狠狠操网,91中文字幕在线观看,精品久久香蕉国产线看观看亚洲,亚洲haose在线观看

《三角形的內(nèi)角和》教學設計10篇

《三角形的內(nèi)角和》教學設計1

  【教學目標】

  1、學生動手操作,通過量、剪、拼、折的方法,探索并發(fā)現(xiàn)“三角形內(nèi)角和等于180度”的規(guī)律。

  2、在探究過程中,經(jīng)歷知識產(chǎn)生、發(fā)展和變化的過程,通過交流、比較,培養(yǎng)策略意識和初步的空間思維能力。

  3、體驗探究的過程和方法,感受思維提升的過程,激發(fā)求知欲和探索興趣。

  【教學重點】探究發(fā)現(xiàn)和驗證“三角形的內(nèi)角和180度”這一規(guī)律的過程,并歸納總結出規(guī)律。

  【教學難點】對不同探究方法的指導和學生對規(guī)律的靈活應用。

  【教具準備】課件、表格、學生準備不同類型的三角形各一個,量角器。

  【教學過程】

  一、激趣引入。

  1、猜謎語

  師:同學們喜歡猜謎語嗎?

  生:喜歡。

  師:那么,下面老師給大家出個謎語。請聽謎面:

  形狀似座山,穩(wěn)定性能堅,三竿首尾連,學問不簡單。(打一圖形)大家一起說是什么?

  生:三角形

  2、介紹三角形按角的分類

  師:真聰明!!板書“三角形”!那么,三角形按角分可以分為鈍角三角形、直角三角形和銳角三角形這幾類

  師分別出示卡片貼于黑板。

  3、激發(fā)學生探知心里

  師:大家會不會畫三角形啊?

  生:會

  師:下面請你拿出筆在本子上畫出一個三角形,但是我有個要求:畫出一個有兩個直角的三角形。試一試吧!

  生:試著畫

  師:畫出來沒有?

  生:沒有

  師:畫不出來了,是嗎?

  生:是

  師:有兩個直角的三角形為什么畫不出來呢?這就是三角形中角的奧秘!這節(jié)課我們就來學習有關三角形角的知識“三角形內(nèi)角和”(板書課題)

  二、探究新知。

  1、認識三角形的內(nèi)角

  看看這三個字,說說看,什么是三角形的內(nèi)角?

  生:就是三角形里面的角。

  師:三角形有幾個內(nèi)角啊?

  生:3個。

  師:那么為了研究的時候比較方便,我們把這三個內(nèi)角標上角1角2角3,請同學們也拿出桌子上三角形標出(教師標出)

  師:你知道什么是三角形“內(nèi)角和”嗎?

  生:三角形里面的角加起來的度數(shù)。

  2、研究特殊三角形的內(nèi)角和

  師:分別拿出一個直角三角板,請同學們看看這屬于什么三角形,說出每個角的度數(shù),那這個三角形的內(nèi)角和是多少度?

  生:算一算:90°+60°+30°=180° 90°+45°+45°=180°

  師:180°也是我們學習過的什么角?

  生:*角

  師:從剛才兩個三角形的內(nèi)角和的計算中,你發(fā)現(xiàn)了什么?

  3、研究一般三角形的內(nèi)角和

  師:猜一猜,其它三角形的內(nèi)角和是多少度呢?

  生:

  4、操作、驗證

  師:同學們猜的結果各不相同,那怎么辦呀?你能想個辦法驗證一下嗎?

  要求:

  (1)每4人為一個小組。

  (2)每個小組都有不同類型的三角形,每種類型都需要驗證,先討論一下,怎樣才能較快的完成任務?

  (3)驗證的方法不只一種,同學們要多動動腦子。

  師:好,開始活動!

  師:巡視指導

  師:好!請一組匯報測量結果。

  生:通過測量我們發(fā)現(xiàn)每個三角形的三個內(nèi)角和都在180度左右。

  師:其實三角形的內(nèi)角和就是180度,只是因為我們在測量時存在了一些誤差,所以測量出的結果不準確。

  生:我是用撕的方法,把直角三角形三個內(nèi)角撕下來,拼在一起,拼成一個*角,是180度。

  師:好!非常好!

  師:有其它同學操作銳角三角形和鈍角三角形的嗎?誰愿意到前面來展示一下?生:展示銳角三角形(撕拼)

  生:展示折一折我是用折的方法把銳角三角形三個角折在一起,組成一個*角,是180°。

  師:老師也做了一個實驗看一看是不是和大家得到結果一樣呢?(多**展示)

  現(xiàn)在老師問同學們,三角形的內(nèi)角和是多少?

  生:180度。

  師:通過驗證:我們知道了無論是銳角三角形,直角三角形還是鈍角三角形,它們的內(nèi)角和都是180°。板書:三角形內(nèi)角和等于180度,F(xiàn)在讓我們用自豪的、肯定的語氣讀出我們的發(fā)現(xiàn):“三角形的內(nèi)角和是180°”。

  三、解決疑問

  師:好!請同學們回憶一下,剛才課前老師讓同學們畫出有兩個直角的三角形畫出來了嗎?

  生:沒有

  師:那你能用這節(jié)課的知識解釋一下為什么畫不出來嗎?

  生:兩個直角是180度,沒有第三個角了。

  師:如果想畫出有兩個角是鈍角的三角形你能畫出來嗎?

  生:大于180度,也畫不出第三個角。師:所以,生活中不存在這樣的三角形。

  師:學會了知識,我們就要懂得去運用。

  四、鞏固提高。

  1、填空。

  (1)三角形的內(nèi)角和是()度。

  (2)一個三角形的兩個內(nèi)角分別是80°和75°,它的另一個角是()。

  2、求下面各角的度數(shù)。

  (1)∠1=27° ∠2=53° ∠3=()這是一個()三角形。

  (2)∠1=70° ∠2=50° ∠3=()這是一個()三角形。

  3、判斷每組中的三個角是不是同一個三角形中的三個內(nèi)角。

  (1)80° 95° 5°( )

  (2)60° 70° 90°( )

  (3)30° 40° 50°( )

  4、紅領巾是一個等腰三角形,求底角的度數(shù)。(多**出示)

  對學生進行思品教育。

  5、思考延伸。

  根據(jù)三角形內(nèi)角和是180度,算一算四邊形和八邊形的內(nèi)角和是多少?

  6、游戲:幫角找朋友每組卡片中,哪三個角可以組成三角形?)每組卡片中,哪三個角可以組成三角形?)60°90°45°30°⑴60°、90°、45°、30°54°46°52°

  五、總結。

《三角形的內(nèi)角和》教學設計2

  教學目標:

  1、通過量、剪、拼、擺等直觀操作的方法,讓學生探索并發(fā)現(xiàn)三角形內(nèi)角和等于180度。

  2、在活動交流中培養(yǎng)學生合作學習的意識和能力,讓學生經(jīng)歷猜測探索總結的數(shù)學學習過程,在實驗活動中體驗探索的過程和方法。

  3、通過運用三角形內(nèi)角和的性質(zhì)解決一些簡單的問題,使學生體會數(shù)學與現(xiàn)實生活的聯(lián)系,體會到數(shù)學的價值,增加學生學數(shù)學的信心和興趣。

  教學重點:

  探索發(fā)現(xiàn)三角形內(nèi)角和等于180并能應用。

  教學難點:

  三角形內(nèi)角和是180的探索和驗證。

  教學過程:

  一、創(chuàng)設情境,提出問題

  師:大家喜歡猜謎語嗎?

  生:喜歡。

  師:下面請大家猜一個謎語(大屏幕出示形狀似座山,穩(wěn)定性能堅。三竿首尾連,學問不簡單。

 。ù蛞粠缀螆D形))

  生:三角形。

  師:三角形中都有哪些學問?

  生:三角形有三條邊,三個角,具有穩(wěn)定性。

  生:三角形按角分,可以分成銳角三角形、直角三角形、鈍角三角形。

  生:三角形按邊分,可以分成等腰三角形,不等邊三角形,其中等腰三角形又包含了兩條邊相等的三角形和等邊三角形。

  生:一個三角形中最多只能有一個直角,最多只能有一個鈍角,最少有兩個銳角。

  生:三角形的內(nèi)有和是180。

  生:(一臉疑惑)

  師:(板書:三角形的內(nèi)角和是180),你有什么疑惑? 生:什么是內(nèi)角?

  生:每個三角形的內(nèi)角和都是180嗎?

 。ǜ鶕(jù)學生的問題,在三角形的內(nèi)角和是180后面加上一個?)

  二、自主探索,實踐驗證

  1、理解內(nèi)角 師:什么是內(nèi)角?

  生:我認為三角形的內(nèi)角就是指三角形的三個角。

  師:三角形的每個角都是三角形的內(nèi)角,每個三角形都有三個內(nèi)角。

  2、理解內(nèi)角和。

  師:那三角形的內(nèi)角和又是指什么?

  生:我認為三角形的內(nèi)角和就是把三角形的三個內(nèi)角的度數(shù)加起來的和。

  師:為了方便,我們將三角形的每個內(nèi)角編上序號1、2、3、我們叫它1、2、3,這三個角的度數(shù)和,就是這個三角形的內(nèi)角和。

  3、實踐驗證

  師:每個三角形的內(nèi)角和都是180嗎?用什么方法來驗證呢?

  生:量一量每個角的度數(shù),然后加起來看看是不是180。

  師:請大家拿出課前準備的三角形,親自量一量,算一算。(學生動手量一量)

  師:誰愿意把你的勞動成果和大家分享一下?

  生:我量的這個三角形的三個內(nèi)角的度數(shù)分別是60、60、60,加起來一共是180。

  師:這位同學量的是一個銳角三角形,并且是比較特殊的三角形等邊三角形。

  生:我量這個三角形的三個內(nèi)角的度數(shù)分別是45、45、90,加起來一共是180。

  師:這是我們?nèi)浅咧械囊粋,也比較特殊,是一個等腰直角三角形。

  生:我量的是三角尺中的另一個,三個內(nèi)角的度數(shù)分別是60、30、90,加起來一共是180 生:我量的是鈍角三角形,三個內(nèi)角的度數(shù)分別是85、60、38,加起來一共是183。

  師:你發(fā)現(xiàn)了什么?

  生:有的三角形的內(nèi)角和是180,而有的三角形的內(nèi)角和卻不是180。

  師:看來三角形的內(nèi)角和不一定是180。

  生:老師,測量會有誤差,量出來的不是很精確,那么求出來的結果也不夠精確。雖然不都是三個內(nèi)角加起來不都是180,但都接近180。

  生:都接近180就能說一定是180嗎?

  師:科學來不得半點虛假,看來這個是不能讓大家信服的。那還可以用什么方法來驗證呢?下面請同學們小組合作,發(fā)揮小組成員的智慧,充分利用大家的學具進行驗證,比一比哪些組的方法富有新意,開始!

 。▽W生在小組內(nèi)進行探索驗證。教師巡視,參與到學生的研究中)

  師:請每個小組選擇一個代言人,和大家分享一下你們的智慧。

  生:(邊展示邊交流)我們小組運用了折一折的方法,把三角形的三個內(nèi)角都向內(nèi)折,三個內(nèi)角就拼成了一個*角,也就是180,所以我們小組得出三角形的內(nèi)角和是180。

  師:你折的只是銳角三角形,只能證明銳角三角形的內(nèi)角和是180,直角三角形,鈍角三角形是不是也是這樣的?

  生:我們小組也有折的直角三角形,鈍角三角形。

 。ㄆ渌某蓡T展示不同的三角形)

  師:看這個小組的同學想問題多全面呀,不僅想到了用什么方法,還想到了用不同的三角形進行驗證,老師實在是佩服你們組的智慧,讓我們把掌聲送給他們!

  師:哪個小組和他們的方法不一樣?

  生:我們小組把三角形的三個內(nèi)角都撕了下來,拼在了一起,正好拼成了一個*角,也就是180。我們也實驗了不同的三角形,三個內(nèi)角都可以拼成*角,所以我們小組得出結論,三角形的內(nèi)角和是180。

  師:這個小組的方法簡便,易操作,很好。

  生:我們小組成員是這樣想的,一個長方形有4個直角,每個直角90,那么長方形的內(nèi)角和就是360,每個長方形都可以*均分成兩個直角三角形,每個直角三角形的內(nèi)角和就是180。 師:你們小組很聰明,從長方形的內(nèi)角和聯(lián)想到直角三角形的內(nèi)角和是180,從不同的角度去思考問題,謝謝你為我們提供了這么好的方法!

  4、小結

  師:剛才同學們用量、折、剪、拼、計算、推理等這么多巧妙的方法得出了無論是什么樣的三角形的內(nèi)角和都是1800,你還有什么疑問嗎?

  生:沒有。

  師:(去掉問號)那就讓我們大聲地讀出來三角形的內(nèi)角和是1800。

  三、鞏固應用,加深理解

  1、說一說每個三角形的內(nèi)角和是多少度

  師:(出示一個大三角形)這個大三角形的內(nèi)角和是多少度?

  生: 180

  師:(出示一個小三角形)這個小三角形的內(nèi)角和是多少度?

  生:180

  師:(演示)把這兩個三角形拼在一起,拼成的大三角形的'內(nèi)角和是多少度?

  生:180

  師:為什么每個三角形的內(nèi)角和是1800,而合起來還是180呢?另外那180去哪兒了?

  生:把兩個三角形拼成一個大三角形,兩個直角不再是大三角形的內(nèi)角,所以少了180

  師:(演示)把一個大三角形分成兩個三角形,每個三角形的內(nèi)角和是多少度?

  生:180

  2、求下面各角的度數(shù)

  師:如果老師告訴你一個三角形的兩個角的度數(shù),你能說出第三個角的度數(shù)嗎?

 。ǔ觯

  生:三角形內(nèi)角和是180,在第一個三角形中,用180-75-28,A=77

  生:用180-90-35,C =55。

  生:第二個三角形是直角三角形,B是直角,也可以直接用90-35=55。

  生:第三個三角形中,用180-20-45,B=115。

  3、一個等腰三角形的風箏,它的一個底角是70,它的頂角是多少度?

  生:等腰三角形的兩個底角相等,所以用180-70-70 4、

  師:三角形的內(nèi)角和在我們的生活中應用很廣泛,老師給大家?guī)硪粋在建筑中應用的例子。

  在設計這座大橋時,如果***將斜拉的鋼索與橋柱形成的夾角設計成了56,建筑師在造橋時怎樣才能確定鋼索與橋柱是否形成了這個角度?

  生:用量角器量一量

  師:量哪個角?量一量斜拉的鋼索與橋柱形成的夾角嗎?

  生:橋面與橋柱形成一個直角,是90,斜拉的鋼索與橋柱形成的夾角是56,那么用180-90-56=34,就是斜拉的鋼索與橋面的夾角,所以只要讓斜拉的鋼索與橋面的夾角是34,那么斜拉的鋼索與橋柱形成的夾角就是56

  師:你真是個善于觀察、善于思考的孩子,努力學習,將來一定會成為一名優(yōu)秀的建筑師。

  四、回顧總結,拓展延伸

  師:40分鐘很快就過去了,你愿意把自己的收獲與大家共同分享嗎?

  生:我知道了三角形的內(nèi)角和是180。

  生:無論是大三角形,還是小三角形,無論是銳角三角形,還是鈍角三角形,還是銳角三角形,內(nèi)角和都是180。

  生:把一個大三角形分成兩個小三角形,每個三角形的內(nèi)角和還是180,把兩個小三角形拼成一個大三角形,大三角形的內(nèi)角和還是180。

  生:我可以用撕、拼、折等方法來驗證三角形的內(nèi)角和是180。

  師:這個同學不僅學會了知識,而且學會了方法,我們只有學會了方法,才能更好地去探究更多的知識。

  師:那你現(xiàn)在知道為什么一個三角形內(nèi)只能有一個直角或一個鈍角嗎?

  生:兩個直角的度數(shù)之和是180,再加上一個角,三個角的度數(shù)之和超過了180,所以一個三角形中最多只能有一個直角。

  生:兩個鈍角的度數(shù)之和就超過了180,再加上一個角,就更大了,所以一個三角形中最多只能有一個鈍角。

  師:我們學習知識,必須知其然并知其所以然。

  師:三角形中還有許許多多的學問,讓我們在以后的學習中繼續(xù)去研究。

《三角形的內(nèi)角和》教學設計3

  一、本節(jié)課在新一輪課程**下的設計理念:

  數(shù)學是人與人之間精神層面上進行的交往。課堂教學中的交往主要是教師與學生、學生與學生之間的交往。它需要運用“對話式”的學習方式,采取多種教學策略,使學生在合作、探索、交流中發(fā)展能力。新課程中對學生的情感、體驗、價值觀,以及獲取知識的渠道都有悖于傳統(tǒng)的教學模式,這正是教師在新課程中尋找新的教學方式的著眼點。應該說,新的教學方式將伴隨著教師對新課程的逐漸透視而形成新的路徑。要破除原有教學活動的框架,建立適應師生相互交流的教學活動體系;滿足學生的心理需求,實現(xiàn)教者與學者感情上的融洽和情感上的共鳴;給學生體驗成功的機會,把“要我學”變成“我要學”。我認為教師角色的轉變一定會促進學生的發(fā)展、促進教育的長足發(fā)展,在未來的教學過程里,教師要做的是:幫助學生決定適當?shù)膶W習目標,并確認和協(xié)調(diào)達到目標的途徑;指導學生形成良好的學**慣,掌握學習策略;創(chuàng)造豐富的教學情境,培養(yǎng)學生的學習興趣,充分調(diào)動學生的學習積極性;為學生提供各種便利,為學生的學習服務;建立一個接納的、**性的、寬容的課堂氣氛;作為學習的參與者,與學生分享自己的感情和想法;和學生一道尋找真理,能夠承認自己的過失和錯誤。教學情境的營造是教師走進新課程中所面臨的挑戰(zhàn),適應新一輪基礎教育課程**的教學情境不是文本中的約定,也不是現(xiàn)成的拿來就能用的,需要我們在教學活動的全過程中去探索、研究、發(fā)現(xiàn)、形成。

  二、教材分析與處理:

  三角形的內(nèi)角和定理揭示了組成三角形的三個角的數(shù)量關系,此外,它的證明中引入了輔助線,這些都為后繼學習奠定了基礎,三角形的內(nèi)角和定理也是幾何問題代數(shù)化的體現(xiàn)。

  三、學生分析

  處于這個年齡階段的學生有能力自己動手,在自己的視野范圍內(nèi)因地制宜地收集、編制、改造適合自身使用,貼近生活實際的數(shù)學建模問題,他們樂于嘗試、探索、思考、交流與合作,具有分析、歸納、總結的能力,他們渴望體驗成功感和自豪感。因而老師有必要給學生充分的**和空間,同時注意問題的開放性與可擴展性。

  四、教學目標:

  1.知識目標:在情境教學中,通過探索與交流,逐步發(fā)現(xiàn)“三角形內(nèi)角和定理”,使學生親身經(jīng)歷知識的發(fā)生過程,并能進行簡單應用。能夠探索具體問題中的數(shù)量關系和變化規(guī)律,體會方程的思想。通過開放式命題,嘗試從不同角度尋求解決問題的方法。教學中,通過有效措施讓學生在對解決問題過程的反思中,獲得解決問題的經(jīng)驗,進行富有個性的學習。

  2.能力目標:通過拼圖實踐、問題思考、合作探索、組內(nèi)及組間交流,培養(yǎng)學生的的邏輯推理、大膽猜想、動手實踐等能力。

  3.德育目標:通過添置輔助線教學,滲透美的思想和方法教育。

  4.情感、態(tài)度、價值觀:在良好的師生關系下,建立輕松的學習氛圍,使學生樂于學數(shù)學,遇到困難不避讓,在數(shù)學活動中獲得成功的體驗,增強自信心,在合作學習中增強集體責任感。

  五、重難點的確立:

  1.重點:三角形的內(nèi)角和定理探究與證明。

  2.難點:三角形的內(nèi)角和定理的證明方法(添加輔助線)的討論

  六、教法、學法和教學**:

  采用“問題情境-建立模型-解釋、應用與拓展”的模式展開教學。

  采用對話式、嘗試教學、問題教學、分層教學等多種教學方法,以達到教學目的。

  教學過程設計:

  一、創(chuàng)設情境,懸念引入

  一堂新課的引入是老師與學生交往活動的開始,是學生學習新知識的心理鋪墊,是拉近師生之間的距離,破除疑難心理、乏味心理的關鍵。一個成功的引入,是讓學生感覺到他熟知的生活,可使學生迅速投入到課堂中來,對知識在最短的時間內(nèi)產(chǎn)生極大的興趣和求知欲,接下來教學活動將成為他們樂此不疲的快事了。

  具體做法:拋出問題:“學校后勤部折疊長梯(電腦顯示圖形)打開時頂端的角是多少度呢?一名學生測出了兩個梯腿與地面的成角后,立即說出了答案,你知道其中的道理嗎?”待學生思考片刻后,我因勢利導,指出學習了本節(jié)課你便能夠回答這個問題了。從而引入新課。

  二、探索新知

  1.動手實踐,嘗試發(fā)現(xiàn):要求學生將事先準備好的三角形紙板按線剪開,然后用剪下的∠A、∠B與完整的三角形紙板中的∠C拼圖,使三者頂點重合,問能發(fā)現(xiàn)怎樣的現(xiàn)象?有的學生會發(fā)現(xiàn),三者拼成一個*角。此時讓學生互相觀察拼圖,驗證結果。從觀察交流中,互學方法,達到生生互動。待交流充分,分小組張貼所拼圖形,教師點評,總結分類,將所拼圖形分為∠A、∠B分別在∠C同側和兩側兩種情況。對有合作精神的小組給與表揚。

  (將拼圖展示在黑板上)

  2.嘗試猜想:教師**,從活動中你有怎樣的發(fā)現(xiàn)?采取組內(nèi)交流的方式,產(chǎn)生思維碰撞。此時我走到學生中去,對有困難的小組給與適當?shù)囊龑。之后由學生匯報組內(nèi)的發(fā)現(xiàn)。即三角形三個內(nèi)角的和等于180度。

  3.證明猜想:先幫助學生回憶命題證明的基本步驟,然后讓學生**完成畫圖、寫出已知、求證的步驟,其他同學補充完善。下面讓學生對照剛才的動手實踐,分小組探求證明方法。此環(huán)節(jié)應留給學生充分的思考、討論、發(fā)現(xiàn)、體驗的時間,讓學生在交流中互取所長,合作探索,找到證明的切入點,體驗成功。對有困難的學生要多加關注和指導,不放棄任何一個學生,借此增進教師與學有困難學生之間的關系,為繼續(xù)學習奠定基礎。合作探究后,匯報證明方法,注意規(guī)范證明格式。此處自然的引入輔助線的概念。但要說明,添加輔助線不是盲目的,而是為了證明某一結論,需要引用某個定義、公理、定理,但原圖形不具備直接使用它們的條件,這時就需要添輔助線創(chuàng)造條件,以達到證明的目的。

  4.學以致用,反饋練習

  (1)在△ABC中,已知∠A=80°,能否知∠B+∠C的度數(shù)?

  解:∵∠A+∠B+∠C=180°(三角形內(nèi)角和定理)

  ∴∠B+∠C=100°在△ABC中,

  (2)已知:∠A=80°,∠B=52°,則∠C=?

  解:∵∠A+∠B+∠C=180°(三角形內(nèi)角和定理)

  又∵∠A=80°∠B=52°(已知)

  ∴∠C=48°

  (3)在△ABC中,已知∠A=80°,∠B-∠C=40°,則∠C=?

  (4)已知∠A+∠B=100°,∠C=2∠A,能否求出∠A、∠B、∠C的度數(shù)?

  (5)在△ABC中,已知∠A:∠B:∠C=1:3:5,能否求出∠A、∠B、∠C的度數(shù)?

  解:設∠A=x°,則∠B=3x°,∠C=5x°

  由三角形內(nèi)角和定理得,x+3x+5x=180

  解得,x=20

  ∴∠A=20°∠B=60°∠C=100°

  (6)已知在△ABC中,∠C=∠ABC=2∠A,求(1)∠B的度數(shù)?(2)若BD是AC邊上的高,∠DBC的度數(shù)?

