 ,屬于二元一次方程,因?yàn)槲粗獢?shù)有兩個(gè),它們的最高次數(shù)為一次. 肯定學(xué)生回答,并糾正學(xué)生中不規(guī)范的表述.再看一個(gè)問(wèn)題: 問(wèn):求出過(guò)點(diǎn) , 的,并觀察方程屬于哪一類,為什么? 答:直線方程是 (或其它形式),也屬于二元一次方程,因?yàn)槲粗獢?shù)有兩個(gè),它們的最高次數(shù)為一次. 肯定學(xué)生回答后強(qiáng)調(diào)“也是二元一次方程,都是因?yàn)槲粗獢?shù)有兩個(gè),它們的最高次數(shù)為一次”. 啟發(fā):你在想什么(或你想到了什么)?誰(shuí)來(lái)談?wù)?各小組可以討論討論. 學(xué)生紛紛談出自己的想法,教師邊評(píng)價(jià)邊啟發(fā)引導(dǎo),使學(xué)生的認(rèn)識(shí)統(tǒng)一到如下問(wèn)題: 【問(wèn)題1】“任意都是二元一次方程嗎?” 。ǘ┍竟(jié)主體內(nèi)容教學(xué)的設(shè)計(jì) 這是本節(jié)課要解決的第一個(gè)問(wèn)題,如何解決?自己先研究研究,也可以小組研究,確定解決問(wèn)題的思路. 學(xué)生或獨(dú)立研究,或合作研究,教師巡視指導(dǎo). 經(jīng)過(guò)一定時(shí)間的研究,教師組織開展集體討論.首先讓學(xué)生陳述解決思路或解決方案: 思路一:… 思路二:… …… 教師組織評(píng)價(jià),確定最優(yōu)方案(其它待課下研究)如下: 按斜率是否存在,任意直線 的位置有兩種可能,即斜率 存在或不存在. 當(dāng) 存在時(shí),直線 的截距 也一定存在,直線 的方程可表示為 ,它是二元一次方程. 當(dāng) 不存在時(shí),直線 的方程可表示為 形式的方程,它是二元一次方程嗎? 學(xué)生有的認(rèn)為是有的認(rèn)為不是,此時(shí)教師引導(dǎo)學(xué)生,逐步認(rèn)識(shí)到把它看成二元一次方程的合理性: 平面直角坐標(biāo)系中直線 上點(diǎn)的坐標(biāo)形式,與其它直線上點(diǎn)的坐標(biāo)形式?jīng)]有任何區(qū)別,根據(jù)直線方程的概念,方程 解的形式也是二元方程的解的形式,因此把它看成形如 的二元一次方程是合理的. 綜合兩種情況,我們得出如下結(jié)論: 在平面直角坐標(biāo)系中,對(duì)于任何一條直線,都有一條表示這條直線的關(guān)于 、 的二元一次方程. 至此,我們的問(wèn)題1就解決了.簡(jiǎn)單點(diǎn)說(shuō)就是:直線方程都是二元一次方程.而且這個(gè)方程一定可以表示成 或 的形式,準(zhǔn)確地說(shuō)應(yīng)該是“要么形如 這樣,要么形如 這樣的方程”. 同學(xué)們注意:這樣表達(dá)起來(lái)是不是很啰嗦,能不能有一個(gè)更好的表達(dá)? 學(xué)生們不難得出:二者可以概括為統(tǒng)一的形式. 這樣上邊的結(jié)論可以表述如下: 在平面直角坐標(biāo)系中,對(duì)于任何一條直線,都有一條表示這條直線的形如 (其中 、 不同時(shí)為0)的二元一次方程. 啟發(fā):任何一條直線都有這種形式的方程.你是否覺得還有什么與之相關(guān)的問(wèn)題呢? 【問(wèn)題2】任何形如 (其中 、 不同時(shí)為0)的二元一次方程都表示一條直線嗎? 不難看出上邊的結(jié)論只是直線與方程相互關(guān)系的一個(gè)方面,這個(gè)問(wèn)題是它的另一方面.這是顯然的嗎?不是,因此也需要像剛才一樣認(rèn)真地研究,得到明確的結(jié)論.那么如何研究呢? 師生共同討論,評(píng)價(jià)不同思路,達(dá)成共識(shí): 回顧上邊解決問(wèn)題的思路,發(fā)現(xiàn)原路返回就是非常好的思路,即方程 (其中 、 不同時(shí)為0)系數(shù) 是否為0恰好對(duì)應(yīng)斜率 是否存在,即 。1)當(dāng) 時(shí),方程可化為 這是表示斜率為 、在 軸上的截距為 的直線. 。2)當(dāng) 時(shí),由于 、 不同時(shí)為0,必有 ,方程可化為 這表示一條與 軸垂直的直線. 因此,得到結(jié)論: 在平面直角坐標(biāo)系中,任何形如 (其中 、 不同時(shí)為0)的二元一次方程都表示一條直線. 為方便,我們把 (其中 、 不同時(shí)為0)稱作直線方程的一般式是合理的. 【動(dòng)畫演示】 演示“直線各參數(shù).gsp”文件,體會(huì)任何二元一次方程都表示一條直線. 至此,我們的第二個(gè)問(wèn)題也圓滿解決,而且我們還發(fā)現(xiàn)上述兩個(gè)問(wèn)題其實(shí)是一個(gè)大問(wèn)題的兩個(gè)方面,這個(gè)大問(wèn)題揭示了直線與二元一次方程的對(duì)應(yīng)關(guān)系,同時(shí),直線方程的一般形式是對(duì)直線特殊形式的抽象和概括,而且抽象的層次越高越簡(jiǎn)潔,我們還體會(huì)到了特殊與一般的轉(zhuǎn)化關(guān)系. 。ㄈ┚毩(xí)鞏固、總結(jié)提高、板書和作業(yè)等環(huán)節(jié)的設(shè)計(jì)在此從略 教學(xué)目標(biāo) (1)把握由一點(diǎn)和斜率導(dǎo)出直線方程的方法,把握直線方程的點(diǎn)斜式、兩點(diǎn)式和直線方程的一般式,并能根據(jù)條件熟練地求出直線的方程. (2)理解直線方程幾種形式之間的內(nèi)在聯(lián)系,能在整體上把握直線的方程. (3)把握直線方程各種形式之間的互化. (4)通過(guò)直線方程一般式的教學(xué)培養(yǎng)學(xué)生全面、系統(tǒng)、周密地分析、討論問(wèn)題的能力. (5)通過(guò)直線方程非凡式與一般式轉(zhuǎn)化的教學(xué),培養(yǎng)學(xué)生靈活的思維品質(zhì)和辯證唯物主義觀點(diǎn). (6)進(jìn)一步理解直線方程的概念,理解直線斜率的意義和解析幾何的思想方法. 教學(xué)建議 1.教材分析 (1)知識(shí)結(jié)構(gòu) 由直線方程的概念和直線斜率的概念導(dǎo)出直線方程的點(diǎn)斜式;由直線方程的點(diǎn)斜式分別導(dǎo)出直線方程的斜截式和兩點(diǎn)式;再由兩點(diǎn)式導(dǎo)出截距式;最后都可以轉(zhuǎn)化歸結(jié)為直線的一般式;同時(shí)一般式也可以轉(zhuǎn)化成非凡式. (2)重點(diǎn)、難點(diǎn)分析 ①本節(jié)的重點(diǎn)是直線方程的點(diǎn)斜式、兩點(diǎn)式、一般式,以及根據(jù)具體條件求出直線的方程. 解析幾何有兩項(xiàng)根本性的任務(wù):一個(gè)是求曲線的方程;另一個(gè)就是用方程研究曲線.本節(jié)內(nèi)容就是求直線的方程,因此是非常重要的內(nèi)容,它對(duì)以后學(xué)習(xí)用方程討論直線起著直接的作用,同時(shí)也對(duì)曲線方程的學(xué)習(xí)起著重要的作用. 直線的點(diǎn)斜式方程是平面解析幾何中所求出的第一個(gè)方程,是后面幾種非凡形式的源頭.學(xué)生對(duì)點(diǎn)斜式學(xué)習(xí)的效果將直接影響后繼知識(shí)的學(xué)習(xí). ②本節(jié)的難點(diǎn)是直線方程非凡形式的限制條件,直線方程的整體結(jié)構(gòu),直線與二元一次方程的關(guān)系證實(shí). 2.教法建議 (1)教材中求直線方程采取先非凡后一般的思路,非凡形式的方程幾何特征明顯,但局限性強(qiáng);一般形式的方程無(wú)任何限制,但幾何特征不明顯.教學(xué)中各部分知識(shí)之間過(guò)渡要自然流暢,不生硬. (2)直線方程的一般式反映了直線方程各種形式之間的統(tǒng)一性,教學(xué)中應(yīng)充分揭示直線方程本質(zhì)屬性,建立二元一次方程與直線的對(duì)應(yīng)關(guān)系,為繼續(xù)學(xué)習(xí)“曲線方程”打下基礎(chǔ). 直線一般式方程都是字母系數(shù),在揭示這一概念深刻內(nèi)涵時(shí),還需要進(jìn)行正反兩方面的分析論證.教學(xué)中應(yīng)重點(diǎn)分析思路,還應(yīng)抓住這一有利時(shí)使學(xué)生學(xué)會(huì)嚴(yán)謹(jǐn)科學(xué)的分類討論方法,從而培養(yǎng)學(xué)生全面、系統(tǒng)、辯證、周密地分析、討論問(wèn)題的能力,非凡是培養(yǎng)學(xué)生邏輯思維能力,同時(shí)培養(yǎng)學(xué)生辯證唯物主義觀點(diǎn) (3)在強(qiáng)調(diào)幾種形式互化時(shí)要向?qū)W生充分揭示各種形式的特點(diǎn),它們的幾何特征,參數(shù)的意義等,使學(xué)生明白為什么要轉(zhuǎn)化,并加深對(duì)各種形式的理解. (4)教學(xué)中要使學(xué)生明白兩個(gè)獨(dú)立條件確定一條直線,如兩個(gè)點(diǎn)、一個(gè)點(diǎn)和一個(gè)方向或其他兩個(gè)獨(dú)立條件.兩點(diǎn)確定一條直線,這是學(xué)生很早就接觸的幾何公理,然而在解析幾何,平面向量等理論中,直線或向量的方向是極其重要的要素,解析幾何中刻畫直線方向的量化形式就是斜率.因此,直線方程的兩點(diǎn)式和點(diǎn)斜式在直線方程的幾種形式中占有很重要的地位,而已知兩點(diǎn)可以求得斜率,所以點(diǎn)斜式又可推出兩點(diǎn)式(斜截式和截距式僅是它們的特例),因此點(diǎn)斜式最重要.教學(xué)中應(yīng)突出點(diǎn)斜式、兩點(diǎn)式和一般式三個(gè)教學(xué)高潮. 求直線方程需要兩個(gè)獨(dú)立的條件,要依不同的幾何條件選用不同形式的方程.根據(jù)兩個(gè)條件運(yùn)用待定系數(shù)法和方程思想求直線方程. (5)注重正確理解截距的概念,截距不是距離,截距是直線(也是曲線)與坐標(biāo)軸交點(diǎn)的相應(yīng)坐標(biāo),它是有向線段的數(shù)量,因而是一個(gè)實(shí)數(shù);距離是線段的長(zhǎng)度,是一個(gè)正實(shí)數(shù)(或非負(fù)實(shí)數(shù)). (6)本節(jié)中有不少與函數(shù)、不等式、三角函數(shù)有關(guān)的問(wèn)題,是函數(shù)、不等式、三角與直線的重要知識(shí)交匯點(diǎn)之一,教學(xué)中要適當(dāng)選擇一些有關(guān)的問(wèn)題指導(dǎo)學(xué)生練習(xí),培養(yǎng)學(xué)生的綜合能力. (7)直線方程的理論在其他學(xué)科和生產(chǎn)生活實(shí)際中有大量的應(yīng)用.教學(xué)中注重聯(lián)系實(shí)際和其它學(xué)科,教師要注重引導(dǎo),增強(qiáng)學(xué)生用數(shù)學(xué)的意識(shí)和能力. (8)本節(jié)不少內(nèi)容可安排學(xué)生自學(xué)和討論,還要適當(dāng)增加練習(xí),使學(xué)生能更好地把握,而不是僅停留在觀念上. 教學(xué)設(shè)計(jì)示例 直線方程的一般形式 教學(xué)目標(biāo): (1)把握直線方程的一般形式,把握直線方程幾種形式之間的互化. (2)理解直線與二元一次方程的關(guān)系及其證實(shí) (3)培養(yǎng)學(xué)生抽象概括能力、分類討論能力、逆向思維的習(xí)慣和形成非凡與一般辯證統(tǒng)一的觀點(diǎn). 教學(xué)重點(diǎn)、難點(diǎn):直線方程的一般式.直線與二元一次方程 ( 、 不同時(shí)為0)的對(duì)應(yīng)關(guān)系及其證實(shí). 教學(xué)用具:計(jì)算機(jī) 教學(xué)方法:啟發(fā)引導(dǎo)法,討論法 教學(xué)過(guò)程: 下面給出教學(xué)實(shí)施過(guò)程設(shè)計(jì)的簡(jiǎn)要思路: 教學(xué)設(shè)計(jì)思路: (一)引入的設(shè)計(jì) 前邊學(xué)習(xí)了如何根據(jù)所給條件求出直線方程的方法,看下面問(wèn)題: 問(wèn):說(shuō)出過(guò)點(diǎn) (2,1),斜率為2的直線的方程,并觀察方程屬于哪一類,為什么? 答:直線方程是 ,屬于二元一次方程,因?yàn)槲粗獢?shù)有兩個(gè),它們的最高次數(shù)為一次. 肯定學(xué)生回答,并糾正學(xué)生中不規(guī)范的表述.再看一個(gè)問(wèn)題: 問(wèn):求出過(guò)點(diǎn) , 的直線的方程,并觀察方程屬于哪一類,為什么? 答:直線方程是 (或其它形式),也屬于二元一次方程,因?yàn)槲粗獢?shù)有兩個(gè),它們的最高次數(shù)為一次. 肯定學(xué)生回答后強(qiáng)調(diào)“也是二元一次方程,都是因?yàn)槲粗獢?shù)有兩個(gè),它們的最高次數(shù)為一次”. 啟發(fā):你在想什么(或你想到了什么)?誰(shuí)來(lái)談?wù)?各小組可以討論討論. 