  第(6)題是書中例題的改用,此題由輔助線輔助課件打出,給學生以圖形由簡單到繁的直觀演示。

  通過這組練習滲透把圖形簡單化的思想,繼續(xù)滲透**思想,用代數(shù)方法解決幾何問題。

  5.鞏固提高,以生為本

  (1)如圖:B、C、D在一條直線上,∠ACD=105°,且∠A=∠ACB,則∠B=——度。

  (2)如圖AD是△ABC的角*分線,且∠B=70°,∠C=25°,則∠ADB=——度,∠ADC=——度。

  本組練習是三角形內(nèi)角和定理與*角定義及角*分線等知識的綜合應用.能較好的培養(yǎng)學生的分析問題、解決問題的能力,有助于獲得一些經(jīng)驗。

  6.思維拓展,開放發(fā)散

  如圖,已知△PAD中,∠APD=120°,B、C為AD上的點,△PBC為等邊三角形。試盡可能多地找出各幾何量之間的相互關系。

  本題旨在激發(fā)學生**思考和創(chuàng)新意識,培養(yǎng)創(chuàng)新精神和實踐能力,發(fā)展個性思維。

  三、歸納總結,同化順應

  1.學生談體會

  2.教師總結,出示本節(jié)知識要點

  3.教師點評,對學生在課堂上的積極合作,大膽思考給與肯定,提出希望。

  四、作業(yè):

  1。必做題:習題3.1第10、11、12題

  2.選做題:習題3.1第13、14題

  五、板書設計

  三角形內(nèi)角和

  學生拼圖展示已知:求證:

  證明:開放題:

《三角形的內(nèi)角和》教學設計4

  教學內(nèi)容:

  義務教育課程標準實驗教科書XX版小學數(shù)學四年級下冊第42~46頁

  教學目標:

  1、通過量、剪、拼、折等數(shù)學活動,讓學生親自實踐操作,發(fā)現(xiàn)規(guī)律,主動推導并得出“三角形內(nèi)角和是180°”的結論,會應用這一規(guī)律進行計算。

  2、在操作、驗證三角形內(nèi)角和的過程中,體驗解決問題方法的多樣性,發(fā)展空間觀念,提高初步的邏輯思維能力。

  教學過程:

  一、創(chuàng)設情境,導入新課

  1、談話:我們已經(jīng)認識了三角形,你知道哪些關于三角形的知識?

  2、我們在討論三角形知識的時候,三角形中的三個好朋友卻吵了起來,想知道是怎么回事嗎?我們一起去看看吧!

  播放課件

  詳細內(nèi)容說明:一個大的直角三角形說:“我的個頭大,我的內(nèi)角和一定比你們大!币粋鈍角三角形說:“我有一個鈍角,我的內(nèi)角和才是的!币粋小的銳角三角形很委屈的樣子說:“是這樣嗎?”(它們在爭論誰的內(nèi)角和大。)

  你知道什么是三角形的內(nèi)角和嗎?

  通過學生討論,得出三角形的內(nèi)角和就是三角形三個內(nèi)角的度數(shù)和。

  3、故事中到底誰說得對呢?今天我們就來研究三角形的內(nèi)角和。

  【設計意圖】從學生的心理、興趣和意愿為出發(fā)點,利用故事的形式提出疑問,激發(fā)學生的學習興趣,提高學生探索的積極性。

  二、自主探究、發(fā)現(xiàn)規(guī)律

  1、探究三角形內(nèi)角和的特點

  (1)量一量

  師:你認為怎樣能知道三角形的內(nèi)角和?

  生:把三角形的三個內(nèi)角分別量出來,再用加法算出三角形的內(nèi)角和。

  學生活動(小組合作---每組準備三種不同的三角形)量角,求和,完成第43頁的表格。

  學生交流匯報測量結果。

  師:從剛才的交流中,你發(fā)現(xiàn)了什么?

  生:不管是銳角三角形、直角三角形還是鈍角三角形,內(nèi)角和都是180°。

  (在量的過程中,由于誤差,有的學生可能算出內(nèi)角和在180°左右,這時教師要相機誘導:在測量的過程中出現(xiàn)一些誤差是正常的,因為同學們畫的角不夠標準,量角器的不同,還有本身測量的原因都可能導致誤差。)

  師:看來量一量會出現(xiàn)誤差,那么你還有其它的更科學的辦法進行驗證嗎?

  (2)拼一拼

  學生分小組活動,教師參與學生的活動,并給予必要的指導。

  學生展示交流,師:從大家的交流中,我們發(fā)現(xiàn)都可以把三角形的三個內(nèi)角拼成一個*角,證明“三角形內(nèi)角和是180°” 。

  (3)折一折

  小組活動,學生交流

  生1:將正方形(或長方形)紙沿對角線對折,這樣,就折成了兩個大小一樣的三角形。因為正方形(或長方形)的四個直角的和是360°,所以三角形的內(nèi)角和就是它的一半,是180°。

  生2:直角三角形的兩個銳角可以折成一個直角,也就是說,在直角三角形中,兩個銳角的和是90°,因此三角形內(nèi)角和就是180°。

  2、歸納

  師:通過剛才的活動,我們得出了什么結論?

  生:三角形的內(nèi)角和等于180°。

  3、師談話:三個三角形爭論的問題現(xiàn)在能解決了嗎?你現(xiàn)在想對這三個三角形說點什么?

  學生暢所欲言,對得出的規(guī)律做系統(tǒng)的整理。

  【設計意圖】動手實踐,自主探索,親身體驗,是學習數(shù)學的重要方式。學生分組合作,量一量、拼一拼、折一折,通過多種感官參與比較、分析從而自主探索得出結論,得到的不僅是三角形內(nèi)角和的知識,也使學生學到了怎樣由已知探索未知的思維方式與方法,培養(yǎng)了他們主動探索的精神。

  三、靈活運用,鞏固練習

  師:好,大家已經(jīng)發(fā)現(xiàn)了“三角形內(nèi)角和是180°”這一規(guī)律,你能應用這個規(guī)律解決一些實際的問題嗎?

  1、判斷

  鈍角三角形比銳角三角形的內(nèi)角和大。 ( )

  銳角三角形的兩個內(nèi)角和小于90°。 ( )

  一個三角形最少有兩個銳角。 ( )

  一個鈍角三角形最少有一個鈍角。 ( )

  學生判斷并說出理由。

  2、自主練習第6題

  練習時,先讓學生**填空,再說說自己是怎么想的,然后用量角器驗證計算的結果。

  小結:以后如果遇到求一個三角形內(nèi)未知角的度數(shù)時,我們可以用計算的方法算一算,簡單又精確。

  3、游戲:選度數(shù),組三角形

  (課件顯示如下)

  請選出三個角的度數(shù)來組成一個三角形

  10° 18° 15° 150° 130° 72°

  20° 50° 70° 35° 75°

  52° 56° 54° 58° 60°

  學生回答的同時,教師操作課件,把學生選擇的度數(shù)拖入方框內(nèi),通過電腦計算相加是否等于180°,來驗證學生的選擇是否正確。驗證學生選的對了以后,再讓學生判斷選擇的度數(shù)所組成的三角形按角的大小分類,并說出理由。

  [設計意圖]用已學到的新知解決實際數(shù)學問題,認識學數(shù)學的價值,再次體驗成功,增強學習數(shù)學的興趣。尤其是第三個練習,依據(jù)學生的年齡特征和認知水*,設計探索性和開放性的問題,注重拓寬學生的思維活動空間。

  四、課堂總結、深化認識

  談話:這節(jié)課你學會了什么?解決了什么問題?是怎樣解決的?

  【設計意圖】不僅從知識方面進行總結,還引導學生回顧發(fā)現(xiàn)問題、提出問題、解決問題的過程,關注學生學習過程中的情感體驗。既讓學生習得一種學習方法,又培養(yǎng)了學習興趣。

  課后反思:

  本節(jié)課學生以小組為單位進行合作學習,從自己的已有經(jīng)驗出發(fā),積極地進行操作、測量、計算,并對自己的結論進行思考、分析。在充分發(fā)揮學生主體作用,放手讓學生開展探究的同時,教師也恰到好處的發(fā)揮了引導作用。整個探究過程學生是自主的、有積極性的,在獲得數(shù)學結論的同時學習了科學探究的方法,為今后的學習打下了堅實的`基礎。

《三角形的內(nèi)角和》教學設計5

  教學內(nèi)容:人教版小學數(shù)學第八冊第85頁例5及”做一做”

  教學目標:

  1、讓學生親自動手,通過量、剪、拼等活動發(fā)現(xiàn)、證實三角形內(nèi)角和是180°,并會應用這一知識解決生活中簡單的實際問題。

  2、讓學生在動手獲取知識的過程中,培養(yǎng)學生的創(chuàng)新意識、探索精神和實踐能力。并通過動手操作把三角形內(nèi)角和轉化為*角的探究活動,向?qū)W生滲透“轉化”數(shù)學思想

  3、在探索中體驗發(fā)現(xiàn)的樂趣,增強學好數(shù)學的信心。

  教學重點

  讓學生經(jīng)歷“三角形內(nèi)角和是180°”這一知識的形成、發(fā)展和應用的全過程。

  教學難點:

  驗證所有三角形的內(nèi)角之和都是180°

  教具準備:多**課件。

  學具準備:量角器、正方形、剪刀、各類三角形(包括直角三角形、銳角三角形、鈍角三角形)

  教學過程:

  一、設疑引思

  1、分小組分別量出直角三角形、銳角三角形、鈍角三角形的三個內(nèi)角的度數(shù)、

  2、每小組請一位同學說出自已量的三角形中兩個角的度數(shù)老師迅速”猜出”第三個角的度數(shù)、

  3、設問:老師為什么能很快”猜”出第三個角的度數(shù)呢?

  三角形還有許多奧妙,等待我們?nèi)ヌ剿?/p>

  二、探索交流,獲取新知

  1、量一量:每個學生將自已剛才量出的三角形的內(nèi)角和的度數(shù)相加,初步得出”三角形的內(nèi)角和是180°”的結論。

  2、折一折:將正方形紙沿對角線對折,使之變成兩個完全重合的三角形,發(fā)現(xiàn):一個三角形的內(nèi)角和就是正方形4個角內(nèi)角和的一半,也就是360的一半,即180度,初步驗證”三角形的內(nèi)角和是180°”的結論。

  3、拼一拼:學生先動手剪拼所準備的三角形,進一步驗證得出”三角形的內(nèi)角和是180°”的結論。

  4、師利用課件演示將一個三角形的三個角拼成一個*角的過程。

  5、驗證:FLASH演示三種三角形割補過程

  發(fā)現(xiàn)1:通過把直角三角形割補后,內(nèi)角∠2,∠3組成了一個()角,等于()度,∠1等于90度。所以直角三角形的內(nèi)角和等于( )度。

  發(fā)現(xiàn)2:通過把鈍角、銳角三角形割補后,三角組成了一個( )角,而( )角等于( )度。所以銳角三角形和鈍角三角形的內(nèi)角和都是180度。

  6、小結:剛才能過量一量折一折拼一拼,你發(fā)現(xiàn)了什么?

  生說,師板書:三角形的內(nèi)角和———180°

  三、應用練習,拓展提高

  1、書例5后”做一做”

  思考:為什么不能畫出一個有兩個直角的三角形?(兩個鈍角、一個直角和一個鈍角的三角形?)

  2、下面哪三個角會在同一個三角形中。

 。1)30、60、45、90

 。2)52、46、54、80

  (3)61、38、44、98

  3、走向生活:

 。1)那天,老師去買了一塊三角形的玻璃,我拿著玻璃,剛到校門,一不小心,碰在門**,摔成這幾塊(撕),哎,只有再去買一塊,但尺寸我記不得了,該怎么辦,你們能不能幫老師想想辦法?我憑哪塊碎片能再去配一塊和原來一樣的三角形玻璃嗎?

 。ńY合學生回答進行演示:延長兩條邊,交于一點,形成原來的三角形。所以:兩個角確定了,三角形玻璃形狀和大小也就確定了。)

  四、作業(yè):作業(yè)本

  五、全課總結

  總結:今天這節(jié)課我們研究了三角形的內(nèi)角和,你們學到了哪些知識,有什么收獲?

  板書設計:

  三角形的內(nèi)角和

  三角形的內(nèi)角和———180°

《三角形的內(nèi)角和》教學設計6

  一、本節(jié)課在新一輪課程**下的設計理念:

  數(shù)學是人與人之間精神層面上進行的交往。課堂教學中的交往主要是教師與學生、學生與學生之間的交往。它需要運用“對話式”的學習方式,采取多種教學策略,使學生在合作、探索、交流中發(fā)展能力。新課程中對學生的情感、體驗、價值觀,以及獲取知識的渠道都有悖于傳統(tǒng)的教學模式,這正是教師在新課程中尋找新的教學方式的著眼點。應該說,新的教學方式將伴隨著教師對新課程的逐漸透視而形成新的路徑。要破除原有教學活動的框架,建立適應師生相互交流的教學活動體系;滿足學生的心理需求,實現(xiàn)教者與學者感情上的融洽和情感上的共鳴;給學生體驗成功的機會,把“要我學”變成“我要學”。我認為教師角色的轉變一定會促進學生的發(fā)展、促進教育的長足發(fā)展,在未來的教學過程里,教師要做的是:幫助學生決定適當?shù)膶W習目標,并確認和協(xié)調(diào)達到目標的途徑;指導學生形成良好的學**慣,掌握學習策略;創(chuàng)造豐富的教學情境,培養(yǎng)學生的學習興趣,充分調(diào)動學生的學習積極性;為學生提供各種便利,為學生的學習服務;建立一個接納的、**性的、寬容的課堂氣氛;作為學習的參與者,與學生分享自己的感情和想法;和學生一道尋找真理,能夠承認自己的過失和錯誤。教學情境的營造是教師走進新課程中所面臨的挑戰(zhàn),適應新一輪基礎教育課程**的教學情境不是文本中的約定,也不是現(xiàn)成的拿來就能用的,需要我們在教學活動的全過程中去探索、研究、發(fā)現(xiàn)、形成。

  二、教材分析與處理:

  三角形的內(nèi)角和定理揭示了組成三角形的三個角的數(shù)量關系,此外,它的證明中引入了輔助線,這些都為后繼學習奠定了基礎,三角形的內(nèi)角和定理也是幾何問題代數(shù)化的體現(xiàn)。

  三、學生分析

  處于這個年齡階段的學生有能力自己動手,在自己的視野范圍內(nèi)因地制宜地收集、編制、改造適合自身使用,貼近生活實際的數(shù)學建模問題,他們樂于嘗試、探索、思考、交流與合作,具有分析、歸納、總結的能力,他們渴望體驗成功感和自豪感。因而老師有必要給學生充分的**和空間,同時注意問題的開放性與可擴展性。

  四、教學目標:

  1.知識目標:在情境教學中,通過探索與交流,逐步發(fā)現(xiàn)“三角形內(nèi)角和定理”,使學生親身經(jīng)歷知識的發(fā)生過程,并能進行簡單應用。能夠探索具體問題中的數(shù)量關系和變化規(guī)律,體會方程的思想。通過開放式命題,嘗試從不同角度尋求解決問題的方法。教學中,通過有效措施讓學生在對解決問題過程的反思中,獲得解決問題的經(jīng)驗,進行富有個性的學習。

  2.能力目標:通過拼圖實踐、問題思考、合作探索、組內(nèi)及組間交流,培養(yǎng)學生的的邏輯推理、大膽猜想、動手實踐等能力。

  3.德育目標:通過添置輔助線教學,滲透美的思想和方法教育。

  4.情感、態(tài)度、價值觀:在良好的師生關系下,建立輕松的學習氛圍,使學生樂于學數(shù)學,遇到困難不避讓,在數(shù)學活動中獲得成功的體驗,增強自信心,在合作學習中增強集體責任感。

  五、重難點的確立:

  1.重點:三角形的內(nèi)角和定理探究與證明。

  2.難點:三角形的內(nèi)角和定理的證明方法(添加輔助線)的討論

  六、教法、學法和教學**:

  采用“問題情境-建立模型-解釋、應用與拓展”的模式展開教學。

  采用對話式、嘗試教學、問題教學、分層教學等多種教學方法,以達到教學目的。

  教學過程設計:

  一、創(chuàng)設情境,懸念引入

  一堂新課的引入是老師與學生交往活動的開始,是學生學習新知識的心理鋪墊,是拉近師生之間的距離,破除疑難心理、乏味心理的關鍵。一個成功的引入,是讓學生感覺到他熟知的生活,可使學生迅速投入到課堂中來,對知識在最短的時間內(nèi)產(chǎn)生極大的興趣和求知欲,接下來教學活動將成為他們樂此不疲的快事了。

  具體做法:拋出問題:“學校后勤部折疊長梯(電腦顯示圖形)打開時頂端的角是多少度呢?一名學生測出了兩個梯腿與地面的成角后,立即說出了答案,你知道其中的道理嗎?”待學生思考片刻后,我因勢利導,指出學習了本節(jié)課你便能夠回答這個問題了。從而引入新課。

  二、探索新知

  1.動手實踐,嘗試發(fā)現(xiàn):要求學生將事先準備好的三角形紙板按線剪開,然后用剪下的∠A、∠B與完整的三角形紙板中的∠C拼圖,使三者頂點重合,問能發(fā)現(xiàn)怎樣的現(xiàn)象?有的學生會發(fā)現(xiàn),三者拼成一個*角。此時讓學生互相觀察拼圖,驗證結果。從觀察交流中,互學方法,達到生生互動。待交流充分,分小組張貼所拼圖形,教師點評,總結分類,將所拼圖形分為∠A、∠B分別在∠C同側和兩側兩種情況。對有合作精神的小組給與表揚。

  (將拼圖展示在黑板上)

  2.嘗試猜想:教師**,從活動中你有怎樣的發(fā)現(xiàn)?采取組內(nèi)交流的方式,產(chǎn)生思維碰撞。此時我走到學生中去,對有困難的小組給與適當?shù)囊龑。之后由學生匯報組內(nèi)的發(fā)現(xiàn)。即三角形三個內(nèi)角的和等于180度。

  3.證明猜想:先幫助學生回憶命題證明的基本步驟,然后讓學生**完成畫圖、寫出已知、求證的步驟,其他同學補充完善。下面讓學生對照剛才的動手實踐,分小組探求證明方法。此環(huán)節(jié)應留給學生充分的思考、討論、發(fā)現(xiàn)、體驗的時間,讓學生在交流中互取所長,合作探索,找到證明的切入點,體驗成功。對有困難的學生要多加關注和指導,不放棄任何一個學生,借此增進教師與學有困難學生之間的關系,為繼續(xù)學習奠定基礎。合作探究后,匯報證明方法,注意規(guī)范證明格式。此處自然的引入輔助線的概念。但要說明,添加輔助線不是盲目的,而是為了證明某一結論,需要引用某個定義、公理、定理,但原圖形不具備直接使用它們的條件,這時就需要添輔助線創(chuàng)造條件,以達到證明的目的。

  4.學以致用,反饋練習

  (1)在△ABC中,已知∠A=80°,能否知∠B+∠C的度數(shù)?

  解:∵∠A+∠B+∠C=180°(三角形內(nèi)角和定理)

  ∴∠B+∠C=100°在△ABC中,

  (2)已知:∠A=80°,∠B=52°,則∠C=?

  解:∵∠A+∠B+∠C=180°(三角形內(nèi)角和定理)

  又∵∠A=80°∠B=52°(已知)

  ∴∠C=48°

  (3)在△ABC中,已知∠A=80°,∠B-∠C=40°,則∠C=?

  (4)已知∠A+∠B=100°,∠C=2∠A,能否求出∠A、∠B、∠C的度數(shù)?

  (5)在△ABC中,已知∠A:∠B:∠C=1:3:5,能否求出∠A、∠B、∠C的度數(shù)?

  解:設∠A=x°,則∠B=3x°,∠C=5x°

  由三角形內(nèi)角和定理得,x+3x+5x=180

  解得,x=20

  ∴∠A=20°∠B=60°∠C=100°

  (6)已知在△ABC中,∠C=∠ABC=2∠A,求(1)∠B的度數(shù)?(2)若BD是AC邊上的高,∠DBC的度數(shù)?

  第(6)題是書中例題的改用,此題由輔助線輔助課件打出,給學生以圖形由簡單到繁的直觀演示。

  通過這組練習滲透把圖形簡單化的思想,繼續(xù)滲透**思想,用代數(shù)方法解決幾何問題。

  5.鞏固提高,以生為本

  (1)如圖:B、C、D在一條直線上,∠ACD=105°,且∠A=∠ACB,則∠B=——度。

  (2)如圖AD是△ABC的角*分線,且∠B=70°,∠C=25°,則∠ADB=——度,∠ADC=——度。

  本組練習是三角形內(nèi)角和定理與*角定義及角*分線等知識的綜合應用.能較好的培養(yǎng)學生的分析問題、解決問題的能力,有助于獲得一些經(jīng)驗。

  6.思維拓展,開放發(fā)散

  如圖,已知△PAD中,∠APD=120°,B、C為AD上的點,△PBC為等邊三角形。試盡可能多地找出各幾何量之間的相互關系。

  本題旨在激發(fā)學生**思考和創(chuàng)新意識,培養(yǎng)創(chuàng)新精神和實踐能力,發(fā)展個性思維。

  三、歸納總結,同化順應

  1.學生談體會

  2.教師總結,出示本節(jié)知識要點

  3.教師點評,對學生在課堂上的積極合作,大膽思考給與肯定,提出希望。

  四、作業(yè):

  1、必做題:習題3.1第10、11、12題

  2、選做題:習題3.1第13、14題

  五、板書設計

  三角形內(nèi)角和

  學生拼圖展示已知:求證:

  證明:開放題:

《三角形的內(nèi)角和》教學設計7

  教學內(nèi)容:

  義務教育課程標準實驗教科書__版小學數(shù)學四年級下冊第42~46頁

  教學目標:

  1、通過量、剪、拼、折等數(shù)學活動,讓學生親自實踐操作,發(fā)現(xiàn)規(guī)律,主動推導并得出“三角形內(nèi)角和是180°”的結論,會應用這一規(guī)律進行計算。

  2、在操作、驗證三角形內(nèi)角和的過程中,體驗解決問題方法的多樣性,發(fā)展空間觀念,提高初步的邏輯思維能力。

  教學過程:

  一、創(chuàng)設情境,導入新課

  1、談話:我們已經(jīng)認識了三角形,你知道哪些關于三角形的知識?

  2、我們在討論三角形知識的時候,三角形中的三個好朋友卻吵了起來,想知道是怎么回事嗎?我們一起去看看吧!

  播放課件

  詳細內(nèi)容說明:一個大的直角三角形說:“我的個頭大,我的內(nèi)角和一定比你們大!币粋鈍角三角形說:“我有一個鈍角,我的內(nèi)角和才是的!币粋小的銳角三角形很委屈的樣子說:“是這樣嗎?”(它們在爭論誰的內(nèi)角和大。)

  你知道什么是三角形的內(nèi)角和嗎?

  通過學生討論,得出三角形的內(nèi)角和就是三角形三個內(nèi)角的度數(shù)和。

  3、故事中到底誰說得對呢?今天我們就來研究三角形的內(nèi)角和。

  【設計意圖】從學生的心理、興趣和意愿為出發(fā)點,利用故事的形式提出疑問,激發(fā)學生的學習興趣,提高學生探索的積極性。

  二、自主探究、發(fā)現(xiàn)規(guī)律

  1、探究三角形內(nèi)角和的特點

  (1)量一量

  師:你認為怎樣能知道三角形的內(nèi)角和?

  生:把三角形的三個內(nèi)角分別量出來,再用加法算出三角形的內(nèi)角和。

  學生活動(小組合作---每組準備三種不同的三角形)量角,求和,完成第43頁的表格。

  學生交流匯報測量結果。

  師:從剛才的交流中,你發(fā)現(xiàn)了什么?

  生:不管是銳角三角形、直角三角形還是鈍角三角形,內(nèi)角和都是180°。

  (在量的過程中,由于誤差,有的學生可能算出內(nèi)角和在180°左右,這時教師要相機誘導:在測量的過程中出現(xiàn)一些誤差是正常的,因為同學們畫的角不夠標準,量角器的不同,還有本身測量的原因都可能導致誤差。)

  師:看來量一量會出現(xiàn)誤差,那么你還有其它的更科學的辦法進行驗證嗎?

  (2)拼一拼

  學生分小組活動,教師參與學生的活動,并給予必要的指導。

  學生展示交流,師:從大家的交流中,我們發(fā)現(xiàn)都可以把三角形的三個內(nèi)角拼成一個*角,證明“三角形內(nèi)角和是180°” 。

  (3)折一折

  小組活動,學生交流

  生1:將正方形(或長方形)紙沿對角線對折,這樣,就折成了兩個大小一樣的三角形。因為正方形(或長方形)的四個直角的和是360°,所以三角形的內(nèi)角和就是它的一半,是180°。

  生2:直角三角形的兩個銳角可以折成一個直角,也就是說,在直角三角形中,兩個銳角的和是90°,因此三角形內(nèi)角和就是180°。

  2、歸納

  師:通過剛才的活動,我們得出了什么結論?

  生:三角形的內(nèi)角和等于180°。

  3、師談話:三個三角形爭論的問題現(xiàn)在能解決了嗎?你現(xiàn)在想對這三個三角形說點什么?

  學生暢所欲言,對得出的規(guī)律做系統(tǒng)的整理。

  【設計意圖】動手實踐,自主探索,親身體驗,是學習數(shù)學的重要方式。學生分組合作,量一量、拼一拼、折一折,通過多種感官參與比較、分析從而自主探索得出結論,得到的不僅是三角形內(nèi)角和的知識,也使學生學到了怎樣由已知探索未知的思維方式與方法,培養(yǎng)了他們主動探索的精神。

  三、靈活運用,鞏固練習

  師:好,大家已經(jīng)發(fā)現(xiàn)了“三角形內(nèi)角和是180°”這一規(guī)律,你能應用這個規(guī)律解決一些實際的問題嗎?

  1、判斷

  鈍角三角形比銳角三角形的內(nèi)角和大。( )

  銳角三角形的兩個內(nèi)角和小于90°。( )

  一個三角形最少有兩個銳角。( )

  一個鈍角三角形最少有一個鈍角。( )

  學生判斷并說出理由。

  2、自主練習第6題

  練習時,先讓學生**填空,再說說自己是怎么想的,然后用量角器驗證計算的結果。

  小結:以后如果遇到求一個三角形內(nèi)未知角的度數(shù)時,我們可以用計算的方法算一算,簡單又精確。

  3、游戲:選度數(shù),組三角形

  (課件顯示如下)

  請選出三個角的度數(shù)來組成一個三角形

  10° 18° 15° 150° 130° 72°

  20° 50° 70° 35° 75°

  52° 56° 54° 58° 60°

  學生回答的同時,教師操作課件,把學生選擇的度數(shù)拖入方框內(nèi),通過電腦計算相加是否等于180°,來驗證學生的選擇是否正確。驗證學生選的對了以后,再讓學生判斷選擇的度數(shù)所組成的三角形按角的大小分類,并說出理由。

  [設計意圖]用已學到的新知解決實際數(shù)學問題,認識學數(shù)學的價值,再次體驗成功,增強學習數(shù)學的興趣。尤其是第三個練習,依據(jù)學生的年齡特征和認知水*,設計探索性和開放性的問題,注重拓寬學生的思維活動空間。

  四、課堂總結、深化認識

  談話:這節(jié)課你學會了什么?解決了什么問題?是怎樣解決的?

  【設計意圖】不僅從知識方面進行總結,還引導學生回顧發(fā)現(xiàn)問題、提出問題、解決問題的過程,關注學生學習過程中的情感體驗。既讓學生習得一種學習方法,又培養(yǎng)了學習興趣。

  課后反思:

  本節(jié)課學生以小組為單位進行合作學習,從自己的已有經(jīng)驗出發(fā),積極地進行操作、測量、計算,并對自己的結論進行思考、分析。在充分發(fā)揮學生主體作用,放手讓學生開展探究的同時,教師也恰到好處的發(fā)揮了引導作用。整個探究過程學生是自主的、有積極性的,在獲得數(shù)學結論的同時學習了科學探究的方法,為今后的學習打下了堅實的基礎。

《三角形的內(nèi)角和》教學設計8

  一、教材分析

  “三角形內(nèi)角和”的度數(shù)推理是三角形中的一個重要環(huán)節(jié),也是“空間與圖形”領域中的重要內(nèi)容之一,為學生進一步理解三角形三個角、三條邊之間的關系打下基礎。本節(jié)課首先讓學生對三角形的特點進行復習,隨后教材中創(chuàng)設了一個有趣的動態(tài)情境,導入了新課,激發(fā)學生的興趣,明確“內(nèi)角和”的含義,然后引導學生探索三角形內(nèi)角和等于多少度,可以采用不同的方法驗證,教學中安排了3個活動,通過這3個活動體驗“三角形內(nèi)角和”的性質(zhì)和性質(zhì)的探索過程。

  二、學情分析

  有的學生可能從各種渠道已經(jīng)對“三角形內(nèi)角和是180°”有所了解,所以本課的重點是通過數(shù)學活動體驗,理解為什么三角形的內(nèi)角和是180°,使學生對這個知識的掌握更深刻。經(jīng)過不斷的課改實驗,孩子們已經(jīng)有了一定的自主探究、合作交流的`能力。他們喜歡在實踐中感悟,在實踐中發(fā)表自己的見解,對數(shù)學產(chǎn)生了濃厚的興趣。

  1.知識方面:學生已經(jīng)掌握了三角形的概念、分類,熟悉了鈍角、直角、銳角、*角這些角的知識。

  2.能力方面:已具備了初步的動手操作能力和探究能力,并且能夠進行簡單的計算機操作。

  三、教學方法

  滲透猜想——驗證——結論——應用——拓展

  教學目標:

  1、通過直觀操作的方法,探索并發(fā)現(xiàn)三角形三個內(nèi)角和等于180度,在實踐活動中,體驗探索的過程和方法

  2、能應用三角形內(nèi)角和的性質(zhì)解決一些簡單的問題。

  教學重點:

  經(jīng)歷三角形的內(nèi)角和是180°這一知識的形成、發(fā)展和應用的全過程,會應用三角形的內(nèi)角和解決實際問題;

  教學難點:

  是探索和驗證性質(zhì)的過程。

  四、教具學具

  三角板、量角器、剪刀、白紙

  五、教學過程

  (一)、激趣導入,揭示課題

  1、師:同學們,猜猜它是誰?

  形狀似座山,穩(wěn)定性能堅,三竿首尾連,學問不簡單(打一幾何圖形)三角形(板書)我們已經(jīng)認識了什么是三角形,誰能說出三角形有什么特點?生回答。(互相補充)(課件演示三條線段圍成三角形的過程)

  三條線段圍成三角形后,在三角形內(nèi)形成了三個角,(課件分別閃爍三個角及它的弧線),我們把三角形里面的這三個角分別叫做三角形的內(nèi)角。

  2、現(xiàn)在,我們來玩一個跟三角形的角有關的游戲。只要大家說出三角形任意兩個角的度數(shù),老師就能猜出第三個角,你們相信嗎?

  要求每個4人小組拿出本組預先準備的學具袋。(內(nèi)含四個不同的三角形,包括直角、銳角和鈍角三角形至少各一個,且要求大小不一。)

  3、活動——量一量:每人任意拿出一個自己帶來的三角形,用量角器量出三角形中三個角的度數(shù),并寫在三角形中。(**完成,非小組合作。)

  然后分別請幾個學生報出不同三角形的兩個角的度數(shù),教師當即說出第三個角的度數(shù)。(事先向?qū)W生說明誤差僅為3、4度左右。)

  你們知道老師是怎么猜出來的嗎?

  到底它們之間有什么樣的秘密呢?我們今天這節(jié)課就要來揭開這個秘密。

  (二)、動手操作,探究新知

  1、探究特殊三角形的內(nèi)角和

  拿出兩個三角板,問:它們是什么三角形?(直角三角形)

  請大家拿出自己的兩個三角尺,在小組內(nèi)說說每一個三角尺上三個角的度數(shù),并求出這兩個直角三角形的內(nèi)角和。從剛才兩個三角形內(nèi)角和的計算中,你們發(fā)現(xiàn)了什么?

  (這兩個三角形的內(nèi)角和都是180°)。這兩個三角形都是直角三角形,并且是特殊的三角形。

  【設計意圖】三角板是學生非常熟悉的學習用具,度數(shù)也是非常清楚,通過計算學生熟悉的三角板內(nèi)角和來驗證這個結論,學生也容易接受。

  2、探究一般三角形內(nèi)角和

  (1)猜一猜。

  猜一猜其它三角形的內(nèi)角和是多少度呢?(可能是180°)

  (2)操作、驗證一般三角形內(nèi)角和是180°。

  所有三角形的內(nèi)角和究竟是不是180°,你能用什么辦法來證明?(可以先量出每個內(nèi)角的度數(shù),再加起來。)

  那就請小組共同計算吧!將學生采用分組的方法分成銳角三角形組、直角三角形組、鈍角三角形組、等腰三角形組,各組在白紙**意畫三角形,并量出每個內(nèi)角的度數(shù),計算三角形內(nèi)角和。由組長統(tǒng)計記錄員記錄各組的內(nèi)角和情況。

  (3)小組匯報結果。

  請各小組匯報探究結果。**:你們發(fā)現(xiàn)了什么?

  小結:通過測量計算我們發(fā)現(xiàn)每個三角形的三個內(nèi)角和都在180°左右。

  【設計意圖】學生任意畫的三角形,有大的、有小的,有各種類型的,不論是什么樣的三角形,學生都親自動手動筆算出內(nèi)角和。這個探索過程簡單學生又容易接受。

  3、操作驗證

  (1)動手操作,驗證猜測。

  沒有得到**的結果。這個辦法不能使人很信服,怎么辦?還有其它辦法嗎?請同學們動腦筋想一想,能通過動手操作來驗證嗎?(先小組討論,再匯報方法)

  (2)學生操作,教師巡視指導。

  (3)全班交流匯報驗證方法、結果。

  學生放在投影儀上展示給大家看。(剪拼、撕拼、折拼)

  我們可以得出一個怎樣的結論?(三角形的內(nèi)角和是180°)

  引導學生通過剪拼、撕拼和折拼的方法發(fā)現(xiàn):各類三角形的三個內(nèi)角都可以拼成一個*角,證實三角形內(nèi)角和確實是180°,測量計算有誤差。

  【設計意圖】學生通過親自動手操作,將三角形的三個內(nèi)角剪拼成一個*角,形象、直觀地說明了“三角形內(nèi)角和是180度”這個結論。

  5、辨析概念,透徹理解。

  (出示一個大三角形)它的內(nèi)角和是多少度?

  (出示一個很小的三角形)它的內(nèi)角和是多少度?

  一塊三角尺的內(nèi)角和180°,兩塊同樣的三角尺拼成的一個大三角形的內(nèi)角和又是多少呢?(學生有的答360°,有的180°.)

  把大三角形*均分成兩份。每個小三角形的內(nèi)角和是多少度?(生有的答90°,有的180° )這兩道題都有兩種答案,到底哪個對?為什么?(學生個個臉上露出疑問。)

  大家可以在小組內(nèi)用三角尺拼一拼,也可以畫一畫,互相討論。

  學生發(fā)現(xiàn):三角形不論位置、大小、形狀如何,它的內(nèi)角和總是180°

  (三)小結

  剛才同學們用很多方法證明了無論是什么樣的三角形內(nèi)角和都是180°,現(xiàn)在讓我們用自豪的、肯定的語氣讀出我們的發(fā)現(xiàn):“三角形的內(nèi)角和是180°”。

  (四)、鞏固練習,拓展應用

  下面,我們就根據(jù)三角形內(nèi)角和的知識來解決一些相關的數(shù)學問題。(課件)

  1、求三角形中一個未知角的度數(shù)。

  在三角形中,已知∠1=85°,∠2=65°,求∠3。

  2、判斷

  (1)一個三角形的三個內(nèi)角度數(shù)是:90°、75°、25°。( )

  (2)一個三角形至少有兩個角是銳角。( )

  (3)鈍角三角形的內(nèi)角和比銳角三角形的內(nèi)角和大。( )

  (4)直角三角形的兩個銳角和等于90°。( )

  3、解決生活實際問題。

  (1)爸爸給小紅買了一個等腰三角形的風箏,它的一個底角是70°,它的頂角是多少度?

  (2)交通警示牌“讓”為等邊三角形,求其中一個角的度數(shù)。

  4、拓展練習。

  利用三角形內(nèi)角和是180°,求出下面四邊形、六邊形的內(nèi)角和?(課件)

  小組的同學討論一下,看誰能找到方法。

  六、課堂總結

  通過這節(jié)課的學習,你有哪些收獲?

《三角形的內(nèi)角和》教學設計9

  本節(jié)微課視頻是蘇教版數(shù)學教科書四年級下冊第78~79頁的教學內(nèi)容。在教學之前,學生已經(jīng)掌握了角的概念、角的分類和角的測量;認識了三角形,知道三角形是由三條線段首尾相接圍成的圖形,有三個頂點、三條邊和三個角。這些已經(jīng)構成學生進一步學習的認知基礎!度切蔚膬(nèi)角和》是三角形的一個重要性質(zhì)。學生在學習四年級上冊“角的度量”時,通過測量三角尺三個角的度數(shù),知道三角尺三個角加起來的和是180度,再加上課前的預習,大部分的學生已經(jīng)能得出結論:三角形的內(nèi)角和是180度,只不過他們不清楚其中的道理,只是機械性的記憶。因此,本節(jié)課的重點不是結論,而是驗證結論的過程。教材**學生對不同形狀、不同大小的三角形的內(nèi)角和進行探索,通過轉化、推理、比較、操作和驗證,總結概括出“所有三角形的內(nèi)角和都是180度”的規(guī)律,從而進一步發(fā)展學生的空間觀念,提高學生的自主學習能力和推理能力。

  下面就具體談談微課的教學設計:

  一、教學目標

  1、通過測量、轉化、觀察和比較等活動探索發(fā)現(xiàn)并驗證“三角形的內(nèi)角和是180度”的規(guī)律,并且能利用這一結論解決求三角形中未知角的度數(shù)等實際問題。

  2、通過折一折、拼一拼和剪一剪等一系列的操作活動培養(yǎng)學生的聯(lián)想意識和動手操作能力。體驗驗證結論的過程與方法,提高學生分析和解決問題的能力。

  3、使學生通過操作的過程獲得發(fā)現(xiàn)規(guī)律的喜悅,獲得成就感,從而激發(fā)學生積極主動學習數(shù)學的興趣。

  二、教學重點和難點

  重點:讓學生親自驗證并總結出三角形的內(nèi)角和是180度的結論

  難點:對不同驗證方法的理解和掌握。

  三、教學過程

 。ㄒ唬┵|(zhì)疑——發(fā)現(xiàn)問題,提出問題

  出示學生熟悉的一副三角尺,讓學生說說每塊三角尺中各個內(nèi)角的度數(shù)。試著計算每塊三角尺的三個內(nèi)角的度數(shù)加起來的和是多少度?

  交流:不同三角尺的內(nèi)角和都是一樣的嗎?三角尺的內(nèi)角和有什么特征?

  引導學生得出三角尺的三個內(nèi)角的度數(shù)和是180度。

  **:三角尺的形狀是什么三角形?三角尺的內(nèi)角和是180度,我們還可以說成是什么?(得出結論:直角三角形的內(nèi)角和是180度。)

  你有什么辦法驗證這一結論呢?(動手操作,尋找答案)

  方法一:拿出不同的直角三角形,分別測量三個內(nèi)角的度數(shù),再求和。(提示存在誤差,但三個內(nèi)角的和都在180度左右)

  方法二:用兩個相同的直角三角形拼成一個長方形,由于長方形的四個內(nèi)角和是360度,因此能得出一個直角三角形的三個內(nèi)角和是180度。

  啟發(fā):直角三角形的內(nèi)角和是180度,這一結論讓你聯(lián)想到了什么?你能提出什么新的數(shù)學問題呢?

  引導:從直角三角形的內(nèi)角和聯(lián)想到所有三角形的內(nèi)角和,提出問題:所有三角形的內(nèi)角和都是180度嗎?

 。ǘ┨骄俊治鰡栴},解決問題

  出示三個三角形:直角三角形、銳角三角形和鈍角三角形。

  引導:直角三角形的內(nèi)角和是180度了,由此我們聯(lián)想到銳角三角形和鈍角三角形的內(nèi)角和也有可能是180度。

  **:你有什么辦法來驗證這一猜想呢?

  拿出事先從課本第113頁剪下來的3個三角形,動手操作,自主探索,發(fā)現(xiàn)規(guī)律。

  方法一:可以像上面那樣先測量每個三角形的三個內(nèi)角的度數(shù),再計算出它們的和,看看能發(fā)現(xiàn)什么規(guī)律。學生測量計算,教師巡視指導。

  引導:測量時要盡量做到準確,測量是存在誤差的,對于測量的不準的同學要重新測定和確認,計算出它們的和,發(fā)現(xiàn)其中的規(guī)律。

  方法二:既然是求三角形的內(nèi)角和,我們就可以想辦法把三角形的3個內(nèi)角拼在一起,看看拼成了什么角。那怎樣才能把3個內(nèi)角拼在一起呢?我們可以將三角形中的3個內(nèi)角撕下來,再拼在一起,會發(fā)現(xiàn)拼成了一個*角,是180度。

  方法三:把三角形的三個內(nèi)角撕下來,雖然能將他們拼在一起,但是原有的三角形被破壞了。因此,我們還可以通過折一折的方法,把三個內(nèi)角折過來拼在一起,同樣會發(fā)現(xiàn)拼成一個*角,是180度。

  方法四:將銳角三角形和鈍角三角形分別分成兩個直角三角形,利用直角三角形內(nèi)角和是180度進行推理。180+180=360度,360-90-90=180度。

 。ㄈw納——獲得結論

  交流:回顧以上3個三角形的內(nèi)角和的探索過程,你發(fā)現(xiàn)了什么規(guī)律?

  總結:通過測量計算、拼一拼和折一折的方法,我們可以消除心中的問號,肯定得說出所有三角形的內(nèi)角和都是180度這一結論。

 。ㄋ模┩卣埂柟叹毩

  1、將一個大三角形剪成兩個小三角形,每個小三角形的內(nèi)角和是多少度?

  2、在一個三角形中,根據(jù)兩個內(nèi)角的度數(shù),求第三個內(nèi)角的度數(shù)?

《三角形的內(nèi)角和》教學設計10

  教學內(nèi)容:

  p.28、29

  教材簡析:

  本節(jié)課的教學先通過計算三角尺的3個內(nèi)角的度數(shù)的和,激發(fā)學生的好奇心,進而引發(fā)三角形內(nèi)角和是180度的猜想,再通過**操作活動驗證猜想,得出結論。

  教學目標:

  1、讓學生通過觀察、操作、比較、歸納,發(fā)現(xiàn)三角形的內(nèi)角和是180。

  2、讓學生學會根據(jù)三角形的內(nèi)角和是180這一知識求三角形中一個未知角的度數(shù)。

  3、激發(fā)學生主動參與、自主探索的意識,鍛煉動手能力,發(fā)展空間觀念。

  教學準備:

  三角板,量角器、點子圖、自制的三種三角形紙片等。

  教學過程:

  一、提出猜想

  老師取一塊三角板,讓學生分別說說這三個角的度數(shù),再加一加,分別得到這樣的2個算式:90+60+30=180,90+45+45=180

  看了這2個算式你有什么猜想?

 。ㄈ切蔚娜齻角加起來等于180度)

  二、驗證猜想

  1、畫、量:在點子圖上,分別畫銳角三角形、直角三角形、鈍角三角形。畫好后分別量出各個角的度數(shù),再把三個角的度數(shù)相加。

  老師注意巡視和指導。交流各自加得的結果,說說你的發(fā)現(xiàn)。

  2、折、拼:學生用自己事先剪好的圖形,折一折。

  指名介紹折的方法:比如折的是一個銳角三角形,可以先把它上面的一個角折下,頂點和下面的邊重合,再分別把左邊、右邊的角往里折,三個角的頂點要重合。發(fā)現(xiàn):三個角會正好在一直線上,說明它們合起來是一個*角,也就是180度。

  繼續(xù)用該方法折鈍角三角形,得到同樣的結果。

  直角三角形的折法有不同嗎?

  通過交流使學生明白:除了用剛才的方法之外,直角三角形還可以用更簡便的方法折;可以直角不動,而把兩個銳角折下,正好能拼成一個直角;兩個直角的度數(shù)和也是180度。

  3、撕、拼:可能有個別學生對折的方法感到有困難。那么還可以用撕的方法。

  在撕之前要分別在三個角上標好角1、角2和角3。然后撕下三個角,把三個角的一條邊、頂點重合,也能清楚地看到三個角合起來就是一個*角180度。

  小結:我們可以用多種方法,得到同樣的結果:三角形的內(nèi)角和是180。

  4、試一試

  三角形中,角1=75,角2=39,角3=( )

  算一算,量一量,結果相同嗎?

  三、完成想想做做

 。、算出下面每個三角形中未知角的度數(shù)。

  在交流的時候可以分別學生說說怎么算才更方便。比如第1題,可先算40加60等于100,再用180減100等于80。第2題則先算180減110等于70,再用70減55更方便。第3題是直角三角形,可不用180去減,而用90減55更好。

  指出:在計算的時候,我們可根據(jù)具體的數(shù)據(jù)選擇更佳的算法。

  2、一塊三角尺的內(nèi)角和是180,用兩塊完全一樣的三角尺拼成一個三角形,這個三角形的內(nèi)角和是多少度?

  可先猜想:兩個三角形拼在一起,會不會它的內(nèi)角和變成1802=360呢?為什么?

  然后再分別算一算圖上的這三個三角形的內(nèi)角和。得出結論:三角形不論大小,它的內(nèi)角和都是180。

  3、用一張正方形紙折一折,填一填。

  4、說理:一個直角三角形中最多有幾個直角?為什么?

  一個鈍角三角形中最多有幾個直角?為什么?

  四、布置作業(yè)

  第4、5題


《三角形的內(nèi)角和》教學設計10篇擴展閱讀


《三角形的內(nèi)角和》教學設計10篇(擴展1)

——《三角形內(nèi)角和》教學設計10篇

《三角形內(nèi)角和》教學設計1

  教學內(nèi)容:

  教材第67頁例6、“做一做”及教材第69頁練習十六第1~3題。

  教學目標:

  1.通過動手操作,使學生理解并掌握三角形的內(nèi)角和是180°的結論。

  2.能運用三角形的內(nèi)角和是180°這一結論,求三角形中未知角的度數(shù)。

  3.培養(yǎng)學生動手動腦及分析推理能力。

  重點難點:

  掌握三角形的內(nèi)角和是180°。

  教學準備:

  三角形卡片、量角器、直尺。

  導學過程

  一、復習

  1、什么是*角?*角是多少度?

  2、計算角的度數(shù)。

  3、回憶三角形的相關知識。(出示直角三角形、銳角三角形、鈍角三角形)

  二、新知

 。ㄔO計意圖:讓學生經(jīng)歷質(zhì)疑驗證結論這樣的思維過程,真正整體感知三角形內(nèi)角和的知識,真正驗證了“實踐出真知” 的道理,這樣的教學,將三角形內(nèi)角和置于*面圖形內(nèi)角和的大背景中,拓展了三角形內(nèi)角和的數(shù)學知識背景,滲透數(shù)學知識之間的聯(lián)系,有效地避免了新知識的“橫空出現(xiàn)”。同時,培養(yǎng)學生的綜合素養(yǎng))

  1、讀學卡的學習目標、任務目標,做到心里有數(shù)。

  2、揭題:課件演示什么是三角形的內(nèi)角和。

  3、猜想:三角形的內(nèi)角和是多少度。

  4、驗證:

  (1)初證:用一副三角板說明直角三角形的內(nèi)角和是180°。

 。2)質(zhì)疑:三角板是特殊的直角三角形,不具有普遍性,不能**所有三角形。

 。3)再證:請按學卡提示,拿出學具,選擇自己喜歡的方式驗證三角形的內(nèi)角和 是180°(師巡視)

 。4)匯報結論(清楚明白的給小組加優(yōu)秀10分)

  5、結論:修改板書,把“?”去掉,寫“是”。

  6、追問:把兩塊三角板拼在一起,拼成的大三角形的內(nèi)角和是多少?說明三角形無論大小它的內(nèi)角和都是180°(課件演示)

  7、看微課感知“偉大的發(fā)現(xiàn)”(設計意圖:讓學生感受自己所做的和帕斯卡發(fā)現(xiàn)三角形內(nèi)角和是180°的過程是一樣的,從而培養(yǎng)孩子的自信心和創(chuàng)造力。)

  三、知識運用(課件出示練習題,生解答)

  1、填空

 。1)一個三角形,它的兩個內(nèi)角度數(shù)之和是110 ,第三個內(nèi)角是( ).

 。2)一個直角三角形的一個銳角是50,則另一個銳角是( )。

 。3)等邊三角形的3個內(nèi)角都是( )。

  (4)一個等腰三角形,它的一個底角是50,那么它的頂角是( )。

 。5)一個等腰三角形的頂角是60,這個三角形也是( )三角形。

  2、判斷

 。1)一個三角形中最多有兩個直角。 ( )

 。2)銳角三角形任意兩個內(nèi)角的和大于90。 ( )

 。3)有一個角是60的等腰三角形不一定是等邊三角形。 ( )

 。4)三角形任意兩個內(nèi)角的和都大于第三個內(nèi)角。 ( )

 。5)直角三角形中的兩個銳角的和等于90。 ( )

  四、拓展探究

  根據(jù)所學的知識,你能想辦法求出四邊形、五邊形的內(nèi)角和嗎?