學(xué)生紛紛談出自己的想法,教師邊評(píng)價(jià)邊啟發(fā)引導(dǎo),使學(xué)生的熟悉統(tǒng)一到如下問(wèn)題: 問(wèn)題1“任意直線的方程都是二元一次方程嗎?” (二)本節(jié)主體內(nèi)容教學(xué)的設(shè)計(jì) 這是本節(jié)課要解決的第一個(gè)問(wèn)題,如何解決?自己先研究研究,也可以小組研究,確定解決問(wèn)題的思路. 學(xué)生或獨(dú)立研究,或合作研究,教師巡視指導(dǎo). 經(jīng)過(guò)一定時(shí)間的研究,教師組織開展集體討論.首先讓學(xué)生陳述解決思路或解決方案: 思路一:… 思路二:… …… 教師組織評(píng)價(jià),確定最優(yōu)方案(其它待課下研究)如下: 按斜率是否存在,任意直線 的位置有兩種可能,即斜率 存在或不存在. 當(dāng) 存在時(shí),直線 的截距 也一定存在,直線 的方程可表示為 ,它是二元一次方程. 當(dāng) 不存在時(shí),直線 的方程可表示為 形式的方程,它是二元一次方程嗎? 學(xué)生有的認(rèn)為是有的認(rèn)為不是,此時(shí)教師引導(dǎo)學(xué)生,逐步熟悉到把它看成二元一次方程的合理性: 平面直角坐標(biāo)系中直線 上點(diǎn)的坐標(biāo)形式,與其它直線上點(diǎn)的坐標(biāo)形式?jīng)]有任何區(qū)別,根據(jù)直線方程的概念,方程 解的形式也是二元方程的解的形式,因此把它看成形如 的二元一次方程是合理的. 綜合兩種情況,我們得出如下結(jié)論: 在平面直角坐標(biāo)系中,對(duì)于任何一條直線,都有一條表示這條直線的關(guān)于 、 的二元一次方程. 至此,我們的問(wèn)題1就解決了.簡(jiǎn)單點(diǎn)說(shuō)就是:直線方程都是二元一次方程.而且這個(gè)方程一定可以表示成 或 的形式,準(zhǔn)確地說(shuō)應(yīng)該是“要么形如 這樣,要么形如 這樣的方程”. 同學(xué)們注重:這樣表達(dá)起來(lái)是不是很啰嗦,能不能有一個(gè)更好的表達(dá)? 學(xué)生們不難得出:二者可以概括為統(tǒng)一的形式. 這樣上邊的結(jié)論可以表述如下: 在平面直角坐標(biāo)系中,對(duì)于任何一條直線,都有一條表示這條直線的形如 (其中 、 不同時(shí)為0)的二元一次方程. 啟發(fā):任何一條直線都有這種形式的方程.你是否覺得還有什么與之相關(guān)的問(wèn)題呢? 問(wèn)題2任何形如 (其中 、 不同時(shí)為0)的二元一次方程都表示一條直線嗎? 不難看出上邊的結(jié)論只是直線與方程相互關(guān)系的一個(gè)方面,這個(gè)問(wèn)題是它的另一方面.這是顯然的嗎?不是,因此也需要像剛才一樣認(rèn)真地研究,得到明確的結(jié)論.那么如何研究呢? 師生共同討論,評(píng)價(jià)不同思路,達(dá)成共識(shí): 回顧上邊解決問(wèn)題的思路,發(fā)現(xiàn)原路返回就是非常好的思路,即方程 (其中 、 不同時(shí)為0)系數(shù) 是否為0恰好對(duì)應(yīng)斜率 是否存在,即 (1)當(dāng) 時(shí),方程可化為 這是表示斜率為 、在 軸上的截距為 的直線. (2)當(dāng) 時(shí),由于 、 不同時(shí)為0,必有 ,方程可化為 這表示一條與 軸垂直的直線. 因此,得到結(jié)論: 在平面直角坐標(biāo)系中,任何形如 (其中 、 不同時(shí)為0)的二元一次方程都表示一條直線. 為方便,我們把 (其中 、 不同時(shí)為0)稱作直線方程的一般式是合理的. 動(dòng)畫演示 演示“直線各參數(shù).gsp”文件,體會(huì)任何二元一次方程都表示一條直線. 至此,我們的第二個(gè)問(wèn)題也圓滿解決,而且我們還發(fā)現(xiàn)上述兩個(gè)問(wèn)題其實(shí)是一個(gè)大問(wèn)題的兩個(gè)方面,這個(gè)大問(wèn)題揭示了直線與二元一次方程的對(duì)應(yīng)關(guān)系,同時(shí),直線方程的一般形式是對(duì)直線非凡形式的抽象和概括,而且抽象的層次越高越簡(jiǎn)潔,我們還體會(huì)到了非凡與一般的轉(zhuǎn)化關(guān)系. (三)練習(xí)鞏固、總結(jié)提高、板書和作業(yè)等環(huán)節(jié)的設(shè)計(jì)在此從略 教學(xué)目標(biāo) 。1)掌握由一點(diǎn)和斜率導(dǎo)出直線方程的方法,掌握直線方程的點(diǎn)斜式、兩點(diǎn)式和直線方程的一般式,并能根據(jù)條件熟練地求出. 。2)理解直線方程幾種形式之間的內(nèi)在聯(lián)系,能在整體上把握. (3)掌握直線方程各種形式之間的互化. 。4)通過(guò)直線方程一般式的教學(xué)培養(yǎng)學(xué)生全面、系統(tǒng)、周密地分析、討論問(wèn)題的能力. 。5)通過(guò)直線方程特殊式與一般式轉(zhuǎn)化的教學(xué),培養(yǎng)學(xué)生靈活的思維品質(zhì)和辯證唯物主義觀點(diǎn). 。6)進(jìn)一步理解直線方程的概念,理解直線斜率的意義和解析幾何的思想方法. 教學(xué)建議 1.教材分析 。1)知識(shí)結(jié)構(gòu) 由直線方程的概念和直線斜率的概念導(dǎo)出直線方程的點(diǎn)斜式;由直線方程的點(diǎn)斜式分別導(dǎo)出直線方程的斜截式和兩點(diǎn)式;再由兩點(diǎn)式導(dǎo)出截距式;最后都可以轉(zhuǎn)化歸結(jié)為直線的一般式;同時(shí)一般式也可以轉(zhuǎn)化成特殊式. 。2)重點(diǎn)、難點(diǎn)分析 、俦竟(jié)的重點(diǎn)是直線方程的點(diǎn)斜式、兩點(diǎn)式、一般式,以及根據(jù)具體條件求出. 解析幾何有兩項(xiàng)根本性的任務(wù):一個(gè)是求曲線的方程;另一個(gè)就是用方程研究曲線.本節(jié)內(nèi)容就是求,因此是非常重要的內(nèi)容,它對(duì)以后學(xué)習(xí)用方程討論直線起著直接的作用,同時(shí)也對(duì)曲線方程的學(xué)習(xí)起著重要的作用. 直線的點(diǎn)斜式方程是平面解析幾何中所求出的第一個(gè)方程,是后面幾種特殊形式的源頭.學(xué)生對(duì)點(diǎn)斜式學(xué)習(xí)的效果將直接影響后繼知識(shí)的學(xué)習(xí). ②本節(jié)的難點(diǎn)是直線方程特殊形式的限制條件,直線方程的整體結(jié)構(gòu),直線與二元一次方程的關(guān)系證明. 2.教法建議 。1)教材中求直線方程采取先特殊后一般的思路,特殊形式的方程幾何特征明顯,但局限性強(qiáng);一般形式的方程無(wú)任何限制,但幾何特征不明顯.教學(xué)中各部分知識(shí)之間過(guò)渡要自然流暢,不生硬. 。2)直線方程的一般式反映了直線方程各種形式之間的統(tǒng)一性,教學(xué)中應(yīng)充分揭示直線方程本質(zhì)屬性,建立二元一次方程與直線的對(duì)應(yīng)關(guān)系,為繼續(xù)學(xué)習(xí)“曲線方程”打下基礎(chǔ). 直線一般式方程都是字母系數(shù),在揭示這一概念深刻內(nèi)涵時(shí),還需要進(jìn)行正反兩方面的分析論證.教學(xué)中應(yīng)重點(diǎn)分析思路,還應(yīng)抓住這一有利時(shí)使學(xué)生學(xué)會(huì)嚴(yán)謹(jǐn)科學(xué)的分類討論方法,從而培養(yǎng)學(xué)生全面、系統(tǒng)、辯證、周密地分析、討論問(wèn)題的能力,特別是培養(yǎng)學(xué)生邏輯思維能力,同時(shí)培養(yǎng)學(xué)生辯證唯物主義觀點(diǎn) 。3)在強(qiáng)調(diào)幾種形式互化時(shí)要向?qū)W生充分揭示各種形式的特點(diǎn),它們的幾何特征,參數(shù)的意義等,使學(xué)生明白為什么要轉(zhuǎn)化,并加深對(duì)各種形式的理解. (4)教學(xué)中要使學(xué)生明白兩個(gè)獨(dú)立條件確定一條直線,如兩個(gè)點(diǎn)、一個(gè)點(diǎn)和一個(gè)方向或其他兩個(gè)獨(dú)立條件.兩點(diǎn)確定一條直線,這是學(xué)生很早就接觸的幾何公理,然而在解析幾何,平面向量等理論中,直線或向量的方向是極其重要的要素,解析幾何中刻畫直線方向的量化形式就是斜率.因此,直線方程的兩點(diǎn)式和點(diǎn)斜式在直線方程的幾種形式中占有很重要的地位,而已知兩點(diǎn)可以求得斜率,所以點(diǎn)斜式又可推出兩點(diǎn)式(斜截式和截距式僅是它們的特例),因此點(diǎn)斜式最重要.教學(xué)中應(yīng)突出點(diǎn)斜式、兩點(diǎn)式和一般式三個(gè)教學(xué)高潮. 求直線方程需要兩個(gè)獨(dú)立的條件,要依不同的幾何條件選用不同形式的方程.根據(jù)兩個(gè)條件運(yùn)用待定系數(shù)法和方程思想求直線方程. (5)注意正確理解截距的概念,截距不是距離,截距是直線(也是曲線)與坐標(biāo)軸交點(diǎn)的相應(yīng)坐標(biāo),它是有向線段的數(shù)量,因而是一個(gè)實(shí)數(shù);距離是線段的長(zhǎng)度,是一個(gè)正實(shí)數(shù)(或非負(fù)實(shí)數(shù)). 。6)本節(jié)中有不少與函數(shù)、不等式、三角函數(shù)有關(guān)的問(wèn)題,是函數(shù)、不等式、三角與直線的重要知識(shí)交匯點(diǎn)之一,教學(xué)中要適當(dāng)選擇一些有關(guān)的問(wèn)題指導(dǎo)學(xué)生練習(xí),培養(yǎng)學(xué)生的綜合能力. 。7)直線方程的理論在其他學(xué)科和生產(chǎn)生活實(shí)際中有大量的應(yīng)用.教學(xué)中注意聯(lián)系實(shí)際和其它學(xué)科,教師要注意引導(dǎo),增強(qiáng)學(xué)生用數(shù)學(xué)的意識(shí)和能力. 。8)本節(jié)不少內(nèi)容可安排學(xué)生自學(xué)和討論,還要適當(dāng)增加練習(xí),使學(xué)生能更好地掌握,而不是僅停留在觀念上. 教學(xué)設(shè)計(jì)示例 直線方程的一般形式 教學(xué)目標(biāo): (1)掌握直線方程的一般形式,掌握直線方程幾種形式之間的互化. 。2)理解直線與二元一次方程的關(guān)系及其證明 。3)培養(yǎng)學(xué)生抽象概括能力、分類討論能力、逆向思維的習(xí)慣和形成特殊與一般辯證統(tǒng)一的觀點(diǎn). 教學(xué)重點(diǎn)、難點(diǎn):直線方程的一般式.直線與二元一次方程 ( 、 不同時(shí)為0)的對(duì)應(yīng)關(guān)系及其證明. 教學(xué)用具:計(jì)算機(jī) 教學(xué)方法:?jiǎn)l(fā)引導(dǎo)法,討論法 教學(xué)過(guò)程 下面給出教學(xué)實(shí)施過(guò)程設(shè)計(jì)的簡(jiǎn)要思路: 教學(xué)設(shè)計(jì)思路: (一)引入的設(shè)計(jì) 前邊學(xué)習(xí)了如何根據(jù)所給條件求出直線方程的方法,看下面問(wèn)題: 問(wèn):說(shuō)出過(guò)點(diǎn) (2,1),斜率為2的,并觀察方程屬于哪一類,為什么? 答:直線方程是 ,屬于二元一次方程,因?yàn)槲粗獢?shù)有兩個(gè),它們的最高次數(shù)為一次. 肯定學(xué)生回答,并糾正學(xué)生中不規(guī)范的表述.再看一個(gè)問(wèn)題: 問(wèn):求出過(guò)點(diǎn) , 的,并觀察方程屬于哪一類,為什么? 答:直線方程是 (或其它形式),也屬于二元一次方程,因?yàn)槲粗獢?shù)有兩個(gè),它們的最高次數(shù)為一次. 肯定學(xué)生回答后強(qiáng)調(diào)“也是二元一次方程,都是因?yàn)槲粗獢?shù)有兩個(gè),它們的最高次數(shù)為一次”. 啟發(fā):你在想什么(或你想到了什么)?誰(shuí)來(lái)談?wù)劊扛餍〗M可以討論討論. 學(xué)生紛紛談出自己的想法,教師邊評(píng)價(jià)邊啟發(fā)引導(dǎo),使學(xué)生的認(rèn)識(shí)統(tǒng)一到如下問(wèn)題: 【問(wèn)題1】“任意都是二元一次方程嗎?” 。ǘ┍竟(jié)主體內(nèi)容教學(xué)的設(shè)計(jì) 這是本節(jié)課要解決的第一個(gè)問(wèn)題,如何解決?自己先研究研究,也可以小組研究,確定解決問(wèn)題的思路. 學(xué)生或獨(dú)立研究,或合作研究,教師巡視指導(dǎo). 經(jīng)過(guò)一定時(shí)間的研究,教師組織開展集體討論.首先讓學(xué)生陳述解決思路或解決方案: 思路一:… 思路二:… …… 教師組織評(píng)價(jià),確定最優(yōu)方案(其它待課下研究)如下: 按斜率是否存在,任意直線 的位置有兩種可能,即斜率 存在或不存在. 當(dāng) 存在時(shí),直線 的截距 也一定存在,直線 的方程可表示為 ,它是二元一次方程. 當(dāng) 不存在時(shí),直線 的方程可表示為 形式的方程,它是二元一次方程嗎? 