  1、小組討論。2、匯報結果。3、課件提示幫助理解。

  五、自我評價根據(jù)學卡要求給自己評出“優(yōu)”“良好”“合格”。

  六、談談自己本節(jié)課的收獲。

  教學反思

  今天我講了《三角形內(nèi)角和》這部分內(nèi)容,學生其實通過不同途徑已經(jīng)知道三角形內(nèi)角和是180°,是不是說這節(jié)課的重難點就已經(jīng)突破了,只要學生能應用知識解決問題就算是達到這節(jié)課的教學目標了呢?我想應該好好思考教材背后要傳遞的東西。

  任何規(guī)律的發(fā)現(xiàn)都要經(jīng)過一個猜測、驗證的過程,不經(jīng)歷這個探究的過程,學生對于這一內(nèi)容的認識就不深刻,聰明的孩子還會懷疑三角形內(nèi)角和是180°嗎?。因此這個結論必須由實踐操作得出結論。所以最終我把本課定為一個實踐探究課。

  如何開篇點題,是我這次要解決的第一個問題。怎樣才能讓學生由已知順利轉向?qū)ξ粗奶角螅鯓又苯愚D向研究三個角的“和”的問題呢?因此我只設計了三個簡單的問題然學生快速進入主題。

  如何驗證內(nèi)角和是180°,是我一直比較糾結的環(huán)節(jié)。由于小學生的知識背景有限,無法利用證明給予嚴格的驗證。只能通過動手操作、空間想象來讓孩子體會,這些都有“實驗”的特點,那么就都會有誤差,其實都無法嚴格的證明。但是這節(jié)課我們除了要尊重知識的嚴謹還應該尊重孩子的認知。如果通過剪拼、折疊、想象后,還有的孩子認為三角形內(nèi)角和是180°值得懷疑的話,這無非也是件好事,說明孩子體會到了這些方法的不嚴謹,同時對知識有一種尊重,對自己的操作結果充滿自信,否則拼個差不多也可以簡單的認同了內(nèi)角和是180°。

  本節(jié)課的練習的設置也是努力做到有梯度、有趣味、有拓展。從開始的搶答內(nèi)角和體會三角形內(nèi)角和跟大小無關、跟形狀無關,到已知兩個角的度數(shù)求第三個角,這些都是鞏固。之后的,求拼接兩個完全一樣的直角三角形后,得到的圖形的內(nèi)角和是多少度,求被剪開的三角形,形成的新圖形的內(nèi)角和是多少度,這些都是對三角形內(nèi)角和的`一次拓展。讓學生的認知發(fā)生沖突,提出挑戰(zhàn)。

  給學生一個*臺,她會給你一片精彩。通過動手操作來驗證內(nèi)角和是否是180°,學生最容易出現(xiàn)的就是把3個角剪下來拼一拼,個別人可能會想到折的方法。而這節(jié)課上有個小姑娘研究的是直角三角形,她的折法很巧妙,將兩個銳角折過來,剛好拼成一個直角,這個直角和原來三角形已有的直角就重疊在了一起,兩個直角就180°。雖然我知道這樣的方法,但是通過試講,孩子們沒有這樣的表現(xiàn),我就沒有奢求什么。但是今天的課堂太豐富多元了。這樣的方法都出現(xiàn)了讓我覺得特別值得肯定。為什么會這樣呢?我想還是因為我給了他們足夠的時間去思考。當有了空間,孩子才會施展他們的才華。這是我的一大收獲。

  前邊驗證時間過多,到練習時間就有些少,特別是求四邊形和六邊形內(nèi)角和時,給的時間過短,學生沒有充分思維。

  總而言之,這次的公開課,給了我一次學習和鍛煉的機會。在教案設計時,該怎么樣把每一個環(huán)節(jié)落實到位,怎么樣說好每一句話,預設好每一個環(huán)節(jié),在教研中聽取各位教師的點評,讓我有了茅塞頓開的感覺。在此,我衷心感謝數(shù)學團隊教師對我中肯的評價,感謝他們對我的直言不諱,無私奉獻自己的想法,讓我在教學中,能夠在一個輕松**的教學氛圍中與學生共同去探討,去發(fā)現(xiàn),去學習。

《三角形內(nèi)角和》教學設計2

  設計思路

  本節(jié)課我先引導學生任意畫出不同類型的三角形,用通過量一量、算一算,得出三角形的內(nèi)角和是180°或接近180°(測量誤差),再引導學生通過剪拼的方法發(fā)現(xiàn):各類三角形的三個內(nèi)角都可以拼成一個*角。再引導學生通過折角的方法也發(fā)現(xiàn)這個結論,由此獲得三角形的內(nèi)角和是180°的結論。概念的形成沒有直接給出結論,而是通過量、算、拼、折等活動,讓學生探索、實驗、發(fā)現(xiàn)、推理歸納出三角形的內(nèi)角和是180°。

  最后讓學生運用結論解決實際問題,練習的安排上,注意練習層次性和趣味性,還設計了開放性的練習,由一個同學出題,其它同學回答。先給出三角形兩個內(nèi)角的度數(shù),說出另外一個內(nèi)角,有唯一的答案。給出三角形一個內(nèi)角,說出其它兩個內(nèi)角,答案不唯一,可以得出無數(shù)個答案。讓學生在游戲中拓展學生思維。

  教學目標

  1、讓學生親自動手,通過量、剪、拼等活動發(fā)現(xiàn)、證實三角形內(nèi)角和是180°,并會應用這一知識解決生活中簡單的實際問題。

  2、讓學生在動手獲取知識的過程中,培養(yǎng)學生的創(chuàng)新意識、探索精神和實踐能力。并通過動手操作把三角形內(nèi)角和轉化為*角的探究活動,向?qū)W生滲透“轉化”數(shù)學思想。

  3、使學生體驗成功的喜悅,激發(fā)學生主動學習數(shù)學的興趣。

  教學重點

  讓學生經(jīng)歷“三角形內(nèi)角和是180°”這一知識的形成、發(fā)展和應用的全過程。

  教學準備

  教具:多**課件、用彩色卡紙剪的相同的兩個直角三角形、一個鈍角三角形、一個銳角三角形。

  學具:三角形

  教學過程

  一、引入

 。ㄒ唬┱J識三角形的內(nèi)角及三角形的內(nèi)角和

  師:我們已經(jīng)學習了三角形的分類,誰能說說老師手上的是什么三角形?

  師:今天我們來學習新的知識《三角形內(nèi)角和》,誰能說說哪些角是三角形的內(nèi)角?(讓學生邊說邊指出來)

  師:那三角形的內(nèi)角和又是什么意思?(把三角形三個內(nèi)角的度數(shù)合起來就叫三角形的內(nèi)角和。)

 。ǘ┰O疑,激發(fā)學生探究新知的心理

  師:請同學們幫老師畫一個三角形,能做到嗎?(激發(fā)學生主動學習的心理)

  生:能。

  師:請聽要求,畫一個有兩個內(nèi)角是直角的三角形,開始。(設置矛盾,使學生在矛盾中去發(fā)現(xiàn)問題、探究問題。)

  師:有誰畫出來啦?

  生1:不能畫。

  生2:只能畫兩個直角。

  生3:……

  師:問題出現(xiàn)在哪兒呢?這一定有什么奧秘?想不想知道?那就讓我們一起來研究吧!

 。ń沂久,巧妙引入新知的探究)

  二、動手操作,探究三角形內(nèi)角和

  (一)猜一猜。

  師:猜一猜三角形的內(nèi)角和是多少度呢?同桌互相說說自己的看法。

  生1:180°。

  生2:不一定。

 。ǘ┎僮、驗證三角形內(nèi)角和是180°。

  1、量一量三角形的內(nèi)角

  動手量一量自己手中的三角形的內(nèi)角度數(shù)。

  師:所有三角形的內(nèi)角和究竟是不是180°,你能用什么辦法來證明,使別人相信呢?

  生:可以先量出每個內(nèi)角的度數(shù),再加起來。

  師:哦,也就是測量計算,是嗎?

  學生匯報結果。

  師:請匯報自己測量的結果。

  生1:180°。

  生2:175°。

  生3:182°。

  2、拼一拼三角形的內(nèi)角

  學生操作

  師:沒有得到**的結果。這個辦法不能使人很信服,怎么辦?還有其它辦法嗎?

  生1:有。

  生2:用拼合的辦法,就是把三角形的三個內(nèi)角放在一起,可以拼成一個*角。

  師:怎樣才能把三個內(nèi)角放在一起呢?(學生操作)

  生:把它們剪下來放在一起。

  師:很好。

  匯報驗證結果。

  師:通過拼合我們得出什么結論?

  生1:銳角三角形的內(nèi)角拼在一起是一個*角,所以銳角三角形的內(nèi)角和是180°。

  生2:直角三角形的內(nèi)角和也是180°。

  生3:鈍角三角形的內(nèi)角和還是180°。

  課件演示驗證結果。

  師:請看屏幕,老師也來驗證一下,是不是跟你們得到的結果一樣?(播放課件)

  師:我們可以得出一個怎樣的結論?

  生:三角形的內(nèi)角和是180°。

 。ń處煱鍟喝切蔚膬(nèi)角和是180°學生齊讀一遍。)

  師:為什么用測量計算的方法不能得到**的結果呢?

  生1:量的不準。

  生2:有的量角器有誤差。

  師:對,這就是測量的誤差。

  3、折一折三角形的內(nèi)角

  師:除了量、拼的方法,還有沒有別的方法可以驗證三角形的內(nèi)角和是180°。

  如果學生說不出來,教師便提示或示范。

  學生操作

  4、小結:三角形的內(nèi)角和是180°。

  三、解決疑問。

  師:現(xiàn)在誰能說說不能畫出有兩個直角的一個三角形的原因?(讓學生體驗成功的喜悅)

  生:因為三角形的內(nèi)角和是180°,在一個三角形中如果有兩個直角,它的內(nèi)角和就大于180°。

  師:在一個三角形中,有沒有可能有兩個鈍角呢?

  生:不可能。

  師:為什么?

  生:因為兩個銳角和已經(jīng)超過了180°。

  師:那有沒有可能有兩個銳角呢?

  生:有,在一個三角形中最少有兩個內(nèi)角是銳角。

  四、應用三角形的內(nèi)角和解決問題。

  1、下面說法是否正確。

  鈍角三角形的內(nèi)角和一定大于銳角三角形的內(nèi)角和。

  在直角三角形中,兩個銳角的和等于90度。

  在鈍角三角形中兩個銳角的和大于90度。

 、芤粋三角形中不可能有兩個鈍角。

 、萑切沃杏幸粋銳角是60度,那么這個三角形一定是個銳角三角形。

  2、看圖求出未知角的度數(shù)。(知識的直接運用,數(shù)學信息很淺顯)

  3、游戲鞏固。

  由一個同學出題,其它同學回答。

 。1)給出三角形兩個內(nèi)角,說出另外一個內(nèi)角(有唯一的答案)。

  (2)給出三角形一個內(nèi)角,說出其它兩個內(nèi)角(答案不唯一,可以得出無數(shù)個答案)。

  4、根據(jù)所學的知識算出四邊形、正五邊形、正六邊形的內(nèi)角和。

  五、全課總結。

  今天你學到了哪些知識?是怎樣獲取這些知識的?你感覺學得怎么樣?

  反思:

  在本節(jié)課的學習活動過程中,先讓學生進行測量、計算,但得不到**的結果,再引導學生用把三個角拼在一起得到一個*角進行驗證。這時,有部分學生在拼湊的過程中出現(xiàn)了困難,花費的時間較長,在這里用課件再演示一遍正好解決了這個問題。再引導學生用折三角形的方法也能驗證三角形的內(nèi)角和是180°。練習設計也具有許多優(yōu)點,注意到練習的梯度,并由淺入深,照顧到不同層次學生的需求,也很有趣味性。在整個教學設計中,本著“學貴在思,思源于疑”的思想,不斷創(chuàng)設問題情境,讓學生去實驗、去發(fā)現(xiàn)新知識的奧妙,從而讓學生在動手操作、積極探索的活動中掌握知識,積累數(shù)學活動經(jīng)驗,發(fā)展空間觀念和推理能力。

  但因為是借班上課,對學生了解不多,學生前面的內(nèi)容(三角形的特性和分類)還沒學好,所以有些練習學生就沒有預想的那么得心應手,如:知道等腰三角形的頂角求底角的題,學生掌握比較困難。

《三角形內(nèi)角和》教學設計3

  探索三角形內(nèi)角和的度數(shù)以及已知兩個角度數(shù)求第三個角度數(shù)。

  教學目標:

  1、通過測量、撕拼、折疊等探索活動,使學生發(fā)現(xiàn)三角形內(nèi)角和的度數(shù)是180?

  2、已知三角形兩個角的度數(shù),會求第三個角的度數(shù)。

  3、培養(yǎng)學生動手實踐,動腦思考的習慣。

  教學重點:

  了解三角形三個內(nèi)角的度數(shù)。

  教學難點:

  理解三角形三個內(nèi)角大小的關系。

  教具學具準備:

  課件三角形若干量角器剪刀。

  教材與學生

  教材創(chuàng)設了一個有趣的問題情境,通過對大小兩個三角形內(nèi)角和的大小比較來激發(fā)學生探索的興趣。教材為了得到三角形內(nèi)角和是180的結論安排了兩個活動,通過學生測量,折疊,撕拼來找到答案。

  學生在已有的會用量角器來度量一個角的度數(shù)的基礎上,會首先想到這種方法。但測量的誤差會導致測量不同,因此,學生會想到采取其他更好的辦法,通過親手實踐,得出結論。

  教學過程:

  一、呈現(xiàn)真實狀態(tài)。

  師:今天我們來研究三角形內(nèi)角和度數(shù)。這里有兩個三角形,一個是大三角形,一個是小三角形(圖略),到底哪一個三角形的內(nèi)角和比較大呢?

  學生各抒己見。

  二、提出問題:

  師;剛才我們觀察三角形哪個內(nèi)角和大,同學們有兩種不同的猜想,可以肯定,必定有錯下面我們來測量驗證。

 。1)以小組為單位請同學們拿出量角器,量一量,算一算圖中大小兩個三角形內(nèi)角和度數(shù),并做好記錄,記錄每個內(nèi)角的度數(shù)。

 。2)組內(nèi)交流。

 。3)全班交流。由小組匯報測出結果(三角形內(nèi)角和)

  (4)師小結:我們通過測量發(fā)現(xiàn),每個三角形的內(nèi)角和測出結果接近180。

  三。自主探索、研究問題、歸納總結:

  師引導**:三角形的內(nèi)角和會不會就是180呢?

  (一)組內(nèi)探索:

 。1)以小組為單位探索更好的辦法。

 。2)以小組為單位邊展示邊匯報探索的過程與發(fā)現(xiàn)的結果。

 。ㄓ械男〗M想不出來,可以安排小組和小組之間進行交流,目的是讓學生通過實踐發(fā)現(xiàn)結果,在探索中發(fā)現(xiàn)問題,在討論中解決問題,是學生學習到良好的學習方法)

  (3)把你沒有想到的方法動手做一次

 。ㄊ箤W生更直觀地理解三角形的內(nèi)角和是180的證明過程)

 。4)根據(jù)學生的反饋情況教師進行操作演示。

 。ǘ┙處熝菔

  撕拼法1。教師取出三角形教具,把三個角撕下來,拼在一起,如圖所示

  2.師:這三個內(nèi)角放在一起你有什么發(fā)現(xiàn)?

  生:發(fā)現(xiàn)三個內(nèi)角拼成一個*角。

  師:*角是多少度呢?說明什么?

  生:180?說明三個內(nèi)角和剛好等于180。

  師:這種方法是不是適用各種三角形呢?

  3。學生每人動手實踐,看看是不是不同的三角形是否都有這個特點,也能拼出一個*角呢?

  進行實驗后,結果發(fā)現(xiàn)同樣存在這一規(guī)律,三角形三個內(nèi)角和是180。

  折疊法:師:剛才我們通過測量發(fā)現(xiàn)三角形內(nèi)角和接近180,那是因為測量的不那么精確,所以說“接近”,又通過撕拼方法發(fā)現(xiàn)三角形的三個內(nèi)角剛好拼成一個*角,進一步說明三個內(nèi)角和是180,現(xiàn)在再來演示另一種實驗,再次證明我們的發(fā)現(xiàn)。

  你們也來試一試好嗎?

  在學生完成這一實踐后肯定這一發(fā)現(xiàn)

  三角形三個內(nèi)角和等于180?

  :充分發(fā)揮了學生的主觀能動性,讓學生大膽去思考發(fā)言,把課堂交給學生,最后老師在演示達成共識,這樣學生學到知識印象頗深,也理解最為透徹,提高課堂教學的效率

  四。鞏固練習,知識升華。

  1.完成課本第28頁的“試一試”第三題。

  2.想一想:鈍角三角形最多有幾個鈍角?為什么?

  銳角三角形中的兩個內(nèi)角和能小于90嗎?

  3.有一個四邊形,你能不用量角器而算出它的四個內(nèi)角和嗎?

  試一試,看誰算得快。

  師:誰來說說自己的計算過程?

  角的和叫做三角形的內(nèi)角和。(板書課題)下面請大家認真觀察這兩個算式,從結果上看,你發(fā)現(xiàn)了什么?

  生:它們的內(nèi)角和都是 180 度。

  師:觀察的真仔細。c擊課件,出示多種多樣的三角形后**)同學們,咱們都知道,這兩個三角形是特殊三角形,在我們的生活中還有許許多多不是這個樣子的三角形,請看大屏幕,這些任意三角形,它們的內(nèi)角和是不是都是 180 度呢?

  [回答可能有二]:

 。ㄒ环N全部說是:)

  師:請問,你們是怎么想的,為什么這么認為?

  生: ……

  師:看來,大家是通過這兩個三角形猜想的,是嗎?想不想驗證一下你們的猜想,(生:想)好,咱們一起走進三角形王國,一起去研究它們內(nèi)角和的秘密吧!(師在課題“內(nèi)角和”下面劃上橫線,打上問號)

  (一種有一部分同學說是,有一部分同學說不是:)

  師:看來,大家的意見不一致, 想不想驗證一下你們的猜想,(生:想)好,咱們一起走進三角形王國,一起去研究它們內(nèi)角和的秘密吧!(師在課題“內(nèi)角和”下面劃上橫線,打上問號)

 。ǘ﹦邮植僮鳎骄啃轮

  師:老師看你們有答案了,哪位同學愿意說一說你的奇思妙想?

  生:我準備用量的方法。

  師:然后呢?

  生:然后把它們?nèi)齻內(nèi)角的度數(shù)相加起來,就知道了三角形的內(nèi)角和是多少?

  師:說的真不錯,還有沒有其它的方法?

  生:我是把三角形的三個角剪下來,拼在一起( 師鼓勵: 你的想法很有創(chuàng)意, 等一會兒用你的行動來驗證你的猜想吧。

  生:……

 。ㄈ缟粫r想不到,師可引導:他是把三個內(nèi)角的度數(shù)相加在一起,我們能不能想辦法把三個內(nèi)角放在一起進行觀察,看看能不能發(fā)現(xiàn)些什么呢?)

  師: 好啦, 老師相信咱們班的同學個個都是小數(shù)學家, 一定能找出更多的方法的, 請你們在研究之前,也像老師一樣,在三個內(nèi)角上編上序號,角一、角二、角三,現(xiàn)在就請同學們對銳角三角形、直角三角形和鈍角三角形等各種類型的三角形進行研究,看看它們的內(nèi)角和各有什么特點。咱們比一比,看一看,哪個小組的方法多,方法好!

  開始吧。▽W生研究,師巡回指導)預設時間:5 分鐘

  師:老師看各小組已經(jīng)研究好了,哪位同學愿意上來交流一下?

  師:請你告訴大家,你是怎么研究的,最后發(fā)現(xiàn)了什么結果?

 。 預設: 如果第一類同學說的是量的方法)

  師:你是用什么來研究的?

  生:量角器。

  師: 那請你說一下你度量的結果好嗎?

 。 生匯報度量結果)

  師: 剛才有的同學測量的結果是180 度,有的同學測量的結果是179 度,有的同學測量的結果是182 度,各不相同,但是這些結果都比較接近于多少?

  生:180 度。

  師:那到底三角形的內(nèi)角和是不是180 度呢?還有哪位同學有其它的方法進行驗證嗎?

  生:我是先把三角形的三個角剪掉以后粘在一起,然后在量出它們?nèi)齻角組成的度數(shù)。

  師:他演示的真好,你們聽明白了嗎? 李 老師把他的過程給大家在大屏幕上演示一下。

 。◣熯呏v解邊點擊 FLASH :把三角形按照三個內(nèi)角撕成三塊,先把角一放在右邊,再把角二放在左邊,最后把角三調(diào)個頭,插在角一角二的中間,這樣它們?nèi)齻內(nèi)角就形成了一個大角,角一的這條邊,角二這條邊看起來在一條直線上,那到底是不是在一條直線上呢,我們一起用直尺來量一下,師演示后問學生:是不是在一條直線上,那這個大角是個什么角呢?通過剛才拼的過程,你有什么發(fā)現(xiàn)?)

  師:好極了,剛才這個小組的同學用拼的方法得到XX 三角形的內(nèi)角和是180 度,你們還有別的方法嗎?

  生:我們還用了折的方法(生介紹方法)

  師: 你們聽明白了嗎? 李老師把他的過程給大家在大屏幕上演示一下。

 。◣熯呏v解邊點擊 FLASH :先找到兩條邊的中點,把它連起來,把角一沿著中間的這條線向?qū)厡φ,再把角二向里對折,使它的頂點與角一對齊,最后把角三也用同樣的方法對折,這樣它們?nèi)齻內(nèi)角就形成了一個大角,這個大角是個什么角呢?)

  生:是個*角。180 度。

  師:除了用了量、拼、折的方法來研究以外,剛才在操作的過程中老師還發(fā)現(xiàn)了一個同學用了一種方法來進行研究,大家想知道嗎?

  師:請這位同學來說給大家聽聽吧!

  生:我把兩個相同的直角三角形拼成了一個長方形,因為長方形里面有四個直角,所以它的內(nèi)角和是360 度,那么一個三角形的內(nèi)角和就是180 度。

  師:剛才我們用量、拼、折、推理的方法都得到了三角形的內(nèi)角和是 180 度,同學們,現(xiàn)在我們回想一下,剛才測量的不同結果是一個準確數(shù)還是一個近似數(shù)?為什么會出現(xiàn)這種情況呢?

  生 1 :量的不準。

  生 2 :有的量角器有誤差。

  師:對,這就是測量的誤差,如果測量儀器再精密一些,我們的方法再準確一些,那么任意一個三角形的內(nèi)角和也將是 180 度。

  師:同學們,我們剛才用不同的方法,不同的三角形研究了三角形的內(nèi)角和,得到了一個相同的發(fā)現(xiàn),這個發(fā)現(xiàn)就是?

  生:三角形的內(nèi)角和是180 度。(師板書)

  師:把你們偉大的發(fā)現(xiàn)讀一讀吧!

 。ㄈ┩卣箲,深化認識

  師:請看老師手上的這兩個三角形,左邊這個內(nèi)角和是多少度?(生: 180 度)右邊呢(生:也是 180 度)

  師:現(xiàn)在老師把它們拼在一起,這個大三角形的內(nèi)角和又是多少度呢?

 。ㄉ鸷髱熞龑w納得出:三角形的內(nèi)角和與形狀大小無關,組成的大三角形的內(nèi)角和依然是 180 度。)

  師:剛才我們在討論學習三角形知識的時候,三角形中的兩個好朋友卻爭執(zhí)了起來,想知道怎么回事嗎?讓我們一起去看看吧。ǔ鍪菊n件,課件內(nèi)容:一個大一些的直角三角形說:“我的個頭比你大,我的內(nèi)角和一定比你大”。另一個稍小的銳角三角形說:“是這樣嗎”?)

  師:到底誰說的對呢?今天我們就用我們今天學到的知識來為它們解決解決吧!

  師:真不錯,你們當了一回小法官,幫助三角形兄弟解決了問題,它倆很感謝你們,三角形王國中還有很多生活中的問題,小博士們,你們愿意解答嗎?

  師:好,請看大屏幕!

  (出示基礎練習)在一個三角形中角一是 140 度,角三是 25 度,求角二的度數(shù)。

  生答后,師**:你是怎樣想的?

  生陳述后,師鼓勵:說的真好!

  出示自行車、等邊三角形的路標牌、告訴頂角求底角的房頂、直角三角形的電線桿架進行練習。

 。ǔ鍪荆┬〖t的爸爸給小紅買了一個等腰三角形的風箏,它的一個底角是 70 度,它的頂角是多少度?

  師:看來啊,三角形的知識在咱們生活中還有著這么廣泛的運用呢!昨天,我們班發(fā)生了一件事情,小明不小心將鏡框上的一塊三角形玻璃摔破了,(課件呈現(xiàn)情境)他想重新買一塊玻璃安上,小明非常聰明,只帶了其中的一塊到玻璃店去,就配到了和原來一模一樣的玻璃了。你知道他帶的是哪一塊嗎?

 。A設:師:根據(jù)三角形的內(nèi)角和是180 度,你能求出下面四邊形、五邊形、六邊形的內(nèi)角和嗎?

  師:太棒了,這位同學把這個四邊形分割成了二個三角形求出了它的內(nèi)角和,你能像他一樣棒求出五邊形和六邊形的內(nèi)角和嗎?

  師: 同學們,今天我們一起學習了三角形的內(nèi)角和,你有哪些收獲呢?

  師:嗯,真不錯, 你們知道嗎? 三角形的內(nèi)角和等于 180 度是 法國著名的數(shù)學家帕斯卡 在 1635 年他 12 歲時獨自發(fā)現(xiàn)的, 今天憑著同學們的聰明智慧也研究出了三角形的內(nèi)角和是180 度,老師為你們感到驕傲,老師相信在你們的勤奮學習和刻苦鉆研下,你們就是下一個“帕斯卡”!

  師:好,下課!同學們再見!

《三角形內(nèi)角和》教學設計4

  【設計理念】

  新課標重視讓學生經(jīng)歷數(shù)學知識的形成過程,要求教師創(chuàng)設有效的問題情境激發(fā)學生的參與欲望,提供足夠的時間和空間讓學生經(jīng)歷觀察、猜測、驗證、交流反思等過程,使學生在動手操作、合作交流等活動中親身經(jīng)歷知識的形成過程。這樣,學生不僅可以掌握知識,而且可以積累探究數(shù)學問題的活動經(jīng)驗,發(fā)展空間觀念和推理能力。

  【教材內(nèi)容】

  新人教版義務教育課程標準實驗教科書四年級下冊數(shù)學第67頁例6、“做一做”及練習十六的第1、2、3題。

  【教材分析】

  三角形的內(nèi)角和是三角形的一個重要特征。本課是安排在三角形的概念及分類之后教學的,它是學生以后學習多邊形的內(nèi)角和及解決其它實際問題的基礎。教材很重視知識的探索與發(fā)現(xiàn),安排兩次實驗操作活動。教材呈現(xiàn)教學內(nèi)容時,不但重視體現(xiàn)知識的形成過程,而且注意留給學生充分進行自主探索和交流的空間和時間,為教師靈活**教學提供了清晰的思路。概念的形成沒有直接給出結論,而是通過量、拼等活動,讓學生探索、實驗、交流、推理歸納出三角形的內(nèi)角和是180°。

  【學情分析】

  1、在學習本課時,學生已經(jīng)有了探索三角形內(nèi)角和的知識基礎:知道直角和*角的度數(shù),會用量角器度量角的度數(shù);認識長方形、正方形,知道他們的四個角都是直角;認識了三角形,知道了三角形按角分有銳角三角形、直角三角形和鈍角三角形;已經(jīng)知道了等腰三角形和正三角形。

 。、已經(jīng)有一部分學生知道了三角形內(nèi)角和是180°,只是知其然而不知所以然。

  【教學目標】

  1、通過“量、剪、拼”等活動發(fā)現(xiàn)、驗證三角形的內(nèi)角和是180°,并能運用這個知識解決一些簡單的問題。

  2、在觀察、猜想、操作、合作、分析交流等具體活動中,提高動手操作能力,積累基本的數(shù)學活動經(jīng)驗,發(fā)展空間觀念和推理能力。

  3、在參與數(shù)學學習活動的過程中,獲得成功的體驗,感受數(shù)學探究的嚴謹與樂趣。

  【教學重點】

  探索發(fā)現(xiàn)、驗證“三角形內(nèi)角和是180°”,并運用這個知識解決實際問題。

  【教學難點】驗證“三角形的內(nèi)角和是180°”。

  【教具準備】

  多**課件;銳角三角形、直角三角形、鈍角三角形紙片若干個各類三角形(也包括等邊、等腰)、長方形、正方形若干個;每人一個量角器;一把剪刀;每人一副三角尺。

  【教學步驟】

  一、復習舊知 引出課題

  1、你已經(jīng)知道有關三角形的哪些知識?

  2、出示課題:三角形的內(nèi)角和

  設計意圖:也自然導入新課。

  二、提出問題 引發(fā)猜想

  1、提出問題:看到這個課題,你有什么問題想問的?

  預設:

  (1)三角形的內(nèi)角指的是哪些角?

  (2)三角形的內(nèi)角和是什么意思?

  (3)三角形的內(nèi)角一共是多少度?

  2、引發(fā)猜想

  猜一猜:三角形的內(nèi)角和是多少度?你是怎么猜的?

  設計意圖:提出一個問題比解決一個問題更重要。課始在復習三角形已學知識后,引導學生提出有關三角形的新問題,讓學生學習自己想研究的內(nèi)容,無疑激發(fā)了學生的學習興趣,培養(yǎng)了學生的問題意識。由于學生在*時使用三角板時已經(jīng)若隱若現(xiàn)地有了特殊的直角三角形的內(nèi)角和是180度這一感覺,因此本環(huán)節(jié),要求學生猜一猜三角形的內(nèi)角和是多少,并說說是怎么猜的,以激發(fā)學生已有知識經(jīng)驗,并體會到猜想要合理且有根據(jù),同時也為推理驗證的引出作必要的鋪墊。

  三、操作驗證 形成結論

  1、交流驗證方法:

 。1)用什么方法證明三角形的內(nèi)角和是180度呢?

  預設:

  ①量算法

 、诩羝捶

 、壅燮捶ǖ

 。2)三角形的個數(shù)有無數(shù)個,驗證哪些三角形可以**所有的三角形?我們的操作過程怎么分工才會做到省時又高效?

  2、動手驗證

  3、全班匯報交流

  4、小結:剛才通過大家的動手操作驗證了三角形的內(nèi)角和是180°度。但動手操作會存在一定的誤差,我們的結論也可能存在偏差。

  5、方法拓展

  推理驗證:用直角三角形的內(nèi)角和來證明其他三角形內(nèi)角和是180°的方法。

  6、形成結論:任意三角形的內(nèi)角和是180°。

  設計意圖:《標準》指出:“教師應激發(fā)學生的積極性,向?qū)W生提供充分從事數(shù)學活動的機會,幫助他們在自主探索和合作交流的過程中真正理解和掌握基本的數(shù)學知識與技能、數(shù)學思想和方法,獲得廣泛的數(shù)學活動經(jīng)驗!辈聹y后先**思考驗證的方法,再進行全班交流,給學生充分的活動時間和空間,讓學生動手操作,使學生在量、剪、拼、折等一系列操作活動中發(fā)現(xiàn)了三角形內(nèi)角和是180°這個結論。在探索活動前,交流如何使研究樣本具有**性和全面性與如何分工做到操作省時高效這兩個問題,培養(yǎng)學生嚴謹、科學正確的研究態(tài)度,讓學生在活動中積累基本的數(shù)學活動經(jīng)驗,為后續(xù)的學習提供了經(jīng)驗支撐。

  四、應用結論 解決問題

  1、鞏固新知:想一想,算一算。

  2、解決問題:等腰三角形風箏的頂角是多少度?

  3、辨析訓練,完善結論。

  五、課堂總結,歸納研究方法

  今天這節(jié)課你學到了哪些知識?你是怎樣得到這些知識的?

  六、課后延伸:用今天所學的方法繼續(xù)研究四邊形的內(nèi)角和。

  七、板書設計:

  三角形的內(nèi)角和

  猜測:三角形的內(nèi)角和是180°?

  驗證:量拼

  結論:任意三角形的內(nèi)角和是180°

《三角形內(nèi)角和》教學設計5

  【教材內(nèi)容】:

  北師大版四年級數(shù)學下冊

  【教學目標】:

  1、探索與發(fā)現(xiàn)三角形的內(nèi)角和是180°,已知三角形的兩個角度,會求出第三個角度。

  2、培養(yǎng)學生動手操作和合作交流的能力,促進掌握學習數(shù)學的方法。

  3、培養(yǎng)學生自主學習、積極探索的好習慣,激發(fā)學生學習數(shù)學應用數(shù)學的興趣。

  【教學重點和難點】:

  重點掌握三角形的內(nèi)角和是180°,會應用三角形的內(nèi)角和解決實際問題;難點是探索性質(zhì)的過程。

  【教材分析】

  《三角形內(nèi)角和》屬于空間與圖形的范疇,是在學生已經(jīng)接觸了三角形的穩(wěn)定性和三角形的分類相關知識后對三角形的進一步研究,探索三個內(nèi)角的和。教材中安排了學生對不同形狀的、大小的三角形進行進行度量,運用折疊、拼湊等方法發(fā)現(xiàn)三角形的內(nèi)角和是180°。擴充了學生認識圖形的一般規(guī)律從直觀感性的認識到具體的性質(zhì)探索,更加深入的培養(yǎng)了學生的空間觀念。

  【教學過程】

  一、創(chuàng)設情境,激發(fā)興趣。

  出示課件,提出兩個兩個疑問:

  1、兩個大小不一樣的兩個三角形的對話我比你大,所以我的內(nèi)角和比你大,是這樣的嗎?

  2、三個形狀不一樣的三角形的爭論。我們的形狀不一樣,所以我們的內(nèi)角和各不相同,是這樣的嗎?老師發(fā)現(xiàn)它們爭論的焦點是三角形的內(nèi)角和的問題,那什么是三角形的內(nèi)角?什么又是三角形的內(nèi)角和呢?

  二、初建模型,實際驗證自己的猜想

  在第一步的基礎上學生自然想到要量出三角形每個角的度數(shù)就能夠求出三角形的內(nèi)角和,從而證明三角形的內(nèi)角和與三角形的大小和形狀沒有關系都接近180度。這時教師要**學生進行小組合作,每人用量角器量出一種三角形(銳角三角形、鈍角三角形、直角三角形、等腰三角形、等邊三角形)的三個內(nèi)角,并計算出它們的總和是多少?把小組的測量結果和討論結果記錄下來以便全班進行交流。

  三角形的形狀

  三角形每個內(nèi)角的度數(shù)

  內(nèi)角和

  銳角三角形

  鈍角三角形

  直角三角形

  等腰三角形

  等邊三角形

  三、再建模型,徹底的得出正確的結論

  因為在上一環(huán)節(jié)學生已經(jīng)得出三角形的內(nèi)角和大約都是或接近180度。因為我們在測量時由于測量人不同、測量工具不同可能產(chǎn)生一些誤差。有的同學難免可能猜想三角形的內(nèi)角和就是180度呢?我們繼續(xù)研究和探索。除了測量外我們是否可以利用我們手中的三角形通過拼一拼、折一折、畫一畫的方法來證明三角形的內(nèi)角和都是180度呢?教師放手讓學生去思考、去動手操作,對有困難和有疑問的同學進行提示和指導。然后讓學生到前面演示驗證的方法,教師借助多**進行演示。

  四、應用新知,鞏固練習

  1、算一算,對于不同形狀的三角形給出其中的兩個角求第三個角的度數(shù)。(1小題屬于基本練習)

  2、試一試,在直角三角形中已知其中的一個角求另一個角的度數(shù)

  3、想一想,已知等腰三角形的頂角如何算出它的兩個底角;已知等腰三角形的一個底角的度數(shù)求三角形的頂角。

  4、說一說,判斷三角形的兩個銳角的和大于90度;直角三角形的兩個兩個銳角的和等90度;等腰三角形沿著高對折,每個三角形的內(nèi)角和是90度。這些說法是否正確?由兩個三角形拼成一個大的三角形,大三角形的內(nèi)角和是360度,對嗎?

  五、拓展與延伸

  通過三角形的內(nèi)角和是180度的事實來探討四邊形、五邊行的內(nèi)角和。

《三角形內(nèi)角和》教學設計6

  教學內(nèi)容:本節(jié)課的教學內(nèi)容是義務教育課程標準實驗教科書數(shù)學四年級下冊第五單位的第四課時《三角形的內(nèi)角和》,主要內(nèi)容是:驗證三角形的內(nèi)角和是180°等。

  教學內(nèi)容分析:三角形的內(nèi)角和是180是三角形的一個重要性質(zhì),它有助于學生理解三角形的三個內(nèi)角之間的關系,也是進一步學習的基礎。

  教學對象分析:作為四年級的學生已有一定的生活經(jīng)驗,在*時的生活中已經(jīng)接觸到三角形,在尊重學生已有的知識的基礎上和利用他們已掌握的學習方法,教師把課堂教學**生動、活潑,突出知識性、趣味性和生活性,使學生能在輕松愉快的氣氛中學習。

  教學目標:

  1、知識目標:學生通過量、剪、拼、擺等操作學具活動,找到新舊知識之間的聯(lián)系,主動掌握三角形內(nèi)角和是180°,并運用所學知識解決簡單的實際問題。

  2、能力目標:培養(yǎng)學生的觀察、歸納、概括能力和初步的空間想象力。

  3、情感目標:培養(yǎng)學生的創(chuàng)新意識、探索精神和實踐能力,在學生親自動手和歸納中,感受到理性的美。

  教學重點:理解并掌握三角形的內(nèi)角和是180°。

  教學難點:驗證所有三角形的內(nèi)角之和都是180°。

  教具準備:多**課件、各種三角形等。

  學具準備:三角形、剪刀、量角器等。

  教學過程:

  一、出示課題,復習舊知

  1、認識三角形的內(nèi)角。

  (1)復習三角形的概念。

 。ǎ玻┙榻B三角形的“內(nèi)角”。

  2、理解三角形的內(nèi)角“和”。

  【設計理念】通過復習三角形的概念的過程,不僅可以鞏固學生的舊知識而且可以為新知識教學提供知識鋪墊。

  二、動手操作,探究新知

  1、通過預習,認識結論,提出疑問

  2、驗證三角形的內(nèi)角和

 。1)用“量一量、算一算”的方法進行驗證

  ①匯報測量結果

 、诋a(chǎn)生疑問:為什么結果不**?

  ③解決疑問:因為存在測量誤差。

 。2)用“剪一剪、拼一拼”的方法進行驗證

 、僦笇Ъ舴。

  ①分別拼:銳角三角形、直角三角形、鈍角三角形。

 、垓炞C得出:三角形的內(nèi)角和是180°。

 。3)用“折一折”的方法進行驗證

 、僦笇д鄯。

 、俜謩e折:銳角三角形、直角三角形、鈍角三角形。

 、墼俅悟炞C得出:三角形的內(nèi)角和是180°。

  3、看書質(zhì)疑

  【設計理念】此過程采用直觀教學**。通過讓學生動手量、拼等直觀演示操作直接作用于學生的感官,激活學生的思維,有助于學生的認識由具體到抽象的轉化。從而明確三角形的內(nèi)角和是180°。

  三、實踐應用,解決問題:

  1、在一個三角形中,∠1=140°,∠3=25°,求∠2的度數(shù)。

  2、求出三角形各個角的度數(shù)。(圖略)

  3、爸爸給小紅買了一個等腰三角形的風箏。它的一個底角是

  70°,它的頂角是多少度?

  4、根據(jù)三角形的內(nèi)角和是180°,你能求出下面的四邊形和正六邊形的內(nèi)角和嗎?(圖略)

  5、數(shù)學游戲。

  【設計理念】練習設計的優(yōu)化是優(yōu)化教學過程的一個重要方向,所以在新授后的鞏固練習中注意設計層層遞進,既有坡度、又注意變式,更有一練一得之妙,從而使學生牢固掌握新知。

  四、總結全課、延伸知識:

  1、今天你們學到了哪些知識?是怎樣獲取這些知識的?你感覺學得怎樣?

  2、知識延伸:給學生介紹一種更科學的驗證方法——轉化。

  【設計理念】課堂總結不僅要關注學生學會了什么,更要關注用什么方法學,要有意識的促進學生反思。

  板書設計: 三角形的內(nèi)角和是180°

  方法:①量一量 拼角(略)

 、谄匆黄

  ③折一折

  【設計理念】此板書設計我力求簡明扼要、布局合理、條理分明,體現(xiàn)了簡潔美和形象美,把知識的重點充分地展現(xiàn)在學生的眼前,起了畫龍點睛的作用。

《三角形內(nèi)角和》教學設計7

  【教學內(nèi)容】

  《人教版九年義務教育教科書 數(shù)學》四年級下冊《三角形的內(nèi)角和》

  【教學目標】

  1.使學生知道三角形的內(nèi)角和是180 ,并能運用三角形的內(nèi)角和是180 解決生活中常見的問題。

  2.讓學生經(jīng)歷量一量、折一折、拼一拼等動手操作的過程。通過觀察、 判斷、 交流和推理探索用多種方法證明三角形的內(nèi)角和是180 。

  3.培養(yǎng)學生自主學習、互動交流、合作探究的能力和習慣,培養(yǎng)學習數(shù)學的興趣,感受學習數(shù)學的樂趣。

  【教學重點】

  使學生知道三角形的內(nèi)角和是180 ,并能運用它解決生活中常見的問題。

  【教學難點】

  通過多種方法驗證三角形的內(nèi)角和是180 。

  【教學準備】

  課件。四組教學用三角板。鉛筆。大帆布兜子。固體膠。剪刀?曜尤舾伞

  【教學過程】

  一、激趣導入,提煉學習方法

  1.課程開始,教師耳朵上別著一根鉛筆,肩背大帆布兜子,里面裝著一個量角器和幾把缺了直角的三角板,手拿一張不規(guī)則的白紙,以一位老木匠的身份出現(xiàn)在學生面前。激發(fā)學生的好奇心。然后**:“你們好,我是一個有三十多年工作經(jīng)驗的老木匠了。我收了三個徒弟,他們已經(jīng)從師學藝三年了,今天我想讓他們下山掙錢,可又不放心,想出幾道題考驗考驗他們,又不知我的題合不合適,大家想不想先當一會我的徒弟試試這幾道題呢?”

  2.繼續(xù)以老木匠的身份說:前幾天我造了一架柁,徒弟們能不能用我手中的工具驗證一下橫木和立柱是不是成直角的。

  3.選擇工具,總結方法。

  讓選擇不同工具的同學用自己的方法驗證。教師隨機板書:量一量、拼一拼、折一折。

  師:你們真是愛動腦筋的好徒弟,那么請聽好師傅的第二個問題。

  4.導入新課。

  圖中有很多三角形,不論什么樣的三角形都有三個角,這三個角就叫做三角形的內(nèi)角,徒弟們能不能用學過的方法或者你喜歡的方法求一求三角形三個內(nèi)角的和是多少?(板書課題:三角形的內(nèi)角和)

  二、動手操作,探索交流新知

  1.分組活動,探索新知

  根據(jù)學生的選擇把學生分成三組,分別采用量一量、折一折和拼一拼的方法探索新知。

  量一量組同學發(fā)給以下幾種學具:

  折一折組同學發(fā)給上面的三角形一組。

  拼一拼組同學發(fā)給上面的三角形一組、剪刀一把還有下面這樣的白紙一張。

  在學生探索的過程中教師要走近學生,與他們共同交流探討,在學生有困難的時候要適當給予引導。

  2.多方互動,交流新知

  師:請我的大徒弟(量一量組)的同學先來匯報你們的研究成果。

  (1)首先要求學生說一說你們小組是怎樣進行探究的。

  (2)說出你們組的探究結果怎樣。(在此過程中教師不能急于糾正學生不正確的結論,因為這是知識的形成過程。)

  (3)請學生說說通過探究活動你們組得出的結論是什么。

  師:大徒弟就是大徒弟,匯報的真不錯。二徒弟(折一折組)你們有沒有更好的辦法呢?

  引導這一組從探究的過程和結論與同學、老師交流。

  師:別看小徒弟(拼一拼組)這么小,方法可能是最好的?靵戆涯銈兊姆椒ńo大家匯報匯報。

  同樣引導這一組從探究的過程和結論與同學、老師交流。

  3.思想碰撞,夯實新知

  師:三個徒弟你們能說說誰的方法最好嗎?

  學生都會說自己的方法最好,再讓其他同學發(fā)表自己的意見,此時生生之間,師生之間交流。(教師要引導學生說出量一量的方法可能由于量的不夠準確,所以結果可能比180 大一些,或小一些。而其他兩種方法沒有改變角的大小,所以他們的是正確的。)

  師:不論你量的怎樣認真都會有不準確的地方,這就叫誤差。而其他兩組同學的方法更準確。三角形的內(nèi)角和就是180 。(板書:三角形的內(nèi)角和是180 )

  四、走進生活,提升運用能力

  1.出示課前那架柁標出它的頂角是120 ,求它的一個底角是多少度?

  2.給你三根木條,能做出一個有兩個直角的三角形嗎?

  五、總結

  師:徒弟們你們經(jīng)過三年的苦學,終于學有所成了。今天,能說說你們在我這里都學到了什么手藝嗎?

  六、拓展新知,課外延伸

  師:俗話說“活到老,學到老!蹦銈兿律胶筮要繼續(xù)探索,所以我要把我畢生都沒有完成的任務交給你們?nèi)パ芯俊?/p>

  大屏幕出示:

  能用你今天學過的知識和方法探索一下四邊形的內(nèi)角和是多少度嗎?

《三角形內(nèi)角和》教學設計8

  教學目標:

  1、教會學生主動探究新識的方法,學會運用轉化遷移數(shù)學思想。

  2、學生通過量、剪、拼、擺、分割等驗證三角形內(nèi)角和方法的比較,主動掌握三角形內(nèi)角和是1800,并運用所學知識解決簡單的實際問題,發(fā)展學生的觀察、歸納、概括能力和初步的空間想象力。

  教學重點: 理解并掌握三角形的內(nèi)角和是180°。

  教學難點: 驗證所有三角形的內(nèi)角之和都是180°。

  教具準備: 多**課件。

  學具準備: 量角器、正方形、剪刀、各類三角形(包括直角三角形、銳角三角形、鈍角三角形)

  教學過程:

  一、導入

  師:知道今天我們學習什么內(nèi)容嗎?我們先來解讀一下課題,三角形,你手中有么?舉起來我看看,你拿的什么三角形?你呢?師:三角形按角分類,可分為直角三角形、鈍角三角形和銳角三角形。

  師:什么是內(nèi)角?你能把你手中三角形的三個內(nèi)角用角1、角2、角3標出來嗎?

  師:還有一個關鍵字“和”,什么是三角形的內(nèi)角和?

  師:你認為三角形的內(nèi)角和是多少度?你呢?都知道。渴嵌嗌俣劝?看來都知道了,就不用再學了吧?你還想學什么?

  師:看來我們不僅要知道三角形的內(nèi)角和是180度,還要親自證明一下為什么是180度。這才真了不起呢。能證明嗎?你想怎么證明阿?

  生:量一量的方法。

  師:光量就知道了?還要算一算。

  師:這種方法可行嗎?下面咱就來試試,請同學們4人一組,分工合作,先測量內(nèi)角,再計算求和。小組長把計算的過程記錄下來。開始吧。

  驗證:量角、求和

  小組匯報

  生一:我們組量的是銳角三角形,三個角分別是50度、60度、70度,銳角三角形的內(nèi)角和是180度。

  生二:我們組量的是直角三角形,三個角分別是90度、35度、55度,直角三角形的內(nèi)角和是180度。

  生三:我們組量的是鈍角三角形,三個角分別是120度、40度、20度,鈍角三角形的內(nèi)角和是180度。

  師:從剛才的交流中,你發(fā)現(xiàn)了什么?

  生:不管是銳角三角形、直角三角形,還是鈍角三角形,內(nèi)角和都是180度。

  師:下面同學測量得出180度的請你舉手,有沒有不是180度的?為什么有不同的答案呢?反思一下。我們在測量的時候容易出現(xiàn)誤差,得出的結論就難以讓人信服?磥硭坪跤昧康姆椒ㄟ不能充分證明。(劃問號)

  師:還敢接受更大挑戰(zhàn)嗎?把量角器和你的工具都收起來,只借助這張三角形紙片證明出三角形的內(nèi)角和是180度,你有辦法嗎?或許下面的同學還有別的方法,下面就請同學們互相交流交流,動手試一試吧!

  師:這種方法怎么樣?(鼓掌)老師感到非常的驚喜,你看他們沒有破壞三角形,就這樣輕輕的一折,就解決了問題,真是很巧妙。

  師:你們小組每個同學都動腦筋了,謝謝你們。

  師:還有那個小組用的這種方法?你們也非常的聰明。還有別的方法嗎?

  師:其實大家能用3種方法證明已經(jīng)很不簡單了,現(xiàn)在我們就能很自信的說三角形的內(nèi)角和是180度。(擦別的)

  師:其實對我來說重要的不是知識的結論,讓老師感動的是你們那種渴望求知,敢于探索的精神。更讓老師高興的是你們積極思考所得出的創(chuàng)造性的方法,F(xiàn)在我們再來一塊回顧一下。

  師:這幾種方法都足以說明三角形的內(nèi)角和是180度。(結論)

  師:剛才同學們發(fā)揮自己的聰明才智,想了很多方法來證明。王老師也有一種方法能證明。老師這里有一個活動角,借助課本的一邊就構成了一個三角形,請你睜大眼睛仔細觀察,你發(fā)現(xiàn)了什么?

  請你再仔細觀察,你發(fā)現(xiàn)了什么?其實兩個底角減少的度數(shù),正是頂角增大的度數(shù)。如果我繼續(xù)按下去你覺得會怎樣?我們來看看是不是這樣,三角形呢?兩個底角呢?剛才三角形的動態(tài)過程是不是也能證明三角形的內(nèi)角和是180度?

  師:看來只要大家肯動腦筋,面對同一問題就會有不同的解決方法。

  師:現(xiàn)在我們知道了“三角形的內(nèi)角和是180度”,能不能用這個知識來解決一些問題。

  生:能。

  二、遷移和應用

 。ㄒ唬c將臺:

  下面哪三個角是同一個三角形的內(nèi)角?

  (1)30 °、60 °、45 °、90 °

 。2)52 °、46 °、54 °、80 °

  (3)45 °、46 °、90 °、45 °

 。ǘ┪視

  1、已知∠1,∠2,∠3是三角形的三個內(nèi)角。

  (1)∠1=38° ∠2=49°求∠3

 。2)∠2=65° ∠3=73° 求∠1

  2、已知∠1和∠2是直角三角形中的兩個銳角

 。1)∠1=50°求∠2

  (2)∠2=48°求∠1

  3、已知等腰三角形的一個底角是70°,它的頂角是多少度?

  (三)。變變變!

  (1)一個三角形中, ∠1 、∠2、∠3。

 。2)如果把∠3剪掉,變成了幾邊形?它的內(nèi)角和變成多少度呢?

  (3)如果再把∠2剪掉,剩下圖形的內(nèi)角和是多少度呢?

  三、全課小結

  師:通過一節(jié)課的探索,你有什么收獲?