學(xué)生有的認(rèn)為是有的認(rèn)為不是,此時(shí)教師引導(dǎo)學(xué)生,逐步認(rèn)識(shí)到把它看成二元一次方程的合理性: 平面直角坐標(biāo)系中直線 上點(diǎn)的坐標(biāo)形式,與其它直線上點(diǎn)的坐標(biāo)形式?jīng)]有任何區(qū)別,根據(jù)直線方程的概念,方程 解的形式也是二元方程的解的形式,因此把它看成形如 的二元一次方程是合理的. 綜合兩種情況,我們得出如下結(jié)論: 在平面直角坐標(biāo)系中,對(duì)于任何一條直線,都有一條表示這條直線的關(guān)于 、 的二元一次方程. 至此,我們的問(wèn)題1就解決了.簡(jiǎn)單點(diǎn)說(shuō)就是:直線方程都是二元一次方程.而且這個(gè)方程一定可以表示成 或 的形式,準(zhǔn)確地說(shuō)應(yīng)該是“要么形如 這樣,要么形如 這樣的方程”. 同學(xué)們注意:這樣表達(dá)起來(lái)是不是很啰嗦,能不能有一個(gè)更好的表達(dá)? 學(xué)生們不難得出:二者可以概括為統(tǒng)一的形式. 這樣上邊的結(jié)論可以表述如下: 在平面直角坐標(biāo)系中,對(duì)于任何一條直線,都有一條表示這條直線的形如 (其中 、 不同時(shí)為0)的二元一次方程. 啟發(fā):任何一條直線都有這種形式的方程.你是否覺得還有什么與之相關(guān)的問(wèn)題呢? 【問(wèn)題2】任何形如 (其中 、 不同時(shí)為0)的二元一次方程都表示一條直線嗎? 不難看出上邊的結(jié)論只是直線與方程相互關(guān)系的一個(gè)方面,這個(gè)問(wèn)題是它的另一方面.這是顯然的嗎?不是,因此也需要像剛才一樣認(rèn)真地研究,得到明確的結(jié)論.那么如何研究呢? 師生共同討論,評(píng)價(jià)不同思路,達(dá)成共識(shí): 回顧上邊解決問(wèn)題的思路,發(fā)現(xiàn)原路返回就是非常好的思路,即方程 (其中 、 不同時(shí)為0)系數(shù) 是否為0恰好對(duì)應(yīng)斜率 是否存在,即 。1)當(dāng) 時(shí),方程可化為 這是表示斜率為 、在 軸上的截距為 的直線. 。2)當(dāng) 時(shí),由于 、 不同時(shí)為0,必有 ,方程可化為 這表示一條與 軸垂直的直線. 因此,得到結(jié)論: 在平面直角坐標(biāo)系中,任何形如 (其中 、 不同時(shí)為0)的二元一次方程都表示一條直線. 為方便,我們把 (其中 、 不同時(shí)為0)稱作直線方程的一般式是合理的. 【動(dòng)畫演示】 演示“直線各參數(shù).gsp”文件,體會(huì)任何二元一次方程都表示一條直線. 至此,我們的第二個(gè)問(wèn)題也圓滿解決,而且我們還發(fā)現(xiàn)上述兩個(gè)問(wèn)題其實(shí)是一個(gè)大問(wèn)題的兩個(gè)方面,這個(gè)大問(wèn)題揭示了直線與二元一次方程的對(duì)應(yīng)關(guān)系,同時(shí),直線方程的一般形式是對(duì)直線特殊形式的抽象和概括,而且抽象的層次越高越簡(jiǎn)潔,我們還體會(huì)到了特殊與一般的轉(zhuǎn)化關(guān)系. 。ㄈ┚毩(xí)鞏固、總結(jié)提高、板書和作業(yè)等環(huán)節(jié)的設(shè)計(jì)在此從略 教學(xué)目標(biāo) (1)掌握由一點(diǎn)和斜率導(dǎo)出直線方程的方法,掌握直線方程的點(diǎn)斜式、兩點(diǎn)式和直線方程的一般式,并能根據(jù)條件熟練地求出直線的方程. 。2)理解直線方程幾種形式之間的內(nèi)在聯(lián)系,能在整體上把握直線的方程. 。3)掌握直線方程各種形式之間的互化. 。4)通過(guò)直線方程一般式的教學(xué)培養(yǎng)學(xué)生全面、系統(tǒng)、周密地分析、討論問(wèn)題的能力. 。5)通過(guò)直線方程特殊式與一般式轉(zhuǎn)化的教學(xué),培養(yǎng)學(xué)生靈活的思維品質(zhì)和辯證唯物主義觀點(diǎn). 。6)進(jìn)一步理解直線方程的概念,理解直線斜率的意義和解析幾何的思想方法. 教學(xué)建議 1.教材分析 (1)知識(shí)結(jié)構(gòu) 由直線方程的概念和直線斜率的概念導(dǎo)出直線方程的點(diǎn)斜式;由直線方程的點(diǎn)斜式分別導(dǎo)出直線方程的斜截式和兩點(diǎn)式;再由兩點(diǎn)式導(dǎo)出截距式;最后都可以轉(zhuǎn)化歸結(jié)為直線的一般式;同時(shí)一般式也可以轉(zhuǎn)化成特殊式. 。2)重點(diǎn)、難點(diǎn)分析 、俦竟(jié)的重點(diǎn)是直線方程的點(diǎn)斜式、兩點(diǎn)式、一般式,以及根據(jù)具體條件求出直線的方程. 解析幾何有兩項(xiàng)根本性的任務(wù):一個(gè)是求曲線的方程;另一個(gè)就是用方程研究曲線.本節(jié)內(nèi)容就是求直線的方程,因此是非常重要的內(nèi)容,它對(duì)以后學(xué)習(xí)用方程討論直線起著直接的作用,同時(shí)也對(duì)曲線方程的學(xué)習(xí)起著重要的作用. 直線的點(diǎn)斜式方程是平面解析幾何中所求出的第一個(gè)方程,是后面幾種特殊形式的源頭.學(xué)生對(duì)點(diǎn)斜式學(xué)習(xí)的效果將直接影響后繼知識(shí)的學(xué)習(xí). 、诒竟(jié)的難點(diǎn)是直線方程特殊形式的限制條件,直線方程的整體結(jié)構(gòu),直線與二元一次方程的關(guān)系證明. 2.教法建議 。1)教材中求直線方程采取先特殊后一般的思路,特殊形式的方程幾何特征明顯,但局限性強(qiáng);一般形式的方程無(wú)任何限制,但幾何特征不明顯.教學(xué)中各部分知識(shí)之間過(guò)渡要自然流暢,不生硬. 。2)直線方程的一般式反映了直線方程各種形式之間的統(tǒng)一性,教學(xué)中應(yīng)充分揭示直線方程本質(zhì)屬性,建立二元一次方程與直線的對(duì)應(yīng)關(guān)系,為繼續(xù)學(xué)習(xí)“曲線方程”打下基礎(chǔ). 直線一般式方程都是字母系數(shù),在揭示這一概念深刻內(nèi)涵時(shí),還需要進(jìn)行正反兩方面的分析論證.教學(xué)中應(yīng)重點(diǎn)分析思路,還應(yīng)抓住這一有利時(shí)使學(xué)生學(xué)會(huì)嚴(yán)謹(jǐn)科學(xué)的分類討論方法,從而培養(yǎng)學(xué)生全面、系統(tǒng)、辯證、周密地分析、討論問(wèn)題的能力,特別是培養(yǎng)學(xué)生邏輯思維能力,同時(shí)培養(yǎng)學(xué)生辯證唯物主義觀點(diǎn) 。3)在強(qiáng)調(diào)幾種形式互化時(shí)要向?qū)W生充分揭示各種形式的特點(diǎn),它們的幾何特征,參數(shù)的意義等,使學(xué)生明白為什么要轉(zhuǎn)化,并加深對(duì)各種形式的理解. 。4)教學(xué)中要使學(xué)生明白兩個(gè)獨(dú)立條件確定一條直線,如兩個(gè)點(diǎn)、一個(gè)點(diǎn)和一個(gè)方向或其他兩個(gè)獨(dú)立條件.兩點(diǎn)確定一條直線,這是學(xué)生很早就接觸的幾何公理,然而在解析幾何,平面向量等理論中,直線或向量的方向是極其重要的要素,解析幾何中刻畫直線方向的量化形式就是斜率.因此,直線方程的兩點(diǎn)式和點(diǎn)斜式在直線方程的幾種形式中占有很重要的地位,而已知兩點(diǎn)可以求得斜率,所以點(diǎn)斜式又可推出兩點(diǎn)式(斜截式和截距式僅是它們的特例),因此點(diǎn)斜式最重要.教學(xué)中應(yīng)突出點(diǎn)斜式、兩點(diǎn)式和一般式三個(gè)教學(xué)高潮. 求直線方程需要兩個(gè)獨(dú)立的條件,要依不同的幾何條件選用不同形式的方程.根據(jù)兩個(gè)條件運(yùn)用待定系數(shù)法和方程思想求直線方程. 。5)注意正確理解截距的概念,截距不是距離,截距是直線(也是曲線)與坐標(biāo)軸交點(diǎn)的相應(yīng)坐標(biāo),它是有向線段的數(shù)量,因而是一個(gè)實(shí)數(shù);距離是線段的長(zhǎng)度,是一個(gè)正實(shí)數(shù)(或非負(fù)實(shí)數(shù)). (6)本節(jié)中有不少與函數(shù)、不等式、三角函數(shù)有關(guān)的問(wèn)題,是函數(shù)、不等式、三角與直線的重要知識(shí)交匯點(diǎn)之一,教學(xué)中要適當(dāng)選擇一些有關(guān)的問(wèn)題指導(dǎo)學(xué)生練習(xí),培養(yǎng)學(xué)生的綜合能力. (7)直線方程的理論在其他學(xué)科和生產(chǎn)生活實(shí)際中有大量的應(yīng)用.教學(xué)中注意聯(lián)系實(shí)際和其它學(xué)科,教師要注意引導(dǎo),增強(qiáng)學(xué)生用數(shù)學(xué)的意識(shí)和能力. (8)本節(jié)不少內(nèi)容可安排學(xué)生自學(xué)和討論,還要適當(dāng)增加練習(xí),使學(xué)生能更好地掌握,而不是僅停留在觀念上. 教學(xué)設(shè)計(jì)示例 直線方程的一般形式 教學(xué)目標(biāo): (1)掌握直線方程的一般形式,掌握直線方程幾種形式之間的互化. (2)理解直線與二元一次方程的關(guān)系及其證明 。3)培養(yǎng)學(xué)生抽象概括能力、分類討論能力、逆向思維的習(xí)慣和形成特殊與一般辯證統(tǒng)一的觀點(diǎn). 教學(xué)重點(diǎn)、難點(diǎn):直線方程的一般式.直線與二元一次方程 ( 、 不同時(shí)為0)的對(duì)應(yīng)關(guān)系及其證明. 教學(xué)用具:計(jì)算機(jī) 教學(xué)方法:?jiǎn)l(fā)引導(dǎo)法,討論法 教學(xué)過(guò)程: 下面給出教學(xué)實(shí)施過(guò)程設(shè)計(jì)的簡(jiǎn)要思路: 教學(xué)設(shè)計(jì)思路: 。ㄒ唬┮氲脑O(shè)計(jì) 前邊學(xué)習(xí)了如何根據(jù)所給條件求出直線方程的方法,看下面問(wèn)題: 問(wèn):說(shuō)出過(guò)點(diǎn) (2,1),斜率為2的直線的方程,并觀察方程屬于哪一類,為什么? 答:直線方程是 ,屬于二元一次方程,因?yàn)槲粗獢?shù)有兩個(gè),它們的最高次數(shù)為一次. 肯定學(xué)生回答,并糾正學(xué)生中不規(guī)范的表述.再看一個(gè)問(wèn)題: 問(wèn):求出過(guò)點(diǎn) , 的直線的方程,并觀察方程屬于哪一類,為什么? 答:直線方程是 (或其它形式),也屬于二元一次方程,因?yàn)槲粗獢?shù)有兩個(gè),它們的最高次數(shù)為一次. 肯定學(xué)生回答后強(qiáng)調(diào)“也是二元一次方程,都是因?yàn)槲粗獢?shù)有兩個(gè),它們的最高次數(shù)為一次”. 啟發(fā):你在想什么(或你想到了什么)?誰(shuí)來(lái)談?wù)?各小組可以討論討論. 學(xué)生紛紛談出自己的想法,教師邊評(píng)價(jià)邊啟發(fā)引導(dǎo),使學(xué)生的認(rèn)識(shí)統(tǒng)一到如下問(wèn)題: 【問(wèn)題1】“任意直線的方程都是二元一次方程嗎?” 。ǘ┍竟(jié)主體內(nèi)容教學(xué)的設(shè)計(jì) 這是本節(jié)課要解決的第一個(gè)問(wèn)題,如何解決?自己先研究研究,也可以小組研究,確定解決問(wèn)題的思路. 學(xué)生或獨(dú)立研究,或合作研究,教師巡視指導(dǎo). 經(jīng)過(guò)一定時(shí)間的研究,教師組織開展集體討論.首先讓學(xué)生陳述解決思路或解決方案: 思路一:… 思路二:… …… 教師組織評(píng)價(jià),確定最優(yōu)方案(其它待課下研究)如下: 按斜率是否存在,任意直線 的位置有兩種可能,即斜率 存在或不存在. 當(dāng) 存在時(shí),直線 的截距 也一定存在,直線 的方程可表示為 ,它是二元一次方程. 當(dāng) 不存在時(shí),直線 的方程可表示為 形式的方程,它是二元一次方程嗎? 學(xué)生有的認(rèn)為是有的認(rèn)為不是,此時(shí)教師引導(dǎo)學(xué)生,逐步認(rèn)識(shí)到把它看成二元一次方程的合理性: 平面直角坐標(biāo)系中直線 上點(diǎn)的坐標(biāo)形式,與其它直線上點(diǎn)的坐標(biāo)形式?jīng)]有任何區(qū)別,根據(jù)直線方程的概念,方程 解的形式也是二元方程的解的形式,因此把它看成形如 的二元一次方程是合理的. 綜合兩種情況,我們得出如下結(jié)論: 在平面直角坐標(biāo)系中,對(duì)于任何一條直線,都有一條表示這條直線的關(guān)于 、 的二元一次方程. 至此,我們的問(wèn)題1就解決了.簡(jiǎn)單點(diǎn)說(shuō)就是:直線方程都是二元一次方程.而且這個(gè)方程一定可以表示成 或 的形式,準(zhǔn)確地說(shuō)應(yīng)該是“要么形如 這樣,要么形如 這樣的方程”. 同學(xué)們注意:這樣表達(dá)起來(lái)是不是很啰嗦,能不能有一個(gè)更好的表達(dá)? 學(xué)生們不難得出:二者可以概括為統(tǒng)一的形式. 這樣上邊的結(jié)論可以表述如下: 在平面直角坐標(biāo)系中,對(duì)于任何一條直線,都有一條表示這條直線的形如 (其中 、 不同時(shí)為0)的二元一次方程. 啟發(fā):任何一條直線都有這種形式的方程.你是否覺得還有什么與之相關(guān)的問(wèn)題呢? 【問(wèn)題2】任何形如 (其中 、 不同時(shí)為0)的二元一次方程都表示一條直線嗎? 不難看出上邊的結(jié)論只是直線與方程相互關(guān)系的一個(gè)方面,這個(gè)問(wèn)題是它的另一方面.這是顯然的嗎?不是,因此也需要像剛才一樣認(rèn)真地研究,得到明確的結(jié)論.那么如何研究呢? 師生共同討論,評(píng)價(jià)不同思路,達(dá)成共識(shí): 回顧上邊解決問(wèn)題的思路,發(fā)現(xiàn)原路返回就是非常好的思路,即方程 (其中 、 不同時(shí)為0)系數(shù) 是否為0恰好對(duì)應(yīng)斜率 是否存在,即 (1)當(dāng) 時(shí),方程可化為 這是表示斜率為 、在 軸上的截距為 的直線. 。2)當(dāng) 時(shí),由于 、 不同時(shí)為0,必有 ,方程可化為 這表示一條與 軸垂直的直線. 因此,得到結(jié)論: 在平面直角坐標(biāo)系中,任何形如 (其中 、 不同時(shí)為0)的二元一次方程都表示一條直線. 為方便,我們把 (其中 、 不同時(shí)為0)稱作直線方程的一般式是合理的. 【動(dòng)畫演示】 演示“直線各參數(shù).gsp”文件,體會(huì)任何二元一次方程都表示一條直線. 至此,我們的第二個(gè)問(wèn)題也圓滿解決,而且我們還發(fā)現(xiàn)上述兩個(gè)問(wèn)題其實(shí)是一個(gè)大問(wèn)題的兩個(gè)方面,這個(gè)大問(wèn)題揭示了直線與二元一次方程的對(duì)應(yīng)關(guān)系,同時(shí),直線方程的一般形式是對(duì)直線特殊形式的抽象和概括,而且抽象的層次越高越簡(jiǎn)潔,我們還體會(huì)到了特殊與一般的轉(zhuǎn)化關(guān)系. 。ㄈ┚毩(xí)鞏固、總結(jié)提高、板書和作業(yè)等環(huán)節(jié)的設(shè)計(jì)在此從略 教學(xué)目標(biāo) 。1)掌握由一點(diǎn)和斜率導(dǎo)出直線方程的方法,掌握直線方程的點(diǎn)斜式、兩點(diǎn)式和直線方程的一般式,并能根據(jù)條件熟練地求出. 。2)理解直線方程幾種形式之間的內(nèi)在聯(lián)系,能在整體上把握. 。3)掌握直線方程各種形式之間的互化. 。4)通過(guò)直線方程一般式的教學(xué)培養(yǎng)學(xué)生全面、系統(tǒng)、周密地分析、討論問(wèn)題的能力. 。5)通過(guò)直線方程特殊式與一般式轉(zhuǎn)化的教學(xué),培養(yǎng)學(xué)生靈活的思維品質(zhì)和辯證唯物主義觀點(diǎn). (6)進(jìn)一步理解直線方程的概念,理解直線斜率的意義和解析幾何的思想方法. 教學(xué)建議 1.教材分析 。1)知識(shí)結(jié)構(gòu) 由直線方程的概念和直線斜率的概念導(dǎo)出直線方程的點(diǎn)斜式;由直線方程的點(diǎn)斜式分別導(dǎo)出直線方程的斜截式和兩點(diǎn)式;再由兩點(diǎn)式導(dǎo)出截距式;最后都可以轉(zhuǎn)化歸結(jié)為直線的一般式;同時(shí)一般式也可以轉(zhuǎn)化成特殊式. 。2)重點(diǎn)、難點(diǎn)分析 、俦竟(jié)的重點(diǎn)是直線方程的點(diǎn)斜式、兩點(diǎn)式、一般式,以及根據(jù)具體條件求出. 解析幾何有兩項(xiàng)根本性的任務(wù):一個(gè)是求曲線的方程;另一個(gè)就是用方程研究曲線.本節(jié)內(nèi)容就是求,因此是非常重要的內(nèi)容,它對(duì)以后學(xué)習(xí)用方程討論直線起著直接的作用,同時(shí)也對(duì)曲線方程的學(xué)習(xí)起著重要的作用. 直線的點(diǎn)斜式方程是平面解析幾何中所求出的第一個(gè)方程,是后面幾種特殊形式的源頭.學(xué)生對(duì)點(diǎn)斜式學(xué)習(xí)的效果將直接影響后繼知識(shí)的學(xué)習(xí). 、诒竟(jié)的難點(diǎn)是直線方程特殊形式的限制條件,直線方程的整體結(jié)構(gòu),直線與二元一次方程的關(guān)系證明. 2.教法建議 。1)教材中求直線方程采取先特殊后一般的思路,特殊形式的方程幾何特征明顯,但局限性強(qiáng);一般形式的方程無(wú)任何限制,但幾何特征不明顯.教學(xué)中各部分知識(shí)之間過(guò)渡要自然流暢,不生硬. 。2)直線方程的一般式反映了直線方程各種形式之間的統(tǒng)一性,教學(xué)中應(yīng)充分揭示直線方程本質(zhì)屬性,建立二元一次方程與直線的對(duì)應(yīng)關(guān)系,為繼續(xù)學(xué)習(xí)“曲線方程”打下基礎(chǔ). 直線一般式方程都是字母系數(shù),在揭示這一概念深刻內(nèi)涵時(shí),還需要進(jìn)行正反兩方面的分析論證.教學(xué)中應(yīng)重點(diǎn)分析思路,還應(yīng)抓住這一有利時(shí)使學(xué)生學(xué)會(huì)嚴(yán)謹(jǐn)科學(xué)的分類討論方法,從而培養(yǎng)學(xué)生全面、系統(tǒng)、辯證、周密地分析、討論問(wèn)題的能力,特別是培養(yǎng)學(xué)生邏輯思維能力,同時(shí)培養(yǎng)學(xué)生辯證唯物主義觀點(diǎn) (3)在強(qiáng)調(diào)幾種形式互化時(shí)要向?qū)W生充分揭示各種形式的特點(diǎn),它們的幾何特征,參數(shù)的意義等,使學(xué)生明白為什么要轉(zhuǎn)化,并加深對(duì)各種形式的理解. 。4)教學(xué)中要使學(xué)生明白兩個(gè)獨(dú)立條件確定一條直線,如兩個(gè)點(diǎn)、一個(gè)點(diǎn)和一個(gè)方向或其他兩個(gè)獨(dú)立條件.兩點(diǎn)確定一條直線,這是學(xué)生很早就接觸的幾何公理,然而在解析幾何,平面向量等理論中,直線或向量的方向是極其重要的要素,解析幾何中刻畫直線方向的量化形式就是斜率.因此,直線方程的兩點(diǎn)式和點(diǎn)斜式在直線方程的幾種形式中占有很重要的地位,而已知兩點(diǎn)可以求得斜率,所以點(diǎn)斜式又可推出兩點(diǎn)式(斜截式和截距式僅是它們的特例),因此點(diǎn)斜式最重要.教學(xué)中應(yīng)突出點(diǎn)斜式、兩點(diǎn)式和一般式三個(gè)教學(xué)高潮. 求直線方程需要兩個(gè)獨(dú)立的條件,要依不同的幾何條件選用不同形式的方程.根據(jù)兩個(gè)條件運(yùn)用待定系數(shù)法和方程思想求直線方程. 。5)注意正確理解截距的概念,截距不是距離,截距是直線(也是曲線)與坐標(biāo)軸交點(diǎn)的相應(yīng)坐標(biāo),它是有向線段的數(shù)量,因而是一個(gè)實(shí)數(shù);距離是線段的長(zhǎng)度,是一個(gè)正實(shí)數(shù)(或非負(fù)實(shí)數(shù)). 。6)本節(jié)中有不少與函數(shù)、不等式、三角函數(shù)有關(guān)的問(wèn)題,是函數(shù)、不等式、三角與直線的重要知識(shí)交匯點(diǎn)之一,教學(xué)中要適當(dāng)選擇一些有關(guān)的問(wèn)題指導(dǎo)學(xué)生練習(xí),培養(yǎng)學(xué)生的綜合能力. 。7)直線方程的理論在其他學(xué)科和生產(chǎn)生活實(shí)際中有大量的應(yīng)用.教學(xué)中注意聯(lián)系實(shí)際和其它學(xué)科,教師要注意引導(dǎo),增強(qiáng)學(xué)生用數(shù)學(xué)的意識(shí)和能力. 。8)本節(jié)不少內(nèi)容可安排學(xué)生自學(xué)和討論,還要適當(dāng)增加練習(xí),使學(xué)生能更好地掌握,而不是僅停留在觀念上. 教學(xué)設(shè)計(jì)示例 直線方程的一般形式 教學(xué)目標(biāo): 。1)掌握直線方程的一般形式,掌握直線方程幾種形式之間的互化. 。2)理解直線與二元一次方程的關(guān)系及其證明 (3)培養(yǎng)學(xué)生抽象概括能力、分類討論能力、逆向思維的習(xí)慣和形成特殊與一般辯證統(tǒng)一的觀點(diǎn). 教學(xué)重點(diǎn)、難點(diǎn):直線方程的一般式.直線與二元一次方程 ( 、 不同時(shí)為0)的對(duì)應(yīng)關(guān)系及其證明. 教學(xué)用具:計(jì)算機(jī) 教學(xué)方法:?jiǎn)l(fā)引導(dǎo)法,討論法 教學(xué)過(guò)程: 下面給出教學(xué)實(shí)施過(guò)程設(shè)計(jì)的簡(jiǎn)要思路: 教學(xué)設(shè)計(jì)思路: (一)引入的設(shè)計(jì) 前邊學(xué)習(xí)了如何根據(jù)所給條件求出直線方程的方法,看下面問(wèn)題: 問(wèn):說(shuō)出過(guò)點(diǎn) (2,1),斜率為2的,并觀察方程屬于哪一類,為什么? 答:直線方程是 ,屬于二元一次方程,因?yàn)槲粗獢?shù)有兩個(gè),它們的最高次數(shù)為一次. 肯定學(xué)生回答,并糾正學(xué)生中不規(guī)范的表述.再看一個(gè)問(wèn)題: 問(wèn):求出過(guò)點(diǎn) , 的,并觀察方程屬于哪一類,為什么? 答:直線方程是 (或其它形式),也屬于二元一次方程,因?yàn)槲粗獢?shù)有兩個(gè),它們的最高次數(shù)為一次. 肯定學(xué)生回答后強(qiáng)調(diào)“也是二元一次方程,都是因?yàn)槲粗獢?shù)有兩個(gè),它們的最高次數(shù)為一次”. 啟發(fā):你在想什么(或你想到了什么)?誰(shuí)來(lái)談?wù)劊扛餍〗M可以討論討論. 學(xué)生紛紛談出自己的想法,教師邊評(píng)價(jià)邊啟發(fā)引導(dǎo),使學(xué)生的認(rèn)識(shí)統(tǒng)一到如下問(wèn)題: 【問(wèn)題1】“任意都是二元一次方程嗎?” (二)本節(jié)主體內(nèi)容教學(xué)的設(shè)計(jì) 這是本節(jié)課要解決的第一個(gè)問(wèn)題,如何解決?自己先研究研究,也可以小組研究,確定解決問(wèn)題的思路. 學(xué)生或獨(dú)立研究,或合作研究,教師巡視指導(dǎo). 經(jīng)過(guò)一定時(shí)間的研究,教師組織開展集體討論.首先讓學(xué)生陳述解決思路或解決方案: 思路一:… 思路二:… …… 教師組織評(píng)價(jià),確定最優(yōu)方案(其它待課下研究)如下: 按斜率是否存在,任意直線 的位置有兩種可能,即斜率 存在或不存在. 當(dāng) 存在時(shí),直線 的截距 也一定存在,直線 的方程可表示為 ,它是二元一次方程. 當(dāng) 不存在時(shí),直線 的方程可表示為 形式的方程,它是二元一次方程嗎? 學(xué)生有的認(rèn)為是有的認(rèn)為不是,此時(shí)教師引導(dǎo)學(xué)生,逐步認(rèn)識(shí)到把它看成二元一次方程的合理性: 平面直角坐標(biāo)系中直線 上點(diǎn)的坐標(biāo)形式,與其它直線上點(diǎn)的坐標(biāo)形式?jīng)]有任何區(qū)別,根據(jù)直線方程的概念,方程 解的形式也是二元方程的解的形式,因此把它看成形如 的二元一次方程是合理的. 綜合兩種情況,我們得出如下結(jié)論: 在平面直角坐標(biāo)系中,對(duì)于任何一條直線,都有一條表示這條直線的關(guān)于 、 的二元一次方程. 至此,我們的問(wèn)題1就解決了.簡(jiǎn)單點(diǎn)說(shuō)就是:直線方程都是二元一次方程.而且這個(gè)方程一定可以表示成 或 的形式,準(zhǔn)確地說(shuō)應(yīng)該是“要么形如 這樣,要么形如 這樣的方程”. 同學(xué)們注意:這樣表達(dá)起來(lái)是不是很啰嗦,能不能有一個(gè)更好的表達(dá)? 學(xué)生們不難得出:二者可以概括為統(tǒng)一的形式. 這樣上邊的結(jié)論可以表述如下: 在平面直角坐標(biāo)系中,對(duì)于任何一條直線,都有一條表示這條直線的形如 (其中 、 不同時(shí)為0)的二元一次方程. 啟發(fā):任何一條直線都有這種形式的方程.你是否覺得還有什么與之相關(guān)的問(wèn)題呢? 【問(wèn)題2】任何形如 (其中 、 不同時(shí)為0)的二元一次方程都表示一條直線嗎? 不難看出上邊的結(jié)論只是直線與方程相互關(guān)系的一個(gè)方面,這個(gè)問(wèn)題是它的另一方面.這是顯然的嗎?不是,因此也需要像剛才一樣認(rèn)真地研究,得到明確的結(jié)論.那么如何研究呢? 師生共同討論,評(píng)價(jià)不同思路,達(dá)成共識(shí): 回顧上邊解決問(wèn)題的思路,發(fā)現(xiàn)原路返回就是非常好的思路,即方程 (其中 、 不同時(shí)為0)系數(shù) 是否為0恰好對(duì)應(yīng)斜率 是否存在,即 。