  生答(略)

  我的幾點認識:

  結合《三角形的內(nèi)角和》這節(jié)課,我對空間與圖形這一部分內(nèi)容,簡單的談一下自己的認識。

  空間與圖形這一部分內(nèi)容,可以用這幾個字來概括:難理解,難受,難掌握。在本節(jié)課的教學中,三角形的內(nèi)角和概念比較抽象,學生比較難理解。尤其是讓學生探究三角形的內(nèi)角和是180度,對學生來說更是難上加難。如果光憑在頭腦中想,不動手實踐,對于三角形的內(nèi)角和,學生也只能機械記憶是180度。那如何更好的讓學生掌握和接受呢?針對這些特點我采用了一下幾點做法:

  1、根據(jù)學生的知識特點和生活經(jīng)驗,在原有基礎上創(chuàng)造性的使用教材。

  在教學本節(jié)課的內(nèi)容時,學生在自己的日常生活或大部分都已經(jīng)知道三角形的內(nèi)角和是180。因材在這樣的情況下,我創(chuàng)造性的使用教材。不是讓學生通過自己動手操作之后才發(fā)現(xiàn)三角形的內(nèi)角和是180,而是直接把問題拋給學生,你們知道三角形的內(nèi)角和是多少度嗎?

  你們怎么知道的?能自己證明么?這樣學生從被動學習者的角色,

  立刻轉入主動學習者的角色之中。這樣既能使學生很好的掌握知識,又能使學生激發(fā)興趣,提高積極性。

  2、讓學生在小組交流中進行思維的碰撞,在動手操作的實踐過程中得到知識情感價值的升華。

  在探究的過程中,我們采用了小組合作學習方式,這樣既能給學生提供交流的空間,又能在短時間內(nèi)有效學習。學生先交流方法,商定出可行的辦法和方略,然后合作進行實踐。學生會為了一個問題爭的面紅耳赤,在這個過程中我們驚喜的看到生在交流和動手操作過程中得到了提高。通過自己的實踐證明,學生發(fā)現(xiàn)三角形的內(nèi)角和的確是180度。

  總之,在教學空間與圖形的內(nèi)容時,一定要讓學生看到“圖形",讓學生想象"空間”。

《三角形內(nèi)角和》教學設計9

  【教材分析】

  《三角形內(nèi)角和》是北師大版《數(shù)學》四年級下冊的內(nèi)容。是在學生學習了三角形的概念及特征之后進行的,它是掌握多邊形內(nèi)角和及其他實際問題的基礎,因此,掌握“三角形的內(nèi)角和是180度”這一規(guī)律具有重要意義。教材首先出示了兩個三角形比內(nèi)角和這一情境,讓學生通過測量、折疊、拼湊等方法,發(fā)現(xiàn)三角形的內(nèi)角和是180度。教材還安排了“試一試”,“練一練”的內(nèi)容。已知三角形兩個內(nèi)角的度數(shù),求出第三個角的度數(shù)。

  【學生分析】

  經(jīng)過近四年的課改實驗,孩子們已經(jīng)有了一定的自主探究,合作交流的能力。他們喜歡在實踐中感悟,在實踐中發(fā)表自己的見解,對數(shù)學產(chǎn)生了濃厚的興趣。1.知識方面:學生已經(jīng)掌握了三角形的概念、分類,熟悉了鈍角、直角、銳角、*角這些角的知識。2.能力方面:已具備了初步的動手操作能力和探究能力,并且能夠進行簡單的微機操作。

  【學習目標】

  知識目標:掌握三角形內(nèi)角和是180度這一規(guī)律,并能實際應用。

  能力目標: 培養(yǎng)學生主動探索、動手操作的能力。培養(yǎng)學生收集、整理、歸納信息的能力。使學生養(yǎng)成良好的合作習慣。

  情感目標: 讓學生體會幾何圖形內(nèi)在的結構美。

  【教學過程】

  一、 情景激趣,質(zhì)疑猜想。

  播放動畫片:在圖形王國中,有一天三角形大家庭里為“三角形內(nèi)角和的大小”爆發(fā)了一場激烈的爭吵。

  鈍角三角形大聲叫著:“我的鈍角大,我的內(nèi)角和一定比你們的內(nèi)角和大!变J角三角形也不示弱:“我的銳角雖然比鈍角小,但我的內(nèi)角和并不比你小!敝苯侨切握f:“別爭了,三角形的內(nèi)角和都是180°。我們的內(nèi)角和是一樣大的!

  師:想一想,什么是三角形的三個內(nèi)角的和。

  生:三角形的三個內(nèi)角的度數(shù)和。

  師:同學們剛才看了動畫片你們知道誰說對了嗎?不知道的話想一想,猜一猜誰說的對?

  學生進行猜想,**發(fā)言。

 。ㄔO計意圖:教師借助多**技術創(chuàng)設問題情境,架起數(shù)學學習與現(xiàn)實生活,抽象數(shù)學與具體問題之間的橋梁,激發(fā)了學生的學習興趣。鼓勵學生主動質(zhì)疑猜想是培養(yǎng)學生學會學習的重要途徑。)

  二、自主探究,驗證猜想

  師:剛才大部分同學都猜直角三角形說的對。三角形的三個內(nèi)角的和都是 180°,你能設法驗證這個猜想嗎?

  生1:能。我量出三角形的三個內(nèi)角和度數(shù),加起來是否接近180°(量的時候可能會有些誤差)。

  生2:我把三角形的三個角剪下來拼一拼是否能拼成一個*角。

  生3:我把三角形的三個角撕下來,拼一拼是否180°。

  生4:我把三角形的三個角往里折,看一看這三個角是否折成一個*角。

  ……

  師:上面你們說了不少的驗證猜想的方法,請大家用準備好的材料用你喜歡的方法,動手驗證自己的猜想吧!(學生把三角形的三個內(nèi)角分別標上∠1、∠2、∠3,以免在剪拼時把內(nèi)角搞混了。)

  學生邊實驗邊整理信息,完成實驗報告單后,學習小組內(nèi)進行交流討論。

 。ㄔO計意圖:驗證猜想為學生提供了“做數(shù)學”的機會,讓每個學生圍繞自己的猜想、決定自己的探索方向、選擇自己的方法,量一量、剪一剪、撕一撕、拼一拼、折一折,讓學生在操作中自主探究數(shù)學知識的產(chǎn)生發(fā)展過程。驗證自己的猜想,鼓勵學生用不同的方法進行驗證,促進學生創(chuàng)新能力的發(fā)展。)

  三、交流評價,歸納結論。

  學生操作驗證,完成實驗報告單后,利用投影儀展示學生填寫的實驗報告單。

  實驗報告單

  實驗名稱

  三角形內(nèi)角和

  實驗目的

  探究三角形內(nèi)角和是多少度。

  實驗材料

  尺子

  剪刀

  量角器

  銳角三角形紙片

  直角三角形紙片

  鈍角三角形紙片

  我的方法

  我的發(fā)現(xiàn)

  我的表現(xiàn)

  自評

  互評

  學生在展示過程中,充分交流和討論實驗中各自使用的方法和發(fā)現(xiàn),教師要對學生的閃光點及時進行表揚和鼓勵。

  師生共同歸納,得出結論:

  三角形內(nèi)角和等于180°

 。ㄔO計意圖:各學習小組匯報自己的驗證過程,展示探究的成果。對學生探索發(fā)現(xiàn)的方法、策略進行總結歸納,集思廣益,取長補短達到共識。在交流、歸納過程中,及時肯定其中的閃光點給予表揚和鼓勵,使他們體驗到成功的愉悅,促使他們獲得更大的成功。)

  四、分層練習,鞏固創(chuàng)新。

 、僬n件出示:

  師:這個三角形是什么三角形?知道幾個內(nèi)角的度數(shù)?

  生:直角三角形,知道一個角是30°,還有一個角是90°。∠A=90°-30°=60°。

  師:根據(jù)今天所學的知識,誰能求出A的度數(shù)?大家自己試一試。

  學生做完后反饋講評時讓學生說說自己的方法。

  生1:用三角形內(nèi)角的和(180°)減去30°再減去90°,算出∠A是60°。

  ∠A=180°-30°-90°=60°。

  生2:先用30°加上90°得120°再用180°減去120°也可得∠A =60°。

 、趯W生完成完成P29的第一題。

  引導學生按照前面的方法**完成,教師巡視,集體訂正。

 、鄄乱徊氯切蔚牧硗鈨蓚角可能各是多少度。

  同桌同學互相說一說。(答案不唯一)

 、苄〗M操作探究活動。

  讓學生剪出幾個不同的四邊形,按表中所給的方法以做一做,并填一填。

  方 法

  四邊形內(nèi)角和

  用量角器量出每個內(nèi)角的度數(shù),并相加。

  把四邊形四個角剪下來,拼在一起。

  把四邊形分為兩個三角形。

  填表后讓學生想一想、互相說一說,四邊形內(nèi)角和是多少度?

  (設計意圖:引導學生將探究學習活動中所獲得的結論經(jīng)驗和方法運用于探索解決簡單的實際問題。**學生參與具有趣味性、操作性和開放性的練習活動,讓學生在鞏固練習中培養(yǎng)動手能力、實踐能力和創(chuàng)新思維。)

《三角形內(nèi)角和》教學設計10

  教學內(nèi)容

  人教版小學數(shù)學第八冊第五單元第85頁例5

  任務分析

  教材分析: 《三角形的內(nèi)角和》是義務教育課程標準實驗教科書(數(shù)學)四年級下冊第五單元《三角形》中的一個教學內(nèi)容。這部分內(nèi)容是在學生學習了角的度量,角的分類,三角形的認識,三角形的分類的基上進行教學的。它是三角形的一個重要性質(zhì),有助于學生理解三角形的三個內(nèi)角之間的關系,也是進一步學習的基礎。教材通過實際操作,引導學生用實驗的方法探索并歸納出這一規(guī)律,即任意一個三角形,它的內(nèi)角和都是180度。教材在編寫上也深刻的體現(xiàn)出了讓學生探究的特點,通過動手操作探究發(fā)現(xiàn)三角形內(nèi)角和為180度。教學內(nèi)容的核心思想體現(xiàn)在讓學生經(jīng)歷猜想—驗證—結論的過程,來認識和體驗三角形內(nèi)角和的特點。

  學情分析:通過前面的學習,學生已經(jīng)掌握了三角形的一些基礎知識,會用工具量角、畫角,具備了探索三角形內(nèi)角和的知識與基礎技能。在四年級上冊《角的度量》的學習中,學生有接觸到兩把三角尺的內(nèi)角和是180°;并在相關的補充習題和數(shù)學練習冊的練習中,也有要求測量任意三角形的三個內(nèi)角的度數(shù)并求出它們的和的練習,很多學生已經(jīng)知道了三角形的內(nèi)角和是180°。但是要真正理解和掌握需要進行驗證,因此,學生在這節(jié)課上的主要任務是通過實驗操作驗證三角形的內(nèi)角和是180°。

  教學目標

  1、通過實驗、操作、推理歸納出三角形內(nèi)角和是180°。

  2、能運用三角形的內(nèi)角和是180°這一規(guī)律,求三角形未知角的度數(shù)并運用解決實際生活問題。

  3、通過拼擺,感受數(shù)學的轉化思想。

  教學重點

  探究發(fā)現(xiàn)和驗證“三角形的內(nèi)角和180度”。

  教學難點

  驗證三角形的內(nèi)角和是180度。

  教學準備

  多**課件,銳角三角形、直角三角形、鈍角三角形,剪刀,量角器等。

  教學過程

  一、復習舊知,學習鋪墊

  1、一個*角是多少度?等于幾個直角?

  2、如下圖,已經(jīng)∠ 1=35°,∠2=78°,求∠3是多少度?

  二、探究新知,理解規(guī)律

  1、說明三角形的三個內(nèi)角和

  說出手中三角形的類型(銳角三角形,直角三角形,鈍角三角形)并說出三角形有幾個角?

  師(指出):三角形的這三個角叫做三角形的三個內(nèi)角,這三個內(nèi)角的度數(shù)和叫做三角形的內(nèi)角和。

  板書課題:“三角形的內(nèi)角和”。

  揭示課題:今天我們一起來探究三角形的內(nèi)角和有什么規(guī)律。

  2、探究三角形的內(nèi)角和規(guī)律

  探究1:量一量,算一算

  以小組為單位,用量角器計算出三種三角形的內(nèi)角和各是多少度?

  生討論匯報,并引導學生發(fā)現(xiàn):三角形的內(nèi)角和接近180°。

  師:三角形的內(nèi)角和接近180°,那它到底與180° 有怎樣的關系呢?

  學生預設:有學生可能會說出三角形的內(nèi)角和就是180°,這時老師可以**,為什么就是180°?我們要進行驗證,你有什么辦法呢?

  探究2:擺一擺,拼一拼

  引導:我們剛剛每個三角形都量了三次角,每一次度量都有誤差,所以量出來的內(nèi)角和有誤差。能不能換一種方法減少度量的次數(shù),減少誤差呢?

  生可能很難想到,可以提示學生:把三個內(nèi)角拼成一個角就只要量一次角。讓我們一起動手做一做

  如圖:

 。1)

  銳角的三個內(nèi)角拼成了一個*角,引導學生說出:銳角三角形的內(nèi)角和是180°.

 。2)

  讓學生小組合作用同樣的方法,發(fā)現(xiàn):直角三角形的內(nèi)角和也是180°.

 。3)

  讓學生**用同樣的方法,發(fā)現(xiàn):鈍角三角形的內(nèi)角和也是180°.

  引導學生歸納:三角形的內(nèi)角和是180°。

  是不是所有的三角形的內(nèi)角和都是180°呢? (是,因為這三類三角形包括了所有三角形。)

  板書:三角形的內(nèi)角和是180°

  三、鞏固練習,應用規(guī)律

  1、在一個三角形中,∠1=140°,∠3=25°,你能求出∠2的度數(shù)嗎?

  學生**完成,并說出原因:因為三角形的內(nèi)角和是180°,也就是∠1+∠2+∠3=180°,借助圖像

  ∠2 =180°-∠1-∠3 或 ∠2 =180°-(∠1+∠3)

  = 180°-140°-25° =180°-(140°+25°)

  =40°-25° =180°-165°

  =15° =15°

  2、一個等腰三角形的頂角是80°,它的兩個底角各是多少度?

  學生分析:因為等腰三角形的兩個底角相等,又因為三角形的內(nèi)角和是180°,所以

 。180°-80°)÷2

  =100°÷2

  =50°

  四、拓展練習,深化規(guī)律

  1、求出下面各角的度數(shù)。

 。1) (2)

  2、判斷

 。1)三角形任意兩個內(nèi)角的和大于第三個角。( )

  (2)銳角三角形任意兩個內(nèi)角的和大于直角。( )

 。3)有一個角是60°的等腰三角形不一定是等邊三角形。( )

  3、下面是兩塊三角形的玻璃打碎后留下的殘片,你知道它們原來各是什么三角形嗎?

 。 ) ( )

  五、課堂小結,分享提升

  1、談談這節(jié)課你有什么收獲?

  2、課后思考題

  三角形的內(nèi)角和是180°,那長方形、正方形的內(nèi)角和呢?(根據(jù)三角形的內(nèi)角和是180°求,參考課本88頁第12題,完成89頁16題)

  板書設計


《三角形的內(nèi)角和》教學設計10篇(擴展2)

——三角形內(nèi)角和教學設計10篇

三角形內(nèi)角和教學設計1

  【教材分析】

  《三角形內(nèi)角和》是北師大版《數(shù)學》四年級下冊的內(nèi)容。是在學生學習了三角形的概念及特征之后進行的,它是掌握多邊形內(nèi)角和及其他實際問題的基礎,因此,掌握“三角形的內(nèi)角和是180度”這一規(guī)律具有重要意義。教材首先出示了兩個三角形比內(nèi)角和這一情境,讓學生通過測量、折疊、拼湊等方法,發(fā)現(xiàn)三角形的內(nèi)角和是180度。教材還安排了“試一試”,“練一練”的內(nèi)容。已知三角形兩個內(nèi)角的度數(shù),求出第三個角的度數(shù)。

  【學生分析】

  經(jīng)過近四年的課改實驗,孩子們已經(jīng)有了一定的自主探究,合作交流的能力。他們喜歡在實踐中感悟,在實踐中發(fā)表自己的見解,對數(shù)學產(chǎn)生了濃厚的興趣。1.知識方面:學生已經(jīng)掌握了三角形的概念、分類,熟悉了鈍角、直角、銳角、*角這些角的知識。2.能力方面:已具備了初步的動手操作能力和探究能力,并且能夠進行簡單的微機操作。

  【學習目標】

  知識目標:掌握三角形內(nèi)角和是180度這一規(guī)律,并能實際應用。

  能力目標: 培養(yǎng)學生主動探索、動手操作的能力。培養(yǎng)學生收集、整理、歸納信息的能力。使學生養(yǎng)成良好的合作習慣。

  情感目標: 讓學生體會幾何圖形內(nèi)在的`結構美。

  【教學過程】

  一、 情景激趣,質(zhì)疑猜想。

  播放動畫片:在圖形王國中,有一天三角形大家庭里為“三角形內(nèi)角和的大小”爆發(fā)了一場激烈的爭吵。

  鈍角三角形大聲叫著:“我的鈍角大,我的內(nèi)角和一定比你們的內(nèi)角和大!变J角三角形也不示弱:“我的銳角雖然比鈍角小,但我的內(nèi)角和并不比你小!敝苯侨切握f:“別爭了,三角形的內(nèi)角和都是180°。我們的內(nèi)角和是一樣大的。”

  師:想一想,什么是三角形的三個內(nèi)角的和。

  生:三角形的三個內(nèi)角的度數(shù)和。

  師:同學們剛才看了動畫片你們知道誰說對了嗎?不知道的話想一想,猜一猜誰說的對?

  學生進行猜想,**發(fā)言。

 。ㄔO計意圖:教師借助多**技術創(chuàng)設問題情境,架起數(shù)學學習與現(xiàn)實生活,抽象數(shù)學與具體問題之間的橋梁,激發(fā)了學生的學習興趣。鼓勵學生主動質(zhì)疑猜想是培養(yǎng)學生學會學習的重要途徑。)

  二、自主探究,驗證猜想

  師:剛才大部分同學都猜直角三角形說的對。三角形的三個內(nèi)角的和都是 180°,你能設法驗證這個猜想嗎?

  生1:能。我量出三角形的三個內(nèi)角和度數(shù),加起來是否接近180°(量的時候可能會有些誤差)。

  生2:我把三角形的三個角剪下來拼一拼是否能拼成一個*角。

  生3:我把三角形的三個角撕下來,拼一拼是否180°。

  生4:我把三角形的三個角往里折,看一看這三個角是否折成一個*角。

  ……

  師:上面你們說了不少的驗證猜想的方法,請大家用準備好的材料用你喜歡的方法,動手驗證自己的猜想吧。▽W生把三角形的三個內(nèi)角分別標上∠1、∠2、∠3,以免在剪拼時把內(nèi)角搞混了。)

  學生邊實驗邊整理信息,完成實驗報告單后,學習小組內(nèi)進行交流討論。

 。ㄔO計意圖:驗證猜想為學生提供了“做數(shù)學”的機會,讓每個學生圍繞自己的猜想、決定自己的探索方向、選擇自己的方法,量一量、剪一剪、撕一撕、拼一拼、折一折,讓學生在操作中自主探究數(shù)學知識的產(chǎn)生發(fā)展過程。驗證自己的猜想,鼓勵學生用不同的方法進行驗證,促進學生創(chuàng)新能力的發(fā)展。)

  三、交流評價,歸納結論。

  學生操作驗證,完成實驗報告單后,利用投影儀展示學生填寫的實驗報告單。

  實驗報告單

  實驗名稱

  三角形內(nèi)角和

  實驗目的

  探究三角形內(nèi)角和是多少度。

  實驗材料

  尺子

  剪刀

  量角器

  銳角三角形紙片

  直角三角形紙片

  鈍角三角形紙片

  我的方法

  我的發(fā)現(xiàn)

  我的表現(xiàn)

  自評

  互評

  學生在展示過程中,充分交流和討論實驗中各自使用的方法和發(fā)現(xiàn),教師要對學生的閃光點及時進行表揚和鼓勵。

  師生共同歸納,得出結論:

  三角形內(nèi)角和等于180°

 。ㄔO計意圖:各學習小組匯報自己的驗證過程,展示探究的成果。對學生探索發(fā)現(xiàn)的方法、策略進行總結歸納,集思廣益,取長補短達到共識。在交流、歸納過程中,及時肯定其中的閃光點給予表揚和鼓勵,使他們體驗到成功的愉悅,促使他們獲得更大的成功。)

  四、分層練習,鞏固創(chuàng)新。

 、僬n件出示:

  師:這個三角形是什么三角形?知道幾個內(nèi)角的度數(shù)?

  生:直角三角形,知道一個角是30°,還有一個角是90°!螦=90°-30°=60°。

  師:根據(jù)今天所學的知識,誰能求出A的度數(shù)?大家自己試一試。

  學生做完后反饋講評時讓學生說說自己的方法。

  生1:用三角形內(nèi)角的和(180°)減去30°再減去90°,算出∠A是60°。

  ∠A=180°-30°-90°=60°。

  生2:先用30°加上90°得120°再用180°減去120°也可得∠A =60°。

 、趯W生完成完成P29的第一題。

  引導學生按照前面的方法**完成,教師巡視,集體訂正。

  ③猜一猜三角形的另外兩個角可能各是多少度。

  同桌同學互相說一說。(答案不唯一)

 、苄〗M操作探究活動。

  讓學生剪出幾個不同的四邊形,按表中所給的方法以做一做,并填一填。

  方 法

  四邊形內(nèi)角和

  用量角器量出每個內(nèi)角的度數(shù),并相加。

  把四邊形四個角剪下來,拼在一起。

  把四邊形分為兩個三角形。

  填表后讓學生想一想、互相說一說,四邊形內(nèi)角和是多少度?

  (設計意圖:引導學生將探究學習活動中所獲得的結論經(jīng)驗和方法運用于探索解決簡單的實際問題。**學生參與具有趣味性、操作性和開放性的練習活動,讓學生在鞏固練習中培養(yǎng)動手能力、實踐能力和創(chuàng)新思維。)

三角形內(nèi)角和教學設計2

  【教學目標】

  1、學生動手操作,通過量、剪、拼、折的方法,探索并發(fā)現(xiàn)“三角形內(nèi)角和等于180度”的規(guī)律。

  2、在探究過程中,經(jīng)歷知識產(chǎn)生、發(fā)展和變化的過程,通過交流、比較,培養(yǎng)策略意識和初步的空間思維能力。

  3、體驗探究的過程和方法,感受思維提升的過程,激發(fā)求知欲和探索興趣。

  【教學重點】探究發(fā)現(xiàn)和驗證“三角形的內(nèi)角和180度”這一規(guī)律的過程,并歸納總結出規(guī)律。

  【教學難點】對不同探究方法的指導和學生對規(guī)律的靈活應用。

  【教具準備】課件、表格、學生準備不同類型的三角形各一個,量角器。

  【教學過程】

  一、激趣引入。

  1、猜謎語

  師:同學們喜歡猜謎語嗎?

  生:喜歡。

  師:那么,下面老師給大家出個謎語。請聽謎面:

  形狀似座山,穩(wěn)定性能堅,三竿首尾連,學問不簡單。(打一圖形)大家一起說是什么?

  生:三角形

  2、介紹三角形按角的分類

  師:真聰明!板書“三角形”!那么,三角形按角分可以分為鈍角三角形、直角三角形和銳角三角形這幾類

  師分別出示卡片貼于黑板。

  3、激發(fā)學生探知心里

  師:大家會不會畫三角形?

  生:會

  師:下面請你拿出筆在本子上畫出一個三角形,但是我有個要求:畫出一個有兩個直角的三角形。試一試吧!

  生:試著畫

  師:畫出來沒有?

  生:沒有

  師:畫不出來了,是嗎?

  生:是

  師:有兩個直角的三角形為什么畫不出來呢?這就是三角形中角的奧秘!這節(jié)課我們就來學習有關三角形角的知識“三角形內(nèi)角和”(板書課題)

  二、探究新知。

  1、認識三角形的內(nèi)角

  看看這三個字,說說看,什么是三角形的內(nèi)角?

  生:就是三角形里面的角。

  師:三角形有幾個內(nèi)角?

  生:3個。

  師:那么為了研究的時候比較方便,我們把這三個內(nèi)角標上角1角2角3,請同學們也拿出桌子上三角形標出(教師標出)

  師:你知道什么是三角形“內(nèi)角和”嗎?

  生:三角形里面的角加起來的度數(shù)。

  2、研究特殊三角形的內(nèi)角和

  師:分別拿出一個直角三角板,請同學們看看這屬于什么三角形,說出每個角的度數(shù),那這個三角形的內(nèi)角和是多少度?

  生:算一算:90°+60°+30°=180° 90°+45°+45°=180°

  師:180°也是我們學習過的什么角?

  生:*角

  師:從剛才兩個三角形的內(nèi)角和的計算中,你發(fā)現(xiàn)了什么?

  3、研究一般三角形的內(nèi)角和

  師:猜一猜,其它三角形的內(nèi)角和是多少度呢?