1)當(dāng) 時(shí),方程可化為 這是表示斜率為 、在 軸上的截距為 的直線. 。2)當(dāng) 時(shí),由于 、 不同時(shí)為0,必有 ,方程可化為 這表示一條與 軸垂直的直線. 因此,得到結(jié)論: 在平面直角坐標(biāo)系中,任何形如 (其中 、 不同時(shí)為0)的二元一次方程都表示一條直線. 為方便,我們把 (其中 、 不同時(shí)為0)稱作直線方程的一般式是合理的. 【動(dòng)畫演示】 演示“直線各參數(shù).gsp”文件,體會(huì)任何二元一次方程都表示一條直線. 至此,我們的第二個(gè)問(wèn)題也圓滿解決,而且我們還發(fā)現(xiàn)上述兩個(gè)問(wèn)題其實(shí)是一個(gè)大問(wèn)題的兩個(gè)方面,這個(gè)大問(wèn)題揭示了直線與二元一次方程的對(duì)應(yīng)關(guān)系,同時(shí),直線方程的一般形式是對(duì)直線特殊形式的抽象和概括,而且抽象的層次越高越簡(jiǎn)潔,我們還體會(huì)到了特殊與一般的轉(zhuǎn)化關(guān)系. (三)練習(xí)鞏固、總結(jié)提高、板書和作業(yè)等環(huán)節(jié)的設(shè)計(jì)在此從略 教學(xué)目標(biāo) 。1)掌握由一點(diǎn)和斜率導(dǎo)出直線方程的方法,掌握直線方程的點(diǎn)斜式、兩點(diǎn)式和直線方程的一般式,并能根據(jù)條件熟練地求出. 。2)理解直線方程幾種形式之間的內(nèi)在聯(lián)系,能在整體上把握. (3)掌握直線方程各種形式之間的互化. 。4)通過(guò)直線方程一般式的教學(xué)培養(yǎng)學(xué)生全面、系統(tǒng)、周密地分析、討論問(wèn)題的能力. (5)通過(guò)直線方程特殊式與一般式轉(zhuǎn)化的教學(xué),培養(yǎng)學(xué)生靈活的思維品質(zhì)和辯證唯物主義觀點(diǎn). (6)進(jìn)一步理解直線方程的概念,理解直線斜率的意義和解析幾何的思想方法. 教學(xué)建議 1.教材分析 (1)知識(shí)結(jié)構(gòu) 由直線方程的概念和直線斜率的概念導(dǎo)出直線方程的點(diǎn)斜式;由直線方程的點(diǎn)斜式分別導(dǎo)出直線方程的斜截式和兩點(diǎn)式;再由兩點(diǎn)式導(dǎo)出截距式;最后都可以轉(zhuǎn)化歸結(jié)為直線的一般式;同時(shí)一般式也可以轉(zhuǎn)化成特殊式. (2)重點(diǎn)、難點(diǎn)分析 、俦竟(jié)的重點(diǎn)是直線方程的點(diǎn)斜式、兩點(diǎn)式、一般式,以及根據(jù)具體條件求出. 解析幾何有兩項(xiàng)根本性的任務(wù):一個(gè)是求曲線的方程;另一個(gè)就是用方程研究曲線.本節(jié)內(nèi)容就是求,因此是非常重要的內(nèi)容,它對(duì)以后學(xué)習(xí)用方程討論直線起著直接的作用,同時(shí)也對(duì)曲線方程的學(xué)習(xí)起著重要的作用. 直線的點(diǎn)斜式方程是平面解析幾何中所求出的第一個(gè)方程,是后面幾種特殊形式的源頭.學(xué)生對(duì)點(diǎn)斜式學(xué)習(xí)的效果將直接影響后繼知識(shí)的學(xué)習(xí). 、诒竟(jié)的難點(diǎn)是直線方程特殊形式的限制條件,直線方程的整體結(jié)構(gòu),直線與二元一次方程的關(guān)系證明. 2.教法建議 。1)教材中求直線方程采取先特殊后一般的思路,特殊形式的方程幾何特征明顯,但局限性強(qiáng);一般形式的方程無(wú)任何限制,但幾何特征不明顯.教學(xué)中各部分知識(shí)之間過(guò)渡要自然流暢,不生硬. 。2)直線方程的一般式反映了直線方程各種形式之間的統(tǒng)一性,教學(xué)中應(yīng)充分揭示直線方程本質(zhì)屬性,建立二元一次方程與直線的對(duì)應(yīng)關(guān)系,為繼續(xù)學(xué)習(xí)“曲線方程”打下基礎(chǔ). 直線一般式方程都是字母系數(shù),在揭示這一概念深刻內(nèi)涵時(shí),還需要進(jìn)行正反兩方面的分析論證.教學(xué)中應(yīng)重點(diǎn)分析思路,還應(yīng)抓住這一有利時(shí)使學(xué)生學(xué)會(huì)嚴(yán)謹(jǐn)科學(xué)的分類討論方法,從而培養(yǎng)學(xué)生全面、系統(tǒng)、辯證、周密地分析、討論問(wèn)題的能力,特別是培養(yǎng)學(xué)生邏輯思維能力,同時(shí)培養(yǎng)學(xué)生辯證唯物主義觀點(diǎn) 。3)在強(qiáng)調(diào)幾種形式互化時(shí)要向?qū)W生充分揭示各種形式的特點(diǎn),它們的幾何特征,參數(shù)的意義等,使學(xué)生明白為什么要轉(zhuǎn)化,并加深對(duì)各種形式的理解. (4)教學(xué)中要使學(xué)生明白兩個(gè)獨(dú)立條件確定一條直線,如兩個(gè)點(diǎn)、一個(gè)點(diǎn)和一個(gè)方向或其他兩個(gè)獨(dú)立條件.兩點(diǎn)確定一條直線,這是學(xué)生很早就接觸的幾何公理,然而在解析幾何,平面向量等理論中,直線或向量的方向是極其重要的要素,解析幾何中刻畫直線方向的量化形式就是斜率.因此,直線方程的兩點(diǎn)式和點(diǎn)斜式在直線方程的幾種形式中占有很重要的地位,而已知兩點(diǎn)可以求得斜率,所以點(diǎn)斜式又可推出兩點(diǎn)式(斜截式和截距式僅是它們的特例),因此點(diǎn)斜式最重要.教學(xué)中應(yīng)突出點(diǎn)斜式、兩點(diǎn)式和一般式三個(gè)教學(xué)高潮. 求直線方程需要兩個(gè)獨(dú)立的條件,要依不同的幾何條件選用不同形式的方程.根據(jù)兩個(gè)條件運(yùn)用待定系數(shù)法和方程思想求直線方程. 。5)注意正確理解截距的概念,截距不是距離,截距是直線(也是曲線)與坐標(biāo)軸交點(diǎn)的相應(yīng)坐標(biāo),它是有向線段的數(shù)量,因而是一個(gè)實(shí)數(shù);距離是線段的長(zhǎng)度,是一個(gè)正實(shí)數(shù)(或非負(fù)實(shí)數(shù)). 。6)本節(jié)中有不少與函數(shù)、不等式、三角函數(shù)有關(guān)的問(wèn)題,是函數(shù)、不等式、三角與直線的重要知識(shí)交匯點(diǎn)之一,教學(xué)中要適當(dāng)選擇一些有關(guān)的問(wèn)題指導(dǎo)學(xué)生練習(xí),培養(yǎng)學(xué)生的綜合能力. 。7)直線方程的理論在其他學(xué)科和生產(chǎn)生活實(shí)際中有大量的應(yīng)用.教學(xué)中注意聯(lián)系實(shí)際和其它學(xué)科,教師要注意引導(dǎo),增強(qiáng)學(xué)生用數(shù)學(xué)的意識(shí)和能力. 。8)本節(jié)不少內(nèi)容可安排學(xué)生自學(xué)和討論,還要適當(dāng)增加練習(xí),使學(xué)生能更好地掌握,而不是僅停留在觀念上. 教學(xué)設(shè)計(jì)示例 直線方程的一般形式 教學(xué)目標(biāo): 。1)掌握直線方程的一般形式,掌握直線方程幾種形式之間的互化. 。2)理解直線與二元一次方程的關(guān)系及其證明 (3)培養(yǎng)學(xué)生抽象概括能力、分類討論能力、逆向思維的習(xí)慣和形成特殊與一般辯證統(tǒng)一的觀點(diǎn). 教學(xué)重點(diǎn)、難點(diǎn):直線方程的一般式.直線與二元一次方程 ( 、 不同時(shí)為0)的對(duì)應(yīng)關(guān)系及其證明. 教學(xué)用具:計(jì)算機(jī) 教學(xué)方法:?jiǎn)l(fā)引導(dǎo)法,討論法 教學(xué)過(guò)程: 下面給出教學(xué)實(shí)施過(guò)程設(shè)計(jì)的簡(jiǎn)要思路: 教學(xué)設(shè)計(jì)思路: 。ㄒ唬┮氲脑O(shè)計(jì) 前邊學(xué)習(xí)了如何根據(jù)所給條件求出直線方程的方法,看下面問(wèn)題: 問(wèn):說(shuō)出過(guò)點(diǎn) (2,1),斜率為2的,并觀察方程屬于哪一類,為什么? 答:直線方程是 ,屬于二元一次方程,因?yàn)槲粗獢?shù)有兩個(gè),它們的最高次數(shù)為一次. 肯定學(xué)生回答,并糾正學(xué)生中不規(guī)范的表述.再看一個(gè)問(wèn)題: 問(wèn):求出過(guò)點(diǎn) , 的,并觀察方程屬于哪一類,為什么? 答:直線方程是 (或其它形式),也屬于二元一次方程,因?yàn)槲粗獢?shù)有兩個(gè),它們的最高次數(shù)為一次. 肯定學(xué)生回答后強(qiáng)調(diào)“也是二元一次方程,都是因?yàn)槲粗獢?shù)有兩個(gè),它們的最高次數(shù)為一次”. 啟發(fā):你在想什么(或你想到了什么)?誰(shuí)來(lái)談?wù)?各小組可以討論討論. 學(xué)生紛紛談出自己的想法,教師邊評(píng)價(jià)邊啟發(fā)引導(dǎo),使學(xué)生的認(rèn)識(shí)統(tǒng)一到如下問(wèn)題: 【問(wèn)題1】“任意都是二元一次方程嗎?” (二)本節(jié)主體內(nèi)容教學(xué)的設(shè)計(jì) 這是本節(jié)課要解決的第一個(gè)問(wèn)題,如何解決?自己先研究研究,也可以小組研究,確定解決問(wèn)題的思路. 學(xué)生或獨(dú)立研究,或合作研究,教師巡視指導(dǎo). 經(jīng)過(guò)一定時(shí)間的研究,教師組織開展集體討論.首先讓學(xué)生陳述解決思路或解決方案: 思路一:… 思路二:… …… 教師組織評(píng)價(jià),確定最優(yōu)方案(其它待課下研究)如下: 按斜率是否存在,任意直線 的位置有兩種可能,即斜率 存在或不存在. 當(dāng) 存在時(shí),直線 的截距 也一定存在,直線 的方程可表示為 ,它是二元一次方程. 當(dāng) 不存在時(shí),直線 的方程可表示為 形式的方程,它是二元一次方程嗎? 學(xué)生有的認(rèn)為是有的認(rèn)為不是,此時(shí)教師引導(dǎo)學(xué)生,逐步認(rèn)識(shí)到把它看成二元一次方程的合理性: 平面直角坐標(biāo)系中直線 上點(diǎn)的坐標(biāo)形式,與其它直線上點(diǎn)的坐標(biāo)形式?jīng)]有任何區(qū)別,根據(jù)直線方程的概念,方程 解的形式也是二元方程的解的形式,因此把它看成形如 的二元一次方程是合理的. 綜合兩種情況,我們得出如下結(jié)論: 在平面直角坐標(biāo)系中,對(duì)于任何一條直線,都有一條表示這條直線的關(guān)于 、 的二元一次方程. 至此,我們的問(wèn)題1就解決了.簡(jiǎn)單點(diǎn)說(shuō)就是:直線方程都是二元一次方程.而且這個(gè)方程一定可以表示成 或 的形式,準(zhǔn)確地說(shuō)應(yīng)該是“要么形如 這樣,要么形如 這樣的方程”. 同學(xué)們注意:這樣表達(dá)起來(lái)是不是很啰嗦,能不能有一個(gè)更好的表達(dá)? 學(xué)生們不難得出:二者可以概括為統(tǒng)一的形式. 這樣上邊的結(jié)論可以表述如下: 在平面直角坐標(biāo)系中,對(duì)于任何一條直線,都有一條表示這條直線的形如 (其中 、 不同時(shí)為0)的二元一次方程. 啟發(fā):任何一條直線都有這種形式的方程.你是否覺得還有什么與之相關(guān)的問(wèn)題呢? 【問(wèn)題2】任何形如 (其中 、 不同時(shí)為0)的二元一次方程都表示一條直線嗎? 不難看出上邊的結(jié)論只是直線與方程相互關(guān)系的一個(gè)方面,這個(gè)問(wèn)題是它的另一方面.這是顯然的嗎?不是,因此也需要像剛才一樣認(rèn)真地研究,得到明確的結(jié)論.那么如何研究呢? 師生共同討論,評(píng)價(jià)不同思路,達(dá)成共識(shí): 回顧上邊解決問(wèn)題的思路,發(fā)現(xiàn)原路返回就是非常好的思路,即方程 (其中 、 不同時(shí)為0)系數(shù) 是否為0恰好對(duì)應(yīng)斜率 是否存在,即 。1)當(dāng) 時(shí),方程可化為 這是表示斜率為 、在 軸上的截距為 的直線. 。2)當(dāng) 時(shí),由于 、 不同時(shí)為0,必有 ,方程可化為 這表示一條與 軸垂直的直線. 因此,得到結(jié)論: 在平面直角坐標(biāo)系中,任何形如 (其中 、 不同時(shí)為0)的二元一次方程都表示一條直線. 為方便,我們把 (其中 、 不同時(shí)為0)稱作直線方程的一般式是合理的. 【動(dòng)畫演示】 演示“直線各參數(shù).gsp”文件,體會(huì)任何二元一次方程都表示一條直線. 至此,我們的第二個(gè)問(wèn)題也圓滿解決,而且我們還發(fā)現(xiàn)上述兩個(gè)問(wèn)題其實(shí)是一個(gè)大問(wèn)題的兩個(gè)方面,這個(gè)大問(wèn)題揭示了直線與二元一次方程的對(duì)應(yīng)關(guān)系,同時(shí),直線方程的一般形式是對(duì)直線特殊形式的抽象和概括,而且抽象的層次越高越簡(jiǎn)潔,我們還體會(huì)到了特殊與一般的轉(zhuǎn)化關(guān)系. (三)練習(xí)鞏固、總結(jié)提高、板書和作業(yè)等環(huán)節(jié)的設(shè)計(jì)在此從略 一、素質(zhì)教育目標(biāo)1、知識(shí)教學(xué)點(diǎn)⑴直線方程的點(diǎn)斜式、斜截式、兩點(diǎn)式、截距式和一般式,它們之間的內(nèi)在聯(lián)系 ⑵直線與二元一次方程之間的關(guān)系 ⑶由已知條件寫出直線的方程 ⑷根據(jù)直線方程求出直線的斜率、傾斜角、截距,能畫方程表示的直線 2、能力訓(xùn)練點(diǎn)(1) 通過(guò)對(duì)直線方程的點(diǎn)斜式的研究,培養(yǎng)學(xué)生由特殊到一般的研究方法 (2) 通過(guò)對(duì)二元一次方程與直線的對(duì)應(yīng)關(guān)系的認(rèn)識(shí)和理解,培養(yǎng)學(xué)生的數(shù)、形轉(zhuǎn)化能力 (3) 通過(guò)運(yùn)用直線方程的知識(shí)解答相關(guān)問(wèn)題的訓(xùn)練,培養(yǎng)學(xué)生靈活運(yùn)用知識(shí)分析問(wèn)題、解決問(wèn)題的能力。 二、學(xué)法指導(dǎo)本節(jié)主要學(xué)習(xí)直線方程的五種形式,應(yīng)理解并記憶公式的內(nèi)容,特別要搞清各個(gè)公式的適用范圍:點(diǎn)斜式和斜截式需要斜率存在,而兩點(diǎn)式不能表示與坐標(biāo)軸垂直的直線,截距式不能表示過(guò)原點(diǎn)及與坐標(biāo)軸垂直的直線。一般式雖然可表示任意直線但它所含的變量多,故在運(yùn)用時(shí)要靈活選擇公式,不丟解不漏解。三、教學(xué)重點(diǎn)、難點(diǎn) 1、重點(diǎn):直線的點(diǎn)斜式和一般式的推導(dǎo),由已知條件求直線的方程 2、難點(diǎn):直線的點(diǎn)斜式和一般式的推導(dǎo),如何選擇方程的形式,如何簡(jiǎn)化運(yùn)算過(guò)程。 四、課時(shí)安排本課題安排3課時(shí) 五、教與學(xué)過(guò)程設(shè)計(jì)第一課時(shí) 直線的方程-點(diǎn)斜式、斜截式●教學(xué)目標(biāo)1.理解直線方程點(diǎn)斜式的形式特點(diǎn)和適用范圍. 2.了解求直線方程的一般思路. 3.了解直線方程斜截式的形式特點(diǎn). ●教學(xué)重點(diǎn)直線方程的點(diǎn)斜式●教學(xué)難點(diǎn)點(diǎn)斜式推導(dǎo)過(guò)程的理解.●教學(xué)方法學(xué)導(dǎo)式●教具準(zhǔn)備幻燈片●教學(xué)過(guò)程1、創(chuàng)設(shè)情境已知直線l過(guò)點(diǎn)(1,2),斜率為2,則直線l上的任一點(diǎn)應(yīng)滿足什么條件? 分析:設(shè)q(x,y)為直線l上的任一點(diǎn),則kpq= 1,即(y―1)/(x―1)= 2(x≠1),整理得y―2=2(x―1)又點(diǎn)(1,2)符合上述方程,故直線l上的任一點(diǎn)應(yīng)滿足條件y―2=2(x―1)回顧解題用到的知識(shí)點(diǎn):過(guò)兩點(diǎn)的斜率的公式:經(jīng)過(guò)兩點(diǎn)p1(x1,y1),p2(x2,y2)的直線的斜率公式是: 2、提出問(wèn)題問(wèn):直線l過(guò)點(diǎn)(1,2),斜率為2,則直線l的方程是y―2=2(x―1)嗎?回想一下直線的方程與方程的直線的概念: 以一個(gè)方程的解為坐標(biāo)的點(diǎn)都是某條直線上的點(diǎn),反過(guò)來(lái),這條直線上的點(diǎn)的坐標(biāo)都是這個(gè)方程的解,這時(shí),這個(gè)方程叫做這條直線的方程,這條直線叫做這個(gè)方程的直線。直線l上的點(diǎn)都是這個(gè)方程的解;反過(guò)來(lái),以這個(gè)方程的解為坐標(biāo)的點(diǎn)都在直線l上,所以直線l的方程是y―2=2(x―1)3、解決問(wèn)題直線方程的點(diǎn)斜式: y ―y1 =k( x ―x1) 其中( )為直線上一點(diǎn)坐標(biāo), k為直線斜率. 推導(dǎo)過(guò)程: 若直線l經(jīng)過(guò)點(diǎn) ,且斜率為k,求l方程。 設(shè)點(diǎn) p(x,y)是直線l上任意一點(diǎn), 根據(jù)經(jīng)過(guò)兩點(diǎn)的直線的斜率公式, 得 ,可化為 . 當(dāng)x = x1時(shí)也滿足上述方程。 所以,直線l方程是 . 說(shuō)明:①這個(gè)方程是由直線上一點(diǎn)和斜率確定的; ②當(dāng)直線l的傾斜角為0°時(shí),直線方程為 ; ③當(dāng)直線傾斜角為90°時(shí),直線沒有斜率,它的方程不能用點(diǎn)斜式表示.這時(shí)直線方程為: . 4、反思應(yīng)用. 例1.一條直線經(jīng)過(guò)點(diǎn)p1(-2,3),傾斜角 =45°,求這條直線方程,并畫出圖形. 解:這條直線經(jīng)過(guò)點(diǎn)p1(-2,3),斜率是: . 代入點(diǎn)斜式方程,得 這就是所求的直線方程,圖形如圖中所示 說(shuō)明:例1是點(diǎn)斜式方程的直接運(yùn)用,要求學(xué)生熟練掌握,并具備一定的作圖能力. 鞏固訓(xùn)練: 例2.直線l過(guò)點(diǎn)a(-1 ,-3),其傾斜角等于直線y=2x的傾斜角的2倍,求直線l 的方程。 分析:已知所求直線上一點(diǎn)的坐標(biāo),故只要求直線的斜率。所以可以根據(jù)條件,先求出y=2x的傾斜角,再求出l的傾斜角,進(jìn)而求出斜率。 解:設(shè)所求直線l的斜率為k,直線y=2x的傾斜角為α,則 tanα=2 , k= tan2α 代入點(diǎn)斜式,得 即:4x + 3y + 13 = 0 例3:已知直線的斜率為k, 與y軸的交點(diǎn)是p (0 ,b ), 求直線l 的方程. 解:將點(diǎn)p (0,b), k代入直線方程的點(diǎn)斜式,得 y-b=k(x-0) 即 直線的斜截式:y = kx + b, 其中k為直線的斜率,b為直線在y軸上的截距。 說(shuō)明:①b為直線l在y軸上截距; ②斜截式方程可由過(guò)點(diǎn)(0,b)的點(diǎn)斜式方程得到; ③當(dāng) 時(shí),斜截式方程就是一次函數(shù)的表示形式. 想一想:點(diǎn)斜式、斜截式的適用范圍是什么? 當(dāng)直線與x軸垂直時(shí),不適用。 練習(xí):直線l的方程是4x + 3y + 13 = 0,求它的斜率及它在y軸上的截距。 分析:由4x + 3y + 13 = 0得y = ―4x/3―13/3 所以斜率是-4/3, 在y軸上的截距是―13/3。 例4 直線l在y軸上的截距是-7,傾斜角為45°,求直線l的方程。分析:直線l在x軸上的截距是-7,即直線l過(guò)點(diǎn)(0,-7) 又傾斜角為45°,即斜率k = 1∴直線l的方程是y = x - 7 ●課堂小結(jié) 數(shù)學(xué)思想:數(shù)形結(jié)合、特殊到一般數(shù)學(xué)方法:公式法知識(shí)點(diǎn):點(diǎn)斜式、斜截式●課后作業(yè) p44習(xí)題7.2 1 (2)(3),2,3 思考題:一直線被兩直線l1:4x+y+6=0, l2:3x―5y―6=0截得的線段的中點(diǎn)恰好是坐標(biāo)原點(diǎn),求該直線方程。 分析:設(shè)所求直線與直線l1:4x+y+6=0, l2:3x―5y―6=0交于點(diǎn)a、b, 設(shè)a(a, b),則b(-a,- b), ∵a、b分別在直線l1:4x+y+6=0, l2:3x―5y―6=0 ∴4a+b+6=0, 3a―5b―6=0 ∴a+6b=0 ∴所求直線的方程是x+6y=0 教學(xué)后記: 教學(xué)目標(biāo) 。1)掌握由一點(diǎn)和斜率導(dǎo)出直線方程的方法,掌握直線方程的點(diǎn)斜式、兩點(diǎn)式和直線方程的一般式,并能根據(jù)條件熟練地求出. (2)理解直線方程幾種形式之間的內(nèi)在聯(lián)系,能在整體上把握. 。3)掌握直線方程各種形式之間的互化. 。4)通過(guò)直線方程一般式的教學(xué)培養(yǎng)學(xué)生全面、系統(tǒng)、周密地分析、討論問(wèn)題的能力. 。5)通過(guò)直線方程特殊式與一般式轉(zhuǎn)化的教學(xué),培養(yǎng)學(xué)生靈活的思維品質(zhì)和辯證唯物主義觀點(diǎn). (6)進(jìn)一步理解直線方程的概念,理解直線斜率的意義和解析幾何的思想方法. 教學(xué)建議 1.教材分析 。1)知識(shí)結(jié)構(gòu) 由直線方程的概念和直線斜率的概念導(dǎo)出直線方程的點(diǎn)斜式;由直線方程的點(diǎn)斜式分別導(dǎo)出直線方程的斜截式和兩點(diǎn)式;再由兩點(diǎn)式導(dǎo)出截距式;最后都可以轉(zhuǎn)化歸結(jié)為直線的一般式;同時(shí)一般式也可以轉(zhuǎn)化成特殊式. 。2)重點(diǎn)、難點(diǎn)分析 、俦竟(jié)的重點(diǎn)是直線方程的點(diǎn)斜式、兩點(diǎn)式、一般式,以及根據(jù)具體條件求出. 解析幾何有兩項(xiàng)根本性的任務(wù):一個(gè)是求曲線的方程;另一個(gè)就是用方程研究曲線.本節(jié)內(nèi)容就是求,因此是非常重要的內(nèi)容,它對(duì)以后學(xué)習(xí)用方程討論直線起著直接的作用,同時(shí)也對(duì)曲線方程的學(xué)習(xí)起著重要的作用. 直線的點(diǎn)斜式方程是平面解析幾何中所求出的第一個(gè)方程,是后面幾種特殊形式的源頭.學(xué)生對(duì)點(diǎn)斜式學(xué)習(xí)的效果將直接影響后繼知識(shí)的學(xué)習(xí). 、诒竟(jié)的難點(diǎn)是直線方程特殊形式的限制條件,直線方程的整體結(jié)構(gòu),直線與二元一次方程的關(guān)系證明. 2.教法建議 。1)教材中求直線方程采取先特殊后一般的思路,特殊形式的方程幾何特征明顯,但局限性強(qiáng);一般形式的方程無(wú)任何限制,但幾何特征不明顯.教學(xué)中各部分知識(shí)之間過(guò)渡要自然流暢,不生硬. (2)直線方程的一般式反映了直線方程各種形式之間的統(tǒng)一性,教學(xué)中應(yīng)充分揭示直線方程本質(zhì)屬性,建立二元一次方程與直線的對(duì)應(yīng)關(guān)系,為繼續(xù)學(xué)習(xí)“曲線方程”打下基礎(chǔ). 直線一般式方程都是字母系數(shù),在揭示這一概念深刻內(nèi)涵時(shí),還需要進(jìn)行正反兩方面的分析論證.教學(xué)中應(yīng)重點(diǎn)分析思路,還應(yīng)抓住這一有利時(shí)使學(xué)生學(xué)會(huì)嚴(yán)謹(jǐn)科學(xué)的分類討論方法,從而培養(yǎng)學(xué)生全面、系統(tǒng)、辯證、周密地分析、討論問(wèn)題的能力,特別是培養(yǎng)學(xué)生邏輯思維能力,同時(shí)培養(yǎng)學(xué)生辯證唯物主義觀點(diǎn) 。3)在強(qiáng)調(diào)幾種形式互化時(shí)要向?qū)W生充分揭示各種形式的特點(diǎn),它們的幾何特征,參數(shù)的意義等,使學(xué)生明白為什么要轉(zhuǎn)化,并加深對(duì)各種形式的理解. (4)教學(xué)中要使學(xué)生明白兩個(gè)獨(dú)立條件確定一條直線,如兩個(gè)點(diǎn)、一個(gè)點(diǎn)和一個(gè)方向或其他兩個(gè)獨(dú)立條件.兩點(diǎn)確定一條直線,這是學(xué)生很早就接觸的幾何公理,然而在解析幾何,平面向量等理論中,直線或向量的方向是極其重要的要素,解析幾何中刻畫直線方向的量化形式就是斜率.因此,直線方程的兩點(diǎn)式和點(diǎn)斜式在直線方程的幾種形式中占有很重要的地位,而已知兩點(diǎn)可以求得斜率,所以點(diǎn)斜式又可推出兩點(diǎn)式(斜截式和截距式僅是它們的特例),因此點(diǎn)斜式最重要.教學(xué)中應(yīng)突出點(diǎn)斜式、兩點(diǎn)式和一般式三個(gè)教學(xué)高潮. 求直線方程需要兩個(gè)獨(dú)立的條件,要依不同的幾何條件選用不同形式的方程.根據(jù)兩個(gè)條件運(yùn)用待定系數(shù)法和方程思想求直線方程. (5)注意正確理解截距的概念,截距不是距離,截距是直線(也是曲線)與坐標(biāo)軸交點(diǎn)的相應(yīng)坐標(biāo),它是有向線段的數(shù)量,因而是一個(gè)實(shí)數(shù);距離是線段的長(zhǎng)度,是一個(gè)正實(shí)數(shù)(或非負(fù)實(shí)數(shù)). 。6)本節(jié)中有不少與函數(shù)、不等式、三角函數(shù)有關(guān)的問(wèn)題,是函數(shù)、不等式、三角與直線的重要知識(shí)交匯點(diǎn)之一,教學(xué)中要適當(dāng)選擇一些有關(guān)的問(wèn)題指導(dǎo)學(xué)生練習(xí),培養(yǎng)學(xué)生的綜合能力. 