  生:

  4、操作、驗證

  師:同學們猜的結果各不相同,那怎么辦呀?你能想個辦法驗證一下嗎?

  要求:

  (1)每4人為一個小組。

 。2)每個小組都有不同類型的三角形,每種類型都需要驗證,先討論一下,怎樣才能較快的完成任務?

 。3)驗證的方法不只一種,同學們要多動動腦子。

  師:好,開始活動!

  師:巡視指導

  師:好!請一組匯報測量結果。

  生:通過測量我們發(fā)現(xiàn)每個三角形的三個內(nèi)角和都在180度左右。

  師:其實三角形的內(nèi)角和就是180度,只是因為我們在測量時存在了一些誤差,所以測量出的結果不準確。

  生:我是用撕的方法,把直角三角形三個內(nèi)角撕下來,拼在一起,拼成一個*角,是180度。

  師:好!非常好!

  師:有其它同學操作銳角三角形和鈍角三角形的嗎?誰愿意到前面來展示一下?生:展示銳角三角形(撕拼)

  生:展示折一折我是用折的方法把銳角三角形三個角折在一起,組成一個*角,是180°。

  師:老師也做了一個實驗看一看是不是和大家得到結果一樣呢?(多**展示)

  現(xiàn)在老師問同學們,三角形的內(nèi)角和是多少?

  生:180度。

  師:通過驗證:我們知道了無論是銳角三角形,直角三角形還是鈍角三角形,它們的內(nèi)角和都是180°。板書:三角形內(nèi)角和等于180度,F(xiàn)在讓我們用自豪的、肯定的語氣讀出我們的發(fā)現(xiàn):“三角形的內(nèi)角和是180°”。

  三、解決疑問

  師:好!請同學們回憶一下,剛才課前老師讓同學們畫出有兩個直角的三角形畫出來了嗎?

  生:沒有

  師:那你能用這節(jié)課的知識解釋一下為什么畫不出來嗎?

  生:兩個直角是180度,沒有第三個角了。

  師:如果想畫出有兩個角是鈍角的三角形你能畫出來嗎?

  生:大于180度,也畫不出第三個角。師:所以,生活中不存在這樣的三角形。

  師:學會了知識,我們就要懂得去運用。

  四、鞏固提高。

  1、填空。

  (1)三角形的內(nèi)角和是()度。

  (2)一個三角形的兩個內(nèi)角分別是80°和75°,它的另一個角是()。

  2、求下面各角的度數(shù)。

  (1)∠1=27° ∠2=53° ∠3=()這是一個()三角形。

 。2)∠1=70° ∠2=50° ∠3=()這是一個()三角形。

  3、判斷每組中的三個角是不是同一個三角形中的三個內(nèi)角。

  (1)80° 95° 5°( )

 。2)60° 70° 90°( )

 。3)30° 40° 50°( )

  4、紅領巾是一個等腰三角形,求底角的度數(shù)。(多**出示)

  對學生進行思品教育。

  5、思考延伸。

  根據(jù)三角形內(nèi)角和是180度,算一算四邊形和八邊形的內(nèi)角和是多少?

  6、游戲:幫角找朋友每組卡片中,哪三個角可以組成三角形?)每組卡片中,哪三個角可以組成三角形?)60°90°45°30°⑴60°、90°、45°、30°54°46°52°

  五、總結。

三角形內(nèi)角和教學設計3

  教學要求

  1、通過動手操作,使學生理解并掌握三角形的內(nèi)角和是180°的結論。

  2、能運用三角形的內(nèi)角和是180°這一規(guī)律,求三角形中未知角的度數(shù)。

  3、培養(yǎng)學生動手動腦及分析推理能力。

  教學重點

  三角形的內(nèi)角和是180°的規(guī)律。

  教學難點

  使學生理解三角形的內(nèi)角和是180°這一規(guī)律。

  教學用具

  每個學生準備銳角三角形、直角三角形、鈍角三角形紙片各一張,量角器。

  教學過程:

  一、出示預習提綱

  1、三角形按角的不同可以分成哪幾類?

  2、一個*角是多少度?1個*角等于幾個直角?

  3、如圖,已知∠1=35°,∠2=75°,求∠3的度數(shù)。

  二、展示匯報交流

  1、投影出示一組三角形:(銳角三角形、鈍角三角形、直角三角形)。三角形有幾個角?老師指出:三角形的這三個角,就叫做三角形的三個內(nèi)角。(板書:內(nèi)角)

  2、三角形三個內(nèi)角的度數(shù)和叫做三角形的內(nèi)角和。(板書課題:三角形的內(nèi)角和)今天我們一起來研究三角形的內(nèi)角和有什么規(guī)律。

  3、以小組為單位先畫4個不同類型的三角形,利用手中的工具分別計算三角形三個內(nèi)角的和各是多少度?

  4、指名學生匯報各組度量和計算的結果。你有什么發(fā)現(xiàn)?

  5、大家算出的三角形的內(nèi)角和都接近180°,那么,三角形的內(nèi)角和與180°究竟是怎樣的關系呢?就讓我們一起來動手實驗研究,我們一定能弄清這個問題的。

  6、剛才我們計算三角形的內(nèi)角和都是先測量每個角的度數(shù)再相加的。在量每個內(nèi)角度數(shù)時只要有一點誤差,內(nèi)角和就有誤差了。我們能不能換一種方法,減少度量的次數(shù)呢?

  提示學生,可以把三個內(nèi)角拼成一個角,就只需測量一次了。

  7、請拿出桌上的直角三角形紙片,想一想,怎樣折可以把三個角拼在一起,試一試。

  8、三個角拼在一起組成了一個什么角?我們可以得出什么結論?(直角三角形的內(nèi)角和是180°)

  9、拿一個銳角三角形紙片試試看,折的方法一樣。再拿鈍角三角形折折看,你發(fā)現(xiàn)了什么?(直角三角形和鈍角三角形的內(nèi)角和也是180°)

  10、那么,我們能不能說所有三角形的內(nèi)角和都是180°呢?為什么?(能,因為這三種三角形就包括了所有三角形)11。老師板書結論:三角形的內(nèi)角和是180°。

  12、一個三角形中如果知道了兩個內(nèi)角的度數(shù),你能求出另一個角是多少度嗎?怎樣求?

  13、出示教材85頁做一做。讓學生試做。

  14、指名匯報怎樣列式計算的。兩種方法均可。

  ∠2=180°—140°—25°=15°

  ∠2=180°(140°+25°)=15°

  課后反思:

  對于三角形的內(nèi)角和,學生并不陌生,在*時的做題中已經(jīng)涉及到了?墒菍W生并不知道如何去驗證,所以本節(jié)課,重點讓孩子們經(jīng)歷體驗,感悟圖形。從而收獲了經(jīng)驗。特別是動手操作將三角形拼成一個直角時,有的孩子將角剪得非常小,很不好拼,在此進行了重點的提示。

三角形內(nèi)角和教學設計4

  設計思路

  本節(jié)課我先引導學生任意畫出不同類型的三角形,用通過量一量、算一算,得出三角形的內(nèi)角和是180°或接近180°(測量誤差),再引導學生通過剪拼的方法發(fā)現(xiàn):各類三角形的三個內(nèi)角都可以拼成一個*角。再引導學生通過折角的方法也發(fā)現(xiàn)這個結論,由此獲得三角形的內(nèi)角和是180°的結論。概念的形成沒有直接給出結論,而是通過量、算、拼、折等活動,讓學生探索、實驗、發(fā)現(xiàn)、推理歸納出三角形的內(nèi)角和是180°。

  最后讓學生運用結論解決實際問題,練習的安排上,注意練習層次性和趣味性,還設計了開放性的練習,由一個同學出題,其它同學回答。先給出三角形兩個內(nèi)角的度數(shù),說出另外一個內(nèi)角,有唯一的答案。給出三角形一個內(nèi)角,說出其它兩個內(nèi)角,答案不唯一,可以得出無數(shù)個答案。讓學生在游戲中拓展學生思維。

  教學目標

  1、讓學生親自動手,通過量、剪、拼等活動發(fā)現(xiàn)、證實三角形內(nèi)角和是180°,并會應用這一知識解決生活中簡單的實際問題。

  2、讓學生在動手獲取知識的過程中,培養(yǎng)學生的創(chuàng)新意識、探索精神和實踐能力。并通過動手操作把三角形內(nèi)角和轉化為*角的探究活動,向?qū)W生滲透“轉化”數(shù)學思想。

  3、使學生體驗成功的喜悅,激發(fā)學生主動學習數(shù)學的興趣。

  教學重點

  讓學生經(jīng)歷“三角形內(nèi)角和是180°”這一知識的形成、發(fā)展和應用的全過程。

  教學準備

  教具:多**課件、用彩色卡紙剪的相同的兩個直角三角形、一個鈍角三角形、一個銳角三角形。

  學具:三角形

  教學過程

  一、引入

 。ㄒ唬┱J識三角形的內(nèi)角及三角形的內(nèi)角和

  師:我們已經(jīng)學習了三角形的分類,誰能說說老師手上的是什么三角形?

  師:今天我們來學習新的知識《三角形內(nèi)角和》,誰能說說哪些角是三角形的內(nèi)角?(讓學生邊說邊指出來)

  師:那三角形的內(nèi)角和又是什么意思?(把三角形三個內(nèi)角的度數(shù)合起來就叫三角形的內(nèi)角和。)

 。ǘ┰O疑,激發(fā)學生探究新知的心理

  師:請同學們幫老師畫一個三角形,能做到嗎?(激發(fā)學生主動學習的心理)

  生:能。

  師:請聽要求,畫一個有兩個內(nèi)角是直角的三角形,開始。(設置矛盾,使學生在矛盾中去發(fā)現(xiàn)問題、探究問題。)

  師:有誰畫出來啦?

  生1:不能畫。

  生2:只能畫兩個直角。

  生3:……

  師:問題出現(xiàn)在哪兒呢?這一定有什么奧秘?想不想知道?那就讓我們一起來研究吧!

 。ń沂久,巧妙引入新知的探究)

  二、動手操作,探究三角形內(nèi)角和

 。ㄒ唬┎乱徊。

  師:猜一猜三角形的內(nèi)角和是多少度呢?同桌互相說說自己的看法。

  生1:180°。

  生2:不一定。

  ……

  (二)操作、驗證三角形內(nèi)角和是180°。

  1、量一量三角形的內(nèi)角

  動手量一量自己手中的三角形的內(nèi)角度數(shù)。

  師:所有三角形的內(nèi)角和究竟是不是180°,你能用什么辦法來證明,使別人相信呢?

  生:可以先量出每個內(nèi)角的度數(shù),再加起來。

  師:哦,也就是測量計算,是嗎?

  學生匯報結果。

  師:請匯報自己測量的結果。

  生1:180°。

  生2:175°。

  生3:182°。

  ……

  2、拼一拼三角形的內(nèi)角

  學生操作

  師:沒有得到**的結果。這個辦法不能使人很信服,怎么辦?還有其它辦法嗎?

  生1:有。

  生2:用拼合的辦法,就是把三角形的三個內(nèi)角放在一起,可以拼成一個*角。

  師:怎樣才能把三個內(nèi)角放在一起呢?(學生操作)

  生:把它們剪下來放在一起。

  師:很好。

  匯報驗證結果。

  師:通過拼合我們得出什么結論?

  生1:銳角三角形的內(nèi)角拼在一起是一個*角,所以銳角三角形的內(nèi)角和是180°。

  生2:直角三角形的內(nèi)角和也是180°。

  生3:鈍角三角形的內(nèi)角和還是180°。

  課件演示驗證結果。

  師:請看屏幕,老師也來驗證一下,是不是跟你們得到的結果一樣?(播放課件)

  師:我們可以得出一個怎樣的結論?

  生:三角形的內(nèi)角和是180°。

 。ń處煱鍟喝切蔚膬(nèi)角和是180°學生齊讀一遍。)

  師:為什么用測量計算的方法不能得到**的結果呢?

  生1:量的不準。

  生2:有的量角器有誤差。

  師:對,這就是測量的誤差。

  3、折一折三角形的內(nèi)角

  師:除了量、拼的方法,還有沒有別的方法可以驗證三角形的內(nèi)角和是180°。

  如果學生說不出來,教師便提示或示范。

  學生操作

  4、小結:三角形的內(nèi)角和是180°。

  三、解決疑問。

  師:現(xiàn)在誰能說說不能畫出有兩個直角的一個三角形的原因?(讓學生體驗成功的喜悅)

  生:因為三角形的內(nèi)角和是180°,在一個三角形中如果有兩個直角,它的內(nèi)角和就大于180°。

  師:在一個三角形中,有沒有可能有兩個鈍角呢?

  生:不可能。

  師:為什么?

  生:因為兩個銳角和已經(jīng)超過了180°。

  師:那有沒有可能有兩個銳角呢?

  生:有,在一個三角形中最少有兩個內(nèi)角是銳角。

  四、應用三角形的內(nèi)角和解決問題。

  1、下面說法是否正確。

  鈍角三角形的內(nèi)角和一定大于銳角三角形的內(nèi)角和。()

  在直角三角形中,兩個銳角的和等于90度。()

  在鈍角三角形中兩個銳角的和大于90度。()

 、芤粋三角形中不可能有兩個鈍角。()

  ⑤三角形中有一個銳角是60度,那么這個三角形一定是個銳角三角形。()

  2、看圖求出未知角的度數(shù)。(知識的直接運用,數(shù)學信息很淺顯)

  3、游戲鞏固。

  由一個同學出題,其它同學回答。

 。1)給出三角形兩個內(nèi)角,說出另外一個內(nèi)角(有唯一的答案)。

 。2)給出三角形一個內(nèi)角,說出其它兩個內(nèi)角(答案不唯一,可以得出無數(shù)個答案)。

  4、根據(jù)所學的知識算出四邊形、正五邊形、正六邊形的內(nèi)角和。

  五、全課總結。

  今天你學到了哪些知識?是怎樣獲取這些知識的?你感覺學得怎么樣?

  反思:

  在本節(jié)課的學習活動過程中,先讓學生進行測量、計算,但得不到**的結果,再引導學生用把三個角拼在一起得到一個*角進行驗證。這時,有部分學生在拼湊的過程中出現(xiàn)了困難,花費的時間較長,在這里用課件再演示一遍正好解決了這個問題。再引導學生用折三角形的方法也能驗證三角形的內(nèi)角和是180°。練習設計也具有許多優(yōu)點,注意到練習的梯度,并由淺入深,照顧到不同層次學生的需求,也很有趣味性。在整個教學設計中,本著“學貴在思,思源于疑”的思想,不斷創(chuàng)設問題情境,讓學生去實驗、去發(fā)現(xiàn)新知識的奧妙,從而讓學生在動手操作、積極探索的活動中掌握知識,積累數(shù)學活動經(jīng)驗,發(fā)展空間觀念和推理能力。

  但因為是借班上課,對學生了解不多,學生前面的內(nèi)容(三角形的特性和分類)還沒學好,所以有些練習學生就沒有預想的那么得心應手,如:知道等腰三角形的頂角求底角的題,學生掌握比較困難。

三角形內(nèi)角和教學設計5

  知識與技能

  1、通過小組合作,運用直觀操作的方法,探索并發(fā)現(xiàn)三角形內(nèi)角和等于180。能應用三角形內(nèi)角和的性質(zhì)解決一些簡單問題。

  2、經(jīng)歷親自動手實踐、探索三角形內(nèi)角和的過程,體會運用“量一量”、“算一算”、“拼一拼”、“折一折”進行驗證的數(shù)學思想方法,提高動手操作能力和數(shù)學思考能力。

  情感態(tài)度與價值觀

  3、使學生在數(shù)學活動中獲得成功的體驗,感受探索數(shù)學規(guī)律的樂趣。培養(yǎng)學生的創(chuàng)新意識、探索精神和實踐能力,在學生親自動手實踐和歸納中,感受理性的美。

  教學重點:

  1、探索和發(fā)現(xiàn)三角形三個內(nèi)角和的度數(shù)和等于180o。

  2、已知三角形的兩個角的度數(shù),會求出第三個角的度數(shù)。

  教學難點:

  已知三角形的兩個角的度數(shù),會求出第三個角的度數(shù)。

  方法與過程

  教法:主動探究法、實驗操作法。

  學法:小組合作交流法

  教學準備:小黑板、學生、老師準備幾個形狀不同的三角形、量角器。

  教學課時:1課時

  教學過程

  一、預習檢查

  說一說在預習課中操作的感受,應注意哪些問題,三角形的內(nèi)角和等于多少度? 組內(nèi)交流訂正。

  二、情景導入呈現(xiàn)目標

  故事引入。一天,大三角形對小三角形說:“我的個頭大,所以我的內(nèi)角和一定比你的大!毙∪切魏懿桓市牡卣f:“是這樣的嗎?”揭示課題,出示目標。產(chǎn)生質(zhì)疑,引入新課。

  三、探究新知 

  自主學習

  1、活動一、比一比2、活動二、量一量

 。1)什么是內(nèi)角?

  (2)如何得到一個三角形的內(nèi)角和?

  (3)小組活動,每組同學分別畫出大小,形狀不同的若干個三角形。分別量出三個內(nèi)角的度數(shù),并求出它們的和。

 。4)填寫小組活動記錄表。發(fā)現(xiàn)大小,形狀不同的每個三角形,三個內(nèi)角的度數(shù)和都接近度。

  3、說一說,做一做。

 。1)我們把三個角撕下來,再拼在一起,看一看會是怎樣的。

 。2)把三個角折疊在一起,,三個角在一條直線上。從而得到三角形三個內(nèi)角和等于()度。

  四、當堂訓練(小黑板出示內(nèi)容)

  1、三角形的內(nèi)角和是()°,一個等腰三角形,它的一個底角是26°,它的頂角是()。

  2、長5厘米,8厘米,()厘米的三根小棒不能圍成一個三角形。

  3、三角形具有()性。

  4、一個三角形中有一個角是45°,另一個角是它的2倍,第三個角是(),這是一個()三角形。

  5、按角的大小,三角形可以分為()三角形、()三角形、()三角形。

  6、交流學案第三題。 先**做,最后組內(nèi)交流。

  五、點撥升華

  任意三角形三個角的度數(shù)和等于180度。**思索小組交流總結方法教師點撥。

  六、課堂總結

  通過這節(jié)課的學習,你有什么新的收獲或者還有什么疑問?先小組內(nèi)說一說,最后班上交流。

  七、拓展提高

  媽媽給淘氣買了一個等腰三角形的風箏。它的頂角是40°,它的一底角是多少? 先**做,最后組內(nèi)交流。

  板書設計:

  三角形的內(nèi)角和

  測量三個角的度數(shù)求和:結論:

  教學反思:三角形內(nèi)角和等于180°,對于大多數(shù)同學來說并不是新知識。因為在此之前學生已經(jīng)運用過這一知識。因此,我覺得這一堂課的重點不是讓學生記住這一結論,也不是怎樣運用它去解結問題。而是讓學生證明這一結論,即要讓學生親歷探索過程并在探索中驗證。在教學中,通過豐富的材料讓學生動手操作,通過量、撕拼、折拼等實驗活動,讓學生得到的不僅僅是三角形內(nèi)角和的知識,更重要的是學到了怎樣由已知知識探索未知的思維方式與方法,激發(fā)了他們主動探索知識的欲望。通過多種實驗進行操作驗證也讓學生明白了只要善于思考,善于動手就能找到解決問題的方法。

  當然,在教學中也還有一些不順利的地方,比如一些動手能力差的學生未能及時跟進,對于方法不對的學生未能及時指導和幫助等。但是本堂課采用這樣的方式展開教學是學生喜歡的也是有成效的。

三角形內(nèi)角和教學設計6

  教學目標:

  1、通過測量、撕拼、折疊等探索活動,使學生發(fā)現(xiàn)三角形內(nèi)角和的度數(shù)是180?

  2、已知三角形兩個角的度數(shù),會求第三個角的度數(shù)。

  3、培養(yǎng)學生動手實踐,動腦思考的習慣。

  教學重點:

  了解三角形三個內(nèi)角的度數(shù)。

  教學難點:

  理解三角形三個內(nèi)角大小的關系。

  教具學具準備:

  課件三角形若干量角器剪刀。

  教材與學生

  教材創(chuàng)設了一個有趣的問題情境,通過對大小兩個三角形內(nèi)角和的大小比較來激發(fā)學生探索的興趣。教材為了得到三角形內(nèi)角和是180的結論安排了兩個活動,通過學生測量,折疊,撕拼來找到答案。

  學生在已有的會用量角器來度量一個角的度數(shù)的基礎上,會首先想到這種方法。但測量的誤差會導致測量不同,因此,學生會想到采取其他更好的辦法,通過親手實踐,得出結論。

  教學過程:

  一、呈現(xiàn)真實狀態(tài)。

  師:今天我們來研究三角形內(nèi)角和度數(shù)。這里有兩個三角形,一個是大三角形,一個是小三角形(圖略),到底哪一個三角形的內(nèi)角和比較大呢?

  學生各抒己見。

  二、提出問題:

  師;剛才我們觀察三角形哪個內(nèi)角和大,同學們有兩種不同的猜想,可以肯定,必定有錯下面我們來測量驗證。

 。1)以小組為單位請同學們拿出量角器,量一量,算一算圖中大小兩個三角形內(nèi)角和度數(shù),并做好記錄,記錄每個內(nèi)角的度數(shù)。

 。2)組內(nèi)交流。

 。3)全班交流。由小組匯報測出結果(三角形內(nèi)角和)

 。4)師小結:我們通過測量發(fā)現(xiàn),每個三角形的內(nèi)角和測出結果接近180。

  意圖:通過這一操作活動,激發(fā)學生的興趣,讓學生積極參與培養(yǎng)學生的動手操作能力]

  三、自主探索、研究問題、歸納總結:

  師引導**:三角形的內(nèi)角和會不會就是180呢?

  (一)組內(nèi)探索:

 。1)以小組為單位探索更好的辦法。

 。2)以小組為單位邊展示邊匯報探索的過程與發(fā)現(xiàn)的結果。

 。ㄓ械男〗M想不出來,可以安排小組和小組之間進行交流,目的是讓學生通過實踐發(fā)現(xiàn)結果,在探索中發(fā)現(xiàn)問題,在討論中解決問題,是學生學習到良好的學習方法)

  (3)把你沒有想到的方法動手做一次

 。ㄊ箤W生更直觀地理解三角形的內(nèi)角和是180的證明過程)

 。4)根據(jù)學生的反饋情況教師進行操作演示。

 。ǘ┙處熝菔

  撕拼法:

  1、教師取出三角形教具,把三個角撕下來,拼在一起,

  2、師:這三個內(nèi)角放在一起你有什么發(fā)現(xiàn)?

  生:發(fā)現(xiàn)三個內(nèi)角拼成一個*角。

  師:*角是多少度呢?說明什么?

  生:180?說明三個內(nèi)角和剛好等于180。

  師:這種方法是不是適用各種三角形呢?

  3、學生每人動手實踐,看看是不是不同的三角形是否都有這個特點,也能拼出一個*角呢?

  進行實驗后,結果發(fā)現(xiàn)同樣存在這一規(guī)律,三角形三個內(nèi)角和是180。

  折疊法:師:剛才我們通過測量發(fā)現(xiàn)三角形內(nèi)角和接近180,那是因為測量的不那么精確,所以說“接近”,又通過撕拼方法發(fā)現(xiàn)三角形的三個內(nèi)角剛好拼成一個*角,進一步說明三個內(nèi)角和是180,現(xiàn)在再來演示另一種實驗,再次證明我們的發(fā)現(xiàn)。

  你們也來試一試好嗎?

  在學生完成這一實踐后肯定這一發(fā)現(xiàn)

  三角形三個內(nèi)角和等于180?

  意圖:充分發(fā)揮了學生的主觀能動性,讓學生大膽去思考發(fā)言,把課堂交給學生,最后老師在演示達成共識,這樣學生學到知識印象頗深,也理解最為透徹,提高課堂教學的效率

  四、鞏固練習,知識升華。

  1、完成課本第28頁的“試一試”第三題。

  2、想一想:鈍角三角形最多有幾個鈍角?為什么?

  銳角三角形中的兩個內(nèi)角和能小于90嗎?

  3、有一個四邊形,你能不用量角器而算出它的四個內(nèi)角和嗎?