。7)直線方程的理論在其他學(xué)科和生產(chǎn)生活實(shí)際中有大量的應(yīng)用.教學(xué)中注意聯(lián)系實(shí)際和其它學(xué)科,教師要注意引導(dǎo),增強(qiáng)學(xué)生用數(shù)學(xué)的意識(shí)和能力. 。8)本節(jié)不少內(nèi)容可安排學(xué)生自學(xué)和討論,還要適當(dāng)增加練習(xí),使學(xué)生能更好地掌握,而不是僅停留在觀念上. 教學(xué)設(shè)計(jì)示例 直線方程的一般形式 教學(xué)目標(biāo): (1)掌握直線方程的一般形式,掌握直線方程幾種形式之間的互化. 。2)理解直線與二元一次方程的關(guān)系及其證明 。3)培養(yǎng)學(xué)生抽象概括能力、分類討論能力、逆向思維的習(xí)慣和形成特殊與一般辯證統(tǒng)一的觀點(diǎn). 教學(xué)重點(diǎn)、難點(diǎn):直線方程的一般式.直線與二元一次方程 ( 、 不同時(shí)為0)的對(duì)應(yīng)關(guān)系及其證明. 教學(xué)用具:計(jì)算機(jī) 教學(xué)方法:?jiǎn)l(fā)引導(dǎo)法,討論法 教學(xué)過(guò)程: 下面給出教學(xué)實(shí)施過(guò)程設(shè)計(jì)的簡(jiǎn)要思路: 教學(xué)設(shè)計(jì)思路: (一)引入的設(shè)計(jì) 前邊學(xué)習(xí)了如何根據(jù)所給條件求出直線方程的方法,看下面問(wèn)題: 問(wèn):說(shuō)出過(guò)點(diǎn) (2,1),斜率為2的,并觀察方程屬于哪一類,為什么? 答:直線方程是 ,屬于二元一次方程,因?yàn)槲粗獢?shù)有兩個(gè),它們的最高次數(shù)為一次. 肯定學(xué)生回答,并糾正學(xué)生中不規(guī)范的表述.再看一個(gè)問(wèn)題: 問(wèn):求出過(guò)點(diǎn) , 的,并觀察方程屬于哪一類,為什么? 答:直線方程是 (或其它形式),也屬于二元一次方程,因?yàn)槲粗獢?shù)有兩個(gè),它們的最高次數(shù)為一次. 肯定學(xué)生回答后強(qiáng)調(diào)“也是二元一次方程,都是因?yàn)槲粗獢?shù)有兩個(gè),它們的最高次數(shù)為一次”. 啟發(fā):你在想什么(或你想到了什么)?誰(shuí)來(lái)談?wù)?各小組可以討論討論. 學(xué)生紛紛談出自己的想法,教師邊評(píng)價(jià)邊啟發(fā)引導(dǎo),使學(xué)生的認(rèn)識(shí)統(tǒng)一到如下問(wèn)題: 【問(wèn)題1】“任意都是二元一次方程嗎?” (二)本節(jié)主體內(nèi)容教學(xué)的設(shè)計(jì) 這是本節(jié)課要解決的第一個(gè)問(wèn)題,如何解決?自己先研究研究,也可以小組研究,確定解決問(wèn)題的思路. 學(xué)生或獨(dú)立研究,或合作研究,教師巡視指導(dǎo). 經(jīng)過(guò)一定時(shí)間的研究,教師組織開展集體討論.首先讓學(xué)生陳述解決思路或解決方案: 思路一:… 思路二:… …… 教師組織評(píng)價(jià),確定最優(yōu)方案(其它待課下研究)如下: 按斜率是否存在,任意直線 的位置有兩種可能,即斜率 存在或不存在. 當(dāng) 存在時(shí),直線 的截距 也一定存在,直線 的方程可表示為 ,它是二元一次方程. 當(dāng) 不存在時(shí),直線 的方程可表示為 形式的方程,它是二元一次方程嗎? 學(xué)生有的認(rèn)為是有的認(rèn)為不是,此時(shí)教師引導(dǎo)學(xué)生,逐步認(rèn)識(shí)到把它看成二元一次方程的合理性: 平面直角坐標(biāo)系中直線 上點(diǎn)的坐標(biāo)形式,與其它直線上點(diǎn)的坐標(biāo)形式?jīng)]有任何區(qū)別,根據(jù)直線方程的概念,方程 解的形式也是二元方程的解的形式,因此把它看成形如 的二元一次方程是合理的. 綜合兩種情況,我們得出如下結(jié)論: 在平面直角坐標(biāo)系中,對(duì)于任何一條直線,都有一條表示這條直線的關(guān)于 、 的二元一次方程. 至此,我們的問(wèn)題1就解決了.簡(jiǎn)單點(diǎn)說(shuō)就是:直線方程都是二元一次方程.而且這個(gè)方程一定可以表示成 或 的形式,準(zhǔn)確地說(shuō)應(yīng)該是“要么形如 這樣,要么形如 這樣的方程”. 同學(xué)們注意:這樣表達(dá)起來(lái)是不是很啰嗦,能不能有一個(gè)更好的表達(dá)? 學(xué)生們不難得出:二者可以概括為統(tǒng)一的形式. 這樣上邊的結(jié)論可以表述如下: 在平面直角坐標(biāo)系中,對(duì)于任何一條直線,都有一條表示這條直線的形如 (其中 、 不同時(shí)為0)的二元一次方程. 啟發(fā):任何一條直線都有這種形式的方程.你是否覺得還有什么與之相關(guān)的問(wèn)題呢? 【問(wèn)題2】任何形如 (其中 、 不同時(shí)為0)的二元一次方程都表示一條直線嗎? 不難看出上邊的結(jié)論只是直線與方程相互關(guān)系的一個(gè)方面,這個(gè)問(wèn)題是它的另一方面.這是顯然的嗎?不是,因此也需要像剛才一樣認(rèn)真地研究,得到明確的結(jié)論.那么如何研究呢? 師生共同討論,評(píng)價(jià)不同思路,達(dá)成共識(shí): 回顧上邊解決問(wèn)題的思路,發(fā)現(xiàn)原路返回就是非常好的思路,即方程 (其中 、 不同時(shí)為0)系數(shù) 是否為0恰好對(duì)應(yīng)斜率 是否存在,即 。1)當(dāng) 時(shí),方程可化為 這是表示斜率為 、在 軸上的截距為 的直線. 。2)當(dāng) 時(shí),由于 、 不同時(shí)為0,必有 ,方程可化為 這表示一條與 軸垂直的直線. 因此,得到結(jié)論: 在平面直角坐標(biāo)系中,任何形如 (其中 、 不同時(shí)為0)的二元一次方程都表示一條直線. 為方便,我們把 (其中 、 不同時(shí)為0)稱作直線方程的一般式是合理的. 【動(dòng)畫演示】 演示“直線各參數(shù).gsp”文件,體會(huì)任何二元一次方程都表示一條直線. 至此,我們的第二個(gè)問(wèn)題也圓滿解決,而且我們還發(fā)現(xiàn)上述兩個(gè)問(wèn)題其實(shí)是一個(gè)大問(wèn)題的兩個(gè)方面,這個(gè)大問(wèn)題揭示了直線與二元一次方程的對(duì)應(yīng)關(guān)系,同時(shí),直線方程的一般形式是對(duì)直線特殊形式的抽象和概括,而且抽象的層次越高越簡(jiǎn)潔,我們還體會(huì)到了特殊與一般的轉(zhuǎn)化關(guān)系. 。ㄈ┚毩(xí)鞏固、總結(jié)提高、板書和作業(yè)等環(huán)節(jié)的設(shè)計(jì)在此從略 教學(xué)目標(biāo) 。1)掌握由一點(diǎn)和斜率導(dǎo)出直線方程的方法,掌握直線方程的點(diǎn)斜式、兩點(diǎn)式和直線方程的一般式,并能根據(jù)條件熟練地求出直線的方程. 。2)理解直線方程幾種形式之間的內(nèi)在聯(lián)系,能在整體上把握直線的方程. 。3)掌握直線方程各種形式之間的互化. 。4)通過(guò)直線方程一般式的教學(xué)培養(yǎng)學(xué)生全面、系統(tǒng)、周密地分析、討論問(wèn)題的能力. (5)通過(guò)直線方程特殊式與一般式轉(zhuǎn)化的教學(xué),培養(yǎng)學(xué)生靈活的思維品質(zhì)和辯證唯物主義觀點(diǎn). 。6)進(jìn)一步理解直線方程的概念,理解直線斜率的意義和解析幾何的思想方法. 教學(xué)建議 1.教材分析 。1)知識(shí)結(jié)構(gòu) 由直線方程的概念和直線斜率的概念導(dǎo)出直線方程的點(diǎn)斜式;由直線方程的點(diǎn)斜式分別導(dǎo)出直線方程的斜截式和兩點(diǎn)式;再由兩點(diǎn)式導(dǎo)出截距式;最后都可以轉(zhuǎn)化歸結(jié)為直線的一般式;同時(shí)一般式也可以轉(zhuǎn)化成特殊式. (2)重點(diǎn)、難點(diǎn)分析 ①本節(jié)的重點(diǎn)是直線方程的點(diǎn)斜式、兩點(diǎn)式、一般式,以及根據(jù)具體條件求出直線的方程. 解析幾何有兩項(xiàng)根本性的任務(wù):一個(gè)是求曲線的方程;另一個(gè)就是用方程研究曲線.本節(jié)內(nèi)容就是求直線的方程,因此是非常重要的內(nèi)容,它對(duì)以后學(xué)習(xí)用方程討論直線起著直接的作用,同時(shí)也對(duì)曲線方程的學(xué)習(xí)起著重要的作用. 直線的點(diǎn)斜式方程是平面解析幾何中所求出的第一個(gè)方程,是后面幾種特殊形式的源頭.學(xué)生對(duì)點(diǎn)斜式學(xué)習(xí)的效果將直接影響后繼知識(shí)的學(xué)習(xí). ②本節(jié)的難點(diǎn)是直線方程特殊形式的限制條件,直線方程的整體結(jié)構(gòu),直線與二元一次方程的關(guān)系證明. 2.教法建議 。1)教材中求直線方程采取先特殊后一般的思路,特殊形式的方程幾何特征明顯,但局限性強(qiáng);一般形式的方程無(wú)任何限制,但幾何特征不明顯.教學(xué)中各部分知識(shí)之間過(guò)渡要自然流暢,不生硬. 。2)直線方程的一般式反映了直線方程各種形式之間的統(tǒng)一性,教學(xué)中應(yīng)充分揭示直線方程本質(zhì)屬性,建立二元一次方程與直線的對(duì)應(yīng)關(guān)系,為繼續(xù)學(xué)習(xí)“曲線方程”打下基礎(chǔ). 直線一般式方程都是字母系數(shù),在揭示這一概念深刻內(nèi)涵時(shí),還需要進(jìn)行正反兩方面的分析論證.教學(xué)中應(yīng)重點(diǎn)分析思路,還應(yīng)抓住這一有利時(shí)使學(xué)生學(xué)會(huì)嚴(yán)謹(jǐn)科學(xué)的分類討論方法,從而培養(yǎng)學(xué)生全面、系統(tǒng)、辯證、周密地分析、討論問(wèn)題的能力,特別是培養(yǎng)學(xué)生邏輯思維能力,同時(shí)培養(yǎng)學(xué)生辯證唯物主義觀點(diǎn) 。3)在強(qiáng)調(diào)幾種形式互化時(shí)要向?qū)W生充分揭示各種形式的特點(diǎn),它們的幾何特征,參數(shù)的意義等,使學(xué)生明白為什么要轉(zhuǎn)化,并加深對(duì)各種形式的理解. 。4)教學(xué)中要使學(xué)生明白兩個(gè)獨(dú)立條件確定一條直線,如兩個(gè)點(diǎn)、一個(gè)點(diǎn)和一個(gè)方向或其他兩個(gè)獨(dú)立條件.兩點(diǎn)確定一條直線,這是學(xué)生很早就接觸的幾何公理,然而在解析幾何,平面向量等理論中,直線或向量的方向是極其重要的要素,解析幾何中刻畫直線方向的量化形式就是斜率.因此,直線方程的兩點(diǎn)式和點(diǎn)斜式在直線方程的幾種形式中占有很重要的地位,而已知兩點(diǎn)可以求得斜率,所以點(diǎn)斜式又可推出兩點(diǎn)式(斜截式和截距式僅是它們的特例),因此點(diǎn)斜式最重要.教學(xué)中應(yīng)突出點(diǎn)斜式、兩點(diǎn)式和一般式三個(gè)教學(xué)高潮. 求直線方程需要兩個(gè)獨(dú)立的條件,要依不同的幾何條件選用不同形式的方程.根據(jù)兩個(gè)條件運(yùn)用待定系數(shù)法和方程思想求直線方程. 。5)注意正確理解截距的概念,截距不是距離,截距是直線(也是曲線)與坐標(biāo)軸交點(diǎn)的相應(yīng)坐標(biāo),它是有向線段的數(shù)量,因而是一個(gè)實(shí)數(shù);距離是線段的長(zhǎng)度,是一個(gè)正實(shí)數(shù)(或非負(fù)實(shí)數(shù)). (6)本節(jié)中有不少與函數(shù)、不等式、三角函數(shù)有關(guān)的問(wèn)題,是函數(shù)、不等式、三角與直線的重要知識(shí)交匯點(diǎn)之一,教學(xué)中要適當(dāng)選擇一些有關(guān)的問(wèn)題指導(dǎo)學(xué)生練習(xí),培養(yǎng)學(xué)生的綜合能力. 。7)直線方程的理論在其他學(xué)科和生產(chǎn)生活實(shí)際中有大量的應(yīng)用.教學(xué)中注意聯(lián)系實(shí)際和其它學(xué)科,教師要注意引導(dǎo),增強(qiáng)學(xué)生用數(shù)學(xué)的意識(shí)和能力. 。8)本節(jié)不少內(nèi)容可安排學(xué)生自學(xué)和討論,還要適當(dāng)增加練習(xí),使學(xué)生能更好地掌握,而不是僅停留在觀念上. 教學(xué)設(shè)計(jì)示例 直線方程的一般形式 教學(xué)目標(biāo): 。1)掌握直線方程的一般形式,掌握直線方程幾種形式之間的互化. 。2)理解直線與二元一次方程的關(guān)系及其證明 (3)培養(yǎng)學(xué)生抽象概括能力、分類討論能力、逆向思維的習(xí)慣和形成特殊與一般辯證統(tǒng)一的觀點(diǎn). 教學(xué)重點(diǎn)、難點(diǎn):直線方程的一般式.直線與二元一次方程 ( 不同時(shí)為0)的對(duì)應(yīng)關(guān)系及其證明. 教學(xué)用具:計(jì)算機(jī) 教學(xué)方法:?jiǎn)l(fā)引導(dǎo)法,討論法 教學(xué)過(guò)程: 下面給出教學(xué)實(shí)施過(guò)程設(shè)計(jì)的簡(jiǎn)要思路: 教學(xué)設(shè)計(jì)思路: (一)引入的設(shè)計(jì) 前邊學(xué)習(xí)了如何根據(jù)所給條件求出直線方程的方法,看下面問(wèn)題: 問(wèn):說(shuō)出過(guò)點(diǎn) (2,1),斜率為2的直線的方程,并觀察方程屬于哪一類,為什么? 答:直線方程是 ,屬于二元一次方程,因?yàn)槲粗獢?shù)有兩個(gè),它們的最高次數(shù)為一次. 肯定學(xué)生回答,并糾正學(xué)生中不規(guī)范的表述.再看一個(gè)問(wèn)題: 問(wèn):求出過(guò)點(diǎn) , 的直線的方程,并觀察方程屬于哪一類,為什么? 答:直線方程是 (或其它形式),也屬于二元一次方程,因?yàn)槲粗獢?shù)有兩個(gè),它們的最高次數(shù)為一次. 肯定學(xué)生回答后強(qiáng)調(diào)“也是二元一次方程,都是因?yàn)槲粗獢?shù)有兩個(gè),它們的最高次數(shù)為一次”. 啟發(fā):你在想什么(或你想到了什么)?誰(shuí)來(lái)談?wù)?各小組可以討論討論. 學(xué)生紛紛談出自己的想法,教師邊評(píng)價(jià)邊啟發(fā)引導(dǎo),使學(xué)生的認(rèn)識(shí)統(tǒng)一到如下問(wèn)題: 【問(wèn)題1】“任意直線的方程都是二元一次方程嗎?” 。ǘ┍竟(jié)主體內(nèi)容教學(xué)的設(shè)計(jì) 這是本節(jié)課要解決的第一個(gè)問(wèn)題,如何解決?自己先研究研究,也可以小組研究,確定解決問(wèn)題的思路. 學(xué)生或獨(dú)立研究,或合作研究,教師巡視指導(dǎo). 經(jīng)過(guò)一定時(shí)間的研究,教師組織開展集體討論.首先讓學(xué)生陳述解決思路或解決方案: 思路一:… 思路二:… …… 教師組織評(píng)價(jià),確定最優(yōu)方案(其它待課下研究)如下: 按斜率是否存在,任意直線 的位置有兩種可能,即斜率 存在或不存在. 當(dāng) 存在時(shí),直線 的截距 也一定存在,直線 的方程可表示為 ,它是二元一次方程. 當(dāng) 不存在時(shí),直線 的方程可表示為 形式的方程,它是二元一次方程嗎? 學(xué)生有的認(rèn)為是有的認(rèn)為不是,此時(shí)教師引導(dǎo)學(xué)生,逐步認(rèn)識(shí)到把它看成二元一次方程的合理性: 平面直角坐標(biāo)系中直線 上點(diǎn)的坐標(biāo)形式,與其它直線上點(diǎn)的坐標(biāo)形式?jīng)]有任何區(qū)別,根據(jù)直線方程的概念,方程 解的形式也是二元方程的解的形式,因此把它看成形如 的二元一次方程是合理的. 綜合兩種情況,我們得出如下結(jié)論: 在平面直角坐標(biāo)系中,對(duì)于任何一條直線,都有一條表示這條直線的關(guān)于 、 的二元一次方程. 至此,我們的問(wèn)題1就解決了.簡(jiǎn)單點(diǎn)說(shuō)就是:直線方程都是二元一次方程.而且這個(gè)方程一定可以表示成 或 的形式,準(zhǔn)確地說(shuō)應(yīng)該是“要么形如 這樣,要么形如 這樣的方程”. 同學(xué)們注意:這樣表達(dá)起來(lái)是不是很啰嗦,能不能有一個(gè)更好的表達(dá)? 學(xué)生們不難得出:二者可以概括為統(tǒng)一的形式. 這樣上邊的結(jié)論可以表述如下: 在平面直角坐標(biāo)系中,對(duì)于任何一條直線,都有一條表示這條直線的形如 (其中 、 不同時(shí)為0)的二元一次方程. 啟發(fā):任何一條直線都有這種形式的方程.你是否覺得還有什么與之相關(guān)的問(wèn)題呢? 【問(wèn)題2】任何形如 (其中 、 不同時(shí)為0)的二元一次方程都表示一條直線嗎? 不難看出上邊的結(jié)論只是直線與方程相互關(guān)系的一個(gè)方面,這個(gè)問(wèn)題是它的另一方面.這是顯然的嗎?不是,因此也需要像剛才一樣認(rèn)真地研究,得到明確的結(jié)論.那么如何研究呢? 師生共同討論,評(píng)價(jià)不同思路,達(dá)成共識(shí): 回顧上邊解決問(wèn)題的思路,發(fā)現(xiàn)原路返回就是非常好的思路,即方程 (其中 、 不同時(shí)為0)系數(shù) 是否為0恰好對(duì)應(yīng)斜率 是否存在,即 。1)當(dāng) 時(shí),方程可化為 這是表示斜率為 、在 軸上的截距為 的直線. (2)當(dāng) 時(shí),由于 、 不同時(shí)為0,必有 ,方程可化為 這表示一條與 軸垂直的直線. 因此,得到結(jié)論: 在平面直角坐標(biāo)系中,任何形如 (其中 、 不同時(shí)為0)的二元一次方程都表示一條直線. 為方便,我們把 (其中 、 不同時(shí)為0)稱作直線方程的一般式是合理的. 【動(dòng)畫演示】 演示“直線各參數(shù).gsp”文件,體會(huì)任何二元一次方程都表示一條直線. 至此,我們的第二個(gè)問(wèn)題也圓滿解決,而且我們還發(fā)現(xiàn)上述兩個(gè)問(wèn)題其實(shí)是一個(gè)大問(wèn)題的兩個(gè)方面,這個(gè)大問(wèn)題揭示了直線與二元一次方程的對(duì)應(yīng)關(guān)系,同時(shí),直線方程的一般形式是對(duì)直線特殊形式的抽象和概括,而且抽象的層次越高越簡(jiǎn)潔,我們還體會(huì)到了特殊與一般的轉(zhuǎn)化關(guān)系. 。ㄈ┚毩(xí)鞏固、總結(jié)提高、板書和作業(yè)等環(huán)節(jié)的設(shè)計(jì)在此從略 以下是2篇關(guān)于高中數(shù)學(xué)《直線的方程》教學(xué)反思的范文,供大家參考,希望對(duì)大家有幫助! 高中數(shù)學(xué)《直線的方程》教學(xué)反思一 直線方程的教學(xué)是在學(xué)習(xí)了直線的傾斜角和斜率公式之后推導(dǎo)引入直線的點(diǎn)斜式方程,進(jìn)一步延伸出其他形式的直線方程和相互轉(zhuǎn)化,為下面直線方程的應(yīng)用如中點(diǎn)公式、距離公式、直線和圓的位置關(guān)系等打下良好的基礎(chǔ)。 以下是在課堂教學(xué)中的幾點(diǎn)體會(huì)和建議: (一)初步培養(yǎng)了學(xué)生平面解析幾何的思想和一般方法。 在初中,學(xué)生熟知一次函數(shù)y=kx+b(也可以看成是二次方程)的圖象是一條直線,但反過(guò)來(lái)任意畫一條,要同學(xué)們寫出方程表達(dá)式,學(xué)生剛開始會(huì)無(wú)從下手,從而激發(fā)學(xué)生學(xué)習(xí)的興趣。隨著教學(xué)的展開,讓學(xué)生逐步形成平面解析幾何的方法,如建立坐標(biāo)啊,設(shè)點(diǎn)啊,建立關(guān)系式啊,得出方程啊等等,初步培養(yǎng)學(xué)生的平面解析幾何思維,為后面學(xué)習(xí)圓、橢圓和相關(guān)圓錐曲線打下良好的基礎(chǔ)。 (二)在教學(xué)中貫徹“精講多練”的教學(xué)改革探索。 我們都知道,對(duì)于職中的學(xué)生,基礎(chǔ)差,底子薄,理解能力差,動(dòng)手能力差,要想讓學(xué)生學(xué)有所得,最好的辦法就是精講多練,提高學(xué)生的動(dòng)手能力。因此在教學(xué)中,我們通常是由練習(xí)引入,簡(jiǎn)單講講,一例一練,配以一定的鞏固提高題,最后還有配套作業(yè),做到每個(gè)內(nèi)容經(jīng)過(guò)三輪的練習(xí),讓學(xué)生能夠很容易的掌握。 (三)注意數(shù)形結(jié)合的教學(xué)。 解析幾何的特點(diǎn)就是形數(shù)結(jié)合,而形數(shù)結(jié)合的思想是一種重要的數(shù)學(xué)思想,是教學(xué)大綱中要求學(xué)生學(xué)習(xí)的內(nèi)容之一,所以在教學(xué)中要注意這種數(shù)學(xué)思想的教學(xué)。每一種直線方程的講解都進(jìn)行畫圖演示,讓學(xué)生對(duì)每一種直線方程所需的條件根深蒂固,如點(diǎn)斜式一定要點(diǎn)和斜率;斜截式一定要斜率和在y軸上的截距;截距式一定要兩個(gè)坐標(biāo)軸上的截距等等。并在直線方程的相互轉(zhuǎn)化過(guò)程中也配以圖形(請(qǐng)參考一般方程的課件) (四)注重直線方程的承前啟后的作用。 教材承接了初中函數(shù)的圖像之后,并作為研究曲線(圓、圓錐曲線)之前,以之來(lái)介紹平面解析幾何的思想和一般方法,可見本節(jié)內(nèi)容所處的重要地位,學(xué)好直線對(duì)以后的學(xué)習(xí)尤為重要。事實(shí)上,教材在研究了直線的方程和討論了直線的幾何性質(zhì)后,緊接著就以直線方程為基礎(chǔ),進(jìn)一步討論曲線與方程的一般概念。 高中數(shù)學(xué)《直線的方程》教學(xué)反思二 一.教學(xué)對(duì)象方面: 本節(jié)課面對(duì)的學(xué)生是文科班位于中等層次的班級(jí)。文科班的學(xué)生對(duì)于數(shù)學(xué)普遍存在畏難情緒,所以在教學(xué)設(shè)計(jì)之初就立足于從簡(jiǎn)到難的思想,所以在教學(xué)過(guò)程中有了從特殊化到一般化的,再?gòu)囊话慊教厥饣@樣兩個(gè)環(huán)節(jié)并且設(shè)計(jì)的數(shù)據(jù)都比較簡(jiǎn)單易算,希望能夠引起學(xué)生學(xué)習(xí)興趣,并從中體會(huì)到數(shù)學(xué)學(xué)習(xí)中解決問(wèn)題的思維過(guò)程。從課堂效果來(lái)看這個(gè)目的基本達(dá)到,學(xué)生課堂反映較好,參與積極,氣氛熱烈。 二.教學(xué)內(nèi)容方面: 本節(jié)課主要解決的問(wèn)題是掌握直線的點(diǎn)斜式方程,斜截式方程。直線是解析幾何部分最基礎(chǔ)的圖形,其方程形式有點(diǎn)斜式,斜截式,兩點(diǎn)式,截距式,一般式這五種形式。在這五種形式中出現(xiàn)最頻繁,最基本的就是點(diǎn)斜式和斜截式。所以對(duì)這兩種形式要做到能夠熟練的根據(jù)條件選擇合適的直線方程形式。在課堂中可以發(fā)現(xiàn)學(xué)生已經(jīng)基本能夠達(dá)到這一點(diǎn)。但是也存在幾個(gè)方面的問(wèn)題,如果直接提供一點(diǎn)一斜率,學(xué)生馬上能夠把直線方程的形式脫口而出。但是如果提供的是傾斜角,對(duì)傾斜角加以適當(dāng)變化的話,部分學(xué)生還是存在一定的困難,有些是對(duì)斜率公式的不熟悉,有些是對(duì)三角函數(shù)公式的不熟悉造成的。說(shuō)明部分學(xué)生對(duì)于三角函數(shù)部分的內(nèi)容基礎(chǔ)不扎實(shí)遺忘率較高,對(duì)于斜率和傾斜角的關(guān)系的理解還是存在疏漏之處,思維嚴(yán)密性需要提高。 三.教學(xué)改進(jìn): 第一需要繼續(xù)強(qiáng)化基本概念的教學(xué),深化學(xué)生對(duì)基本概念的理解。可以通過(guò)一些小練習(xí),如填空,選擇等加強(qiáng)學(xué)生邏輯思維能力的訓(xùn)練。如課堂練習(xí)中的變式還是較好的一種方式。以變式這種方式更易于學(xué)生發(fā)現(xiàn)問(wèn)題的相同與不同之處,如果能夠讓學(xué)生自己加以適當(dāng)?shù)目偨Y(jié),老師再加點(diǎn)評(píng),那效果會(huì)更好。不過(guò)這對(duì)課堂時(shí)間的控制要求較高,所以采用何種方式展開需要更多的思考。 第二需要設(shè)置梯度,逐步提高難度。由于本節(jié)課面對(duì)的對(duì)象,而且這是直線方程的第一節(jié)課,所以設(shè)置的內(nèi)容還是簡(jiǎn)單易懂的,但是以后的課程中難度要求還是需要逐步提高綜合應(yīng)用能力,這需要在以后的課程中逐步貫徹。直線的方程 篇2
直線的方程 篇3
直線的方程 篇4
直線的方程 篇5
直線的方程 篇6
直線的方程 篇7
直線的方程 篇8
直線的方程 篇9
直線的方程 篇10
版權(quán)聲明:本文內(nèi)容由互聯(lián)網(wǎng)用戶自發(fā)貢獻(xiàn),該文觀點(diǎn)僅代表作者本人。本站僅提供信息存儲(chǔ)空間服務(wù),不擁有所有權(quán),不承擔(dān)相關(guān)法律責(zé)任。如發(fā)現(xiàn)本站有涉嫌抄襲侵權(quán)/違法違規(guī)的內(nèi)容, 請(qǐng)發(fā)送郵件至 yyfangchan@163.com (舉報(bào)時(shí)請(qǐng)帶上具體的網(wǎng)址) 舉報(bào),一經(jīng)查實(shí),本站將立刻刪除