  意圖:這樣分層安排練習,注重培養(yǎng)學生的分析能力,同時也培養(yǎng)學生的思維能力和口頭表達能力。

  五、總結延伸

  這節(jié)課同學們通過測量,發(fā)現(xiàn)了問題,然后運用撕拼,折疊兩種方法驗證自己的猜想,得出結論,這種學習方式很好,我們在今后的學習中還要用到,我們今天探究了三角形的一個秘密,其實它的秘密還很多,有興趣的話,我們以后繼續(xù)研究。課后反思:

  當我設計這節(jié)課時,首先思考,學生面對這個新問題時會想到用那些方法來思考呢?很顯然,學生根據(jù)三角形大的內(nèi)角就大,是學生在探究時的真實想法,是一種合情推理,在探究過程中,怎樣對待學生的這個錯誤呢?我沒有簡單地予以否定,迫不及待的幫助,而是引導學生否定錯誤猜想,尋找錯誤產(chǎn)生的原因,在這個過程中,教師啟迪學生“轉化”的思想求得突破,然后引導學生進行操作驗證,從中得出結論,學生完整地經(jīng)歷探究的整個過程,不僅獲得知識,還獲得思想,充分發(fā)揮了學生的主觀能動性,使他們輕松愉快的學習,提高了課堂效率。

三角形內(nèi)角和教學設計7

  【設計理念】

  新課標重視讓學生經(jīng)歷數(shù)學知識的形成過程,要求教師創(chuàng)設有效的問題情境激發(fā)學生的參與欲望,提供足夠的時間和空間讓學生經(jīng)歷觀察、猜測、驗證、交流反思等過程,使學生在動手操作、合作交流等活動中親身經(jīng)歷知識的形成過程。這樣,學生不僅可以掌握知識,而且可以積累探究數(shù)學問題的活動經(jīng)驗,發(fā)展空間觀念和推理能力。

  教材內(nèi)容】新人教版義務教育課程標準實驗教科書四年級下冊數(shù)學第67頁例6、“做一做”及練習十六的第1、2、3題。

  【教材分析】

  三角形的內(nèi)角和是三角形的一個重要特征。本課是安排在三角形的概念及分類之后教學的,它是學生以后學習多邊形的內(nèi)角和及解決其它實際問題的基礎。教材很重視知識的探索與發(fā)現(xiàn),安排兩次實驗操作活動。教材呈現(xiàn)教學內(nèi)容時,不但重視體現(xiàn)知識的形成過程,而且注意留給學生充分進行自主探索和交流的空間和時間,為教師靈活**教學提供了清晰的思路。概念的形成沒有直接給出結論,而是通過量、拼等活動,讓學生探索、實驗、交流、推理歸納出三角形的內(nèi)角和是180°。

  【學情分析】

 。、在學習本課時,學生已經(jīng)有了探索三角形內(nèi)角和的知識基礎:知道直角和*角的度數(shù),會用量角器度量角的度數(shù);認識長方形、正方形,知道他們的四個角都是直角;認識了三角形,知道了三角形按角分有銳角三角形、直角三角形和鈍角三角形;已經(jīng)知道了等腰三角形和正三角形。

 。、已經(jīng)有一部分學生知道了三角形內(nèi)角和是180°,只是知其然而不知所以然。

  【教學目標】

  1通過“量、剪、拼”等活動發(fā)現(xiàn)、驗證三角形的內(nèi)角和是180°,并能運用這個知識解決一些簡單的問題。

  2.在觀察、猜想、操作、合作、分析交流等具體活動中,提高動手操作能力,積累基本的數(shù)學活動經(jīng)驗,發(fā)展空間觀念和推理能力。

  3.在參與數(shù)學學習活動的過程中,獲得成功的體驗,感受數(shù)學探究的嚴謹與樂趣。

  【教學重點】

  探索發(fā)現(xiàn)、驗證“三角形內(nèi)角和是180°”,并運用這個知識解決實際問題。

  【教學難點】驗證“三角形的內(nèi)角和是180°”。

  【教(學)具準備】

  多**課件;銳角三角形、直角三角形、鈍角三角形紙片若干個各類三角形(也包括等邊、等腰)、長方形、正方形若干個;每人一個量角器;一把剪刀;每人一副三角尺。

  【教學步驟】

  一、復習舊知引出課題

  1、你已經(jīng)知道有關三角形的哪些知識?

  2、出示課題:三角形的內(nèi)角和

  設計意圖:也自然導入新課。

  二、提出問題引發(fā)猜想

  1、提出問題:看到這個課題,你有什么問題想問的?

  預設:(1)三角形的內(nèi)角指的是哪些角?

 。2)三角形的內(nèi)角和是什么意思?

 。3)三角形的內(nèi)角一共是多少度?

  2、引發(fā)猜想

  猜一猜:三角形的內(nèi)角和是多少度?你是怎么猜的?

  設計意圖:提出一個問題比解決一個問題更重要。課始在復習三角形已學知識后,引導學生提出有關三角形的新問題,讓學生學習自己想研究的內(nèi)容,無疑激發(fā)了學生的學習興趣,培養(yǎng)了學生的問題意識。由于學生在*時使用三角板時已經(jīng)若隱若現(xiàn)地有了特殊的直角三角形的內(nèi)角和是180度這一感覺,因此本環(huán)節(jié),要求學生猜一猜三角形的內(nèi)角和是多少,并說說是怎么猜的,以激發(fā)學生已有知識經(jīng)驗,并體會到猜想要合理且有根據(jù),同時也為推理驗證的引出作必要的鋪墊。

  三、操作驗證形成結論

  1、交流驗證方法:

 。1)用什么方法證明三角形的內(nèi)角和是180度呢?

  預設:

 、倭克惴

 、诩羝捶

 、壅燮捶ǖ

 。2)三角形的個數(shù)有無數(shù)個,驗證哪些三角形可以**所有的三角形?我們的操作過程怎么分工才會做到省時又高效?

  2、動手驗證

  3、全班匯報交流

  4、小結:剛才通過大家的動手操作驗證了三角形的內(nèi)角和是180°度。但動手操作會存在一定的誤差,我們的結論也可能存在偏差。

  5、方法拓展

  推理驗證:用直角三角形的內(nèi)角和來證明其他三角形內(nèi)角和是180°的方法。

  6、形成結論:任意三角形的內(nèi)角和是180°。

  設計意圖:《標準》指出:“教師應激發(fā)學生的積極性,向?qū)W生提供充分從事數(shù)學活動的機會,幫助他們在自主探索和合作交流的過程中真正理解和掌握基本的數(shù)學知識與技能、數(shù)學思想和方法,獲得廣泛的數(shù)學活動經(jīng)驗。”猜測后先**思考驗證的方法,再進行全班交流,給學生充分的活動時間和空間,讓學生動手操作,使學生在量、剪、拼、折等一系列操作活動中發(fā)現(xiàn)了三角形內(nèi)角和是180°這個結論。在探索活動前,交流如何使研究樣本具有**性和全面性與如何分工做到操作省時高效這兩個問題,培養(yǎng)學生嚴謹、科學正確的研究態(tài)度,讓學生在活動中積累基本的數(shù)學活動經(jīng)驗,為后續(xù)的學習提供了經(jīng)驗支撐。

  四、應用結論解決問題

  1、鞏固新知:想一想,算一算。

  2、解決問題:等腰三角形風箏的頂角是多少度?

  3、辨析訓練,完善結論。

  五、課堂總結,歸納研究方法

  今天這節(jié)課你學到了哪些知識?你是怎樣得到這些知識的?

  六、課后延伸:用今天所學的方法繼續(xù)研究四邊形的內(nèi)角和。

  七、板書設計:

  三角形的內(nèi)角和

  猜測:三角形的內(nèi)角和是180°?

  驗證:量拼

  結論:任意三角形的內(nèi)角和是180°

三角形內(nèi)角和教學設計8

  教學目標:

  1、通過量、剪、拼、擺等直觀操作的方法,讓學生探索并發(fā)現(xiàn)三角形內(nèi)角和等于180度。

  2、在活動交流中培養(yǎng)學生合作學習的意識和能力,讓學生經(jīng)歷猜測探索總結的數(shù)學學習過程,在實驗活動中體驗探索的過程和方法。

  3、通過運用三角形內(nèi)角和的性質(zhì)解決一些簡單的問題,使學生體會數(shù)學與現(xiàn)實生活的聯(lián)系,體會到數(shù)學的價值,增加學生學數(shù)學的信心和興趣。

  教學重點:

  探索發(fā)現(xiàn)三角形內(nèi)角和等于180并能應用。

  教學難點:

  三角形內(nèi)角和是180的探索和驗證。

  教學過程:

  一、創(chuàng)設情境,提出問題

  師:大家喜歡猜謎語嗎?

  生:喜歡。

  師:下面請大家猜一個謎語(大屏幕出示形狀似座山,穩(wěn)定性能堅。三竿首尾連,學問不簡單。

 。ù蛞粠缀螆D形))

  生:三角形。

  師:三角形中都有哪些學問?

  生:三角形有三條邊,三個角,具有穩(wěn)定性。

  生:三角形按角分,可以分成銳角三角形、直角三角形、鈍角三角形。

  生:三角形按邊分,可以分成等腰三角形,不等邊三角形,其中等腰三角形又包含了兩條邊相等的三角形和等邊三角形。

  生:一個三角形中最多只能有一個直角,最多只能有一個鈍角,最少有兩個銳角。

  生:三角形的內(nèi)有和是180。

  生:(一臉疑惑)

  師:(板書:三角形的內(nèi)角和是180),你有什么疑惑? 生:什么是內(nèi)角?

  生:每個三角形的內(nèi)角和都是180嗎?

  (根據(jù)學生的問題,在三角形的內(nèi)角和是180后面加上一個?)

  二、自主探索,實踐驗證

  1、理解內(nèi)角 師:什么是內(nèi)角?

  生:我認為三角形的內(nèi)角就是指三角形的三個角。

  師:三角形的每個角都是三角形的內(nèi)角,每個三角形都有三個內(nèi)角。

  2、理解內(nèi)角和。

  師:那三角形的內(nèi)角和又是指什么?

  生:我認為三角形的內(nèi)角和就是把三角形的三個內(nèi)角的度數(shù)加起來的和。

  師:為了方便,我們將三角形的每個內(nèi)角編上序號1、2、3、我們叫它1、2、3,這三個角的度數(shù)和,就是這個三角形的內(nèi)角和。

  3、實踐驗證

  師:每個三角形的內(nèi)角和都是180嗎?用什么方法來驗證呢?

  生:量一量每個角的度數(shù),然后加起來看看是不是180。

  師:請大家拿出課前準備的三角形,親自量一量,算一算。(學生動手量一量)

  師:誰愿意把你的勞動成果和大家分享一下?

  生:我量的這個三角形的三個內(nèi)角的度數(shù)分別是60、60、60,加起來一共是180。

  師:這位同學量的是一個銳角三角形,并且是比較特殊的三角形等邊三角形。

  生:我量這個三角形的三個內(nèi)角的度數(shù)分別是45、45、90,加起來一共是180。

  師:這是我們?nèi)浅咧械囊粋,也比較特殊,是一個等腰直角三角形。

  生:我量的是三角尺中的另一個,三個內(nèi)角的度數(shù)分別是60、30、90,加起來一共是180 生:我量的是鈍角三角形,三個內(nèi)角的度數(shù)分別是85、60、38,加起來一共是183。

  師:你發(fā)現(xiàn)了什么?

  生:有的三角形的內(nèi)角和是180,而有的三角形的內(nèi)角和卻不是180。

  師:看來三角形的內(nèi)角和不一定是180。

  生:老師,測量會有誤差,量出來的不是很精確,那么求出來的結果也不夠精確。雖然不都是三個內(nèi)角加起來不都是180,但都接近180。

  生:都接近180就能說一定是180嗎?

  師:科學來不得半點虛假,看來這個是不能讓大家信服的。那還可以用什么方法來驗證呢?下面請同學們小組合作,發(fā)揮小組成員的智慧,充分利用大家的學具進行驗證,比一比哪些組的方法富有新意,開始!

 。▽W生在小組內(nèi)進行探索驗證。教師巡視,參與到學生的研究中)

  師:請每個小組選擇一個代言人,和大家分享一下你們的智慧。

  生:(邊展示邊交流)我們小組運用了折一折的方法,把三角形的三個內(nèi)角都向內(nèi)折,三個內(nèi)角就拼成了一個*角,也就是180,所以我們小組得出三角形的內(nèi)角和是180。

  師:你折的只是銳角三角形,只能證明銳角三角形的內(nèi)角和是180,直角三角形,鈍角三角形是不是也是這樣的?

  生:我們小組也有折的直角三角形,鈍角三角形。

 。ㄆ渌某蓡T展示不同的三角形)

  師:看這個小組的同學想問題多全面呀,不僅想到了用什么方法,還想到了用不同的三角形進行驗證,老師實在是佩服你們組的智慧,讓我們把掌聲送給他們!

  師:哪個小組和他們的方法不一樣?

  生:我們小組把三角形的三個內(nèi)角都撕了下來,拼在了一起,正好拼成了一個*角,也就是180。我們也實驗了不同的三角形,三個內(nèi)角都可以拼成*角,所以我們小組得出結論,三角形的內(nèi)角和是180。

  師:這個小組的方法簡便,易操作,很好。

  生:我們小組成員是這樣想的,一個長方形有4個直角,每個直角90,那么長方形的內(nèi)角和就是360,每個長方形都可以*均分成兩個直角三角形,每個直角三角形的內(nèi)角和就是180。 師:你們小組很聰明,從長方形的內(nèi)角和聯(lián)想到直角三角形的內(nèi)角和是180,從不同的角度去思考問題,謝謝你為我們提供了這么好的方法!

  4、小結

  師:剛才同學們用量、折、剪、拼、計算、推理等這么多巧妙的方法得出了無論是什么樣的三角形的內(nèi)角和都是1800,你還有什么疑問嗎?

  生:沒有。

  師:(去掉問號)那就讓我們大聲地讀出來三角形的內(nèi)角和是1800。

  三、鞏固應用,加深理解

  1、說一說每個三角形的內(nèi)角和是多少度

  師:(出示一個大三角形)這個大三角形的內(nèi)角和是多少度?

  生: 180

  師:(出示一個小三角形)這個小三角形的內(nèi)角和是多少度?

  生:180

  師:(演示)把這兩個三角形拼在一起,拼成的大三角形的內(nèi)角和是多少度?

  生:180

  師:為什么每個三角形的內(nèi)角和是1800,而合起來還是180呢?另外那180去哪兒了?

  生:把兩個三角形拼成一個大三角形,兩個直角不再是大三角形的內(nèi)角,所以少了180

  師:(演示)把一個大三角形分成兩個三角形,每個三角形的內(nèi)角和是多少度?

  生:180

  2、求下面各角的度數(shù)

  師:如果老師告訴你一個三角形的兩個角的度數(shù),你能說出第三個角的度數(shù)嗎?

 。ǔ觯

  生:三角形內(nèi)角和是180,在第一個三角形中,用180-75-28,A=77

  生:用180-90-35,C =55。

  生:第二個三角形是直角三角形,B是直角,也可以直接用90-35=55。

  生:第三個三角形中,用180-20-45,B=115。

  3、一個等腰三角形的風箏,它的一個底角是70,它的頂角是多少度?

  生:等腰三角形的兩個底角相等,所以用180-70-70 4、

  師:三角形的內(nèi)角和在我們的生活中應用很廣泛,老師給大家?guī)硪粋在建筑中應用的例子。

  在設計這座大橋時,如果***將斜拉的鋼索與橋柱形成的夾角設計成了56,建筑師在造橋時怎樣才能確定鋼索與橋柱是否形成了這個角度?

  生:用量角器量一量

  師:量哪個角?量一量斜拉的鋼索與橋柱形成的夾角嗎?

  生:橋面與橋柱形成一個直角,是90,斜拉的鋼索與橋柱形成的夾角是56,那么用180-90-56=34,就是斜拉的鋼索與橋面的夾角,所以只要讓斜拉的鋼索與橋面的夾角是34,那么斜拉的鋼索與橋柱形成的夾角就是56

  師:你真是個善于觀察、善于思考的孩子,努力學習,將來一定會成為一名優(yōu)秀的建筑師。

  四、回顧總結,拓展延伸

  師:40分鐘很快就過去了,你愿意把自己的收獲與大家共同分享嗎?

  生:我知道了三角形的內(nèi)角和是180。

  生:無論是大三角形,還是小三角形,無論是銳角三角形,還是鈍角三角形,還是銳角三角形,內(nèi)角和都是180。

  生:把一個大三角形分成兩個小三角形,每個三角形的內(nèi)角和還是180,把兩個小三角形拼成一個大三角形,大三角形的內(nèi)角和還是180。

  生:我可以用撕、拼、折等方法來驗證三角形的內(nèi)角和是180。

  師:這個同學不僅學會了知識,而且學會了方法,我們只有學會了方法,才能更好地去探究更多的知識。

  師:那你現(xiàn)在知道為什么一個三角形內(nèi)只能有一個直角或一個鈍角嗎?

  生:兩個直角的度數(shù)之和是180,再加上一個角,三個角的度數(shù)之和超過了180,所以一個三角形中最多只能有一個直角。

  生:兩個鈍角的度數(shù)之和就超過了180,再加上一個角,就更大了,所以一個三角形中最多只能有一個鈍角。

  師:我們學習知識,必須知其然并知其所以然。

  師:三角形中還有許許多多的學問,讓我們在以后的學習中繼續(xù)去研究。

三角形內(nèi)角和教學設計9

  【教學內(nèi)容】

  《人教版九年義務教育教科書 數(shù)學》四年級下冊《三角形的內(nèi)角和》

  【教學目標】

  1.使學生知道三角形的內(nèi)角和是180 ,并能運用三角形的內(nèi)角和是180 解決生活中常見的問題。

  2.讓學生經(jīng)歷量一量、折一折、拼一拼等動手操作的過程。通過觀察、 判斷、 交流和推理探索用多種方法證明三角形的內(nèi)角和是180 。

  3.培養(yǎng)學生自主學習、互動交流、合作探究的能力和習慣,培養(yǎng)學習數(shù)學的興趣,感受學習數(shù)學的樂趣。

  【教學重點】

  使學生知道三角形的內(nèi)角和是180 ,并能運用它解決生活中常見的問題。

  【教學難點】

  通過多種方法驗證三角形的內(nèi)角和是180 。

  【教學準備】

  課件。四組教學用三角板。鉛筆。大帆布兜子。固體膠。剪刀?曜尤舾。

  【教學過程】

  一、激趣導入,提煉學習方法

  1.課程開始,教師耳朵上別著一根鉛筆,肩背大帆布兜子,里面裝著一個量角器和幾把缺了直角的三角板,手拿一張不規(guī)則的白紙,以一位老木匠的身份出現(xiàn)在學生面前。激發(fā)學生的好奇心。然后**:“你們好,我是一個有三十多年工作經(jīng)驗的老木匠了。我收了三個徒弟,他們已經(jīng)從師學藝三年了,今天我想讓他們下山掙錢,可又不放心,想出幾道題考驗考驗他們,又不知我的題合不合適,大家想不想先當一會我的徒弟試試這幾道題呢?”

  2.繼續(xù)以老木匠的身份說:前幾天我造了一架柁,徒弟們能不能用我手中的工具驗證一下橫木和立柱是不是成直角的。

  3.選擇工具,總結方法。

  讓選擇不同工具的同學用自己的方法驗證。教師隨機板書:量一量、拼一拼、折一折。

  師:你們真是愛動腦筋的好徒弟,那么請聽好師傅的第二個問題。

  4.導入新課。

  圖中有很多三角形,不論什么樣的三角形都有三個角,這三個角就叫做三角形的內(nèi)角,徒弟們能不能用學過的方法或者你喜歡的方法求一求三角形三個內(nèi)角的和是多少?(板書課題:三角形的內(nèi)角和)

  二、動手操作,探索交流新知

  1.分組活動,探索新知

  根據(jù)學生的選擇把學生分成三組,分別采用量一量、折一折和拼一拼的方法探索新知。

  量一量組同學發(fā)給以下幾種學具:

  折一折組同學發(fā)給上面的三角形一組。

  拼一拼組同學發(fā)給上面的三角形一組、剪刀一把還有下面這樣的白紙一張。

  在學生探索的過程中教師要走近學生,與他們共同交流探討,在學生有困難的時候要適當給予引導。

  2.多方互動,交流新知

  師:請我的大徒弟(量一量組)的同學先來匯報你們的研究成果。

  (1)首先要求學生說一說你們小組是怎樣進行探究的。

  (2)說出你們組的探究結果怎樣。(在此過程中教師不能急于糾正學生不正確的`結論,因為這是知識的形成過程。)

  (3)請學生說說通過探究活動你們組得出的結論是什么。

  師:大徒弟就是大徒弟,匯報的真不錯。二徒弟(折一折組)你們有沒有更好的辦法呢?

  引導這一組從探究的過程和結論與同學、老師交流。

  師:別看小徒弟(拼一拼組)這么小,方法可能是最好的。快來把你們的方法給大家匯報匯報。

  同樣引導這一組從探究的過程和結論與同學、老師交流。

  3.思想碰撞,夯實新知

  師:三個徒弟你們能說說誰的方法最好嗎?

  學生都會說自己的方法最好,再讓其他同學發(fā)表自己的意見,此時生生之間,師生之間交流。(教師要引導學生說出量一量的方法可能由于量的不夠準確,所以結果可能比180 大一些,或小一些。而其他兩種方法沒有改變角的大小,所以他們的是正確的。)

  師:不論你量的怎樣認真都會有不準確的地方,這就叫誤差。而其他兩組同學的方法更準確。三角形的內(nèi)角和就是180 。(板書:三角形的內(nèi)角和是180 )

  四、走進生活,提升運用能力

  1.出示課前那架柁標出它的頂角是120 ,求它的一個底角是多少度?

  2.給你三根木條,能做出一個有兩個直角的三角形嗎?

  五、總結

  師:徒弟們你們經(jīng)過三年的苦學,終于學有所成了。今天,能說說你們在我這里都學到了什么手藝嗎?

  六、拓展新知,課外延伸

  師:俗話說“活到老,學到老!蹦銈兿律胶筮要繼續(xù)探索,所以我要把我畢生都沒有完成的任務交給你們?nèi)パ芯俊?/p>

  大屏幕出示:

  能用你今天學過的知識和方法探索一下四邊形的內(nèi)角和是多少度嗎?

三角形內(nèi)角和教學設計10

  微課作品介紹本微課是蘇教版小學數(shù)學四年級下冊《三角形內(nèi)角和》的課前先學指導,學生在家觀看視頻內(nèi)容,同時結合學習任務單,在視頻的指導下通過猜、量、算、剪、拼等方法探索三角形的內(nèi)角和是180度。學生在課前利用視頻完成學習任務單,然后到學校課堂中和老師、同學進行交流,再進一步提升。

  教學需求分析適用對象分析該微課的適用對象是蘇教版四年級下學期的小學生,學生應認識三角形的基本特征,學習過角和角的度量,知道*角是180度。具備了一定的動手操作能力和數(shù)學思維能力。

  學習內(nèi)容分析該微課讓學生發(fā)現(xiàn)、驗證三角形的內(nèi)角和是180度的結論。這部分內(nèi)容是在學生認識了三角形的基本特征和三邊的關系后,三角形分類前學習的。這在蘇教版中和原來的教材不同,放在這里是因為三角形內(nèi)角和是學生進一步學習和探究三角形分類方法的重要前提。學生知道了三角形的內(nèi)角和是180度,對三角形分類及命名的方法,才能知其然,還能知其所以然。

  教學目標分析:

  1、通過學生的實際操作,理解并驗證三角形的內(nèi)角和等于180°,并能夠運用結論解決簡單的實際問題;

  2、使學生通過觀察、實驗,經(jīng)歷猜想與驗證三角形內(nèi)角和的探索過程,在活動中發(fā)展學生的空間觀念和推理能力。

  3、已經(jīng)有不少學生知道了三角形內(nèi)角和是180度,,但卻不知道怎樣才能得出這個結論,因此學生在學習時的主要目標是驗證三角形的內(nèi)角和是180度。

  教學過程設計本微課教學過程:

  一、明確多邊形的內(nèi)角、內(nèi)角和概念。

  首先要明確概念,才好繼續(xù)研究。內(nèi)角、內(nèi)角和以前學生沒有學過,還是有必要給學生明確的。

  二、探索三角尺的內(nèi)角和,猜想三角形的內(nèi)角和。

  從學生熟悉的三角板開始計算三角板的內(nèi)角和,引發(fā)學生猜想,三角形的內(nèi)角和是多少。

  三、驗證三角形內(nèi)角和是否為180°。

  驗證分為三個層次:首先是量教材提供的三角形,算出內(nèi)角和,可能會有誤差。其次把三角形三個內(nèi)角拼在一起,拼成是*角180度。最后自己任意畫一個三角形剪下來,拼一拼,得出結論。讓學生經(jīng)歷由特殊到一般的認知過程。

  四、拓展延伸,探究梯形、*行四邊形和六邊形內(nèi)角和。

  由三角形的內(nèi)角和,學生自然就會想到已學過的梯形、*行四邊形和六邊形內(nèi)角和是多少呢。教師留下問題讓學有余力的學生進一步去探索。

  五、自主學習檢測

  學生觀看完了視頻是否學會了,是需要檢測的。學生通過做完自主檢測后進行校對,檢驗自己所學。

  學習指導本微視頻應配合下面的學習任務單共同使用,在觀看視頻時,根據(jù)視頻提示隨時暫停視頻依次完成任務單。

  自主學習前準備:

  請在自主學習前閱讀學習任務單的學習指南,并準備好數(shù)學書、一副三角尺、量角器、剪刀、鉛筆等學習用具。

  自主學習任務單:

  通過觀看教學資源自學,完成下列學習任務:

  任務一:明確多邊形的內(nèi)角、內(nèi)角和概念

  1、你認識下面的圖形嗎?他們各有幾個角,請在圖中標出來。

  2、你剛才標出的角,又叫做每個圖形的()。

  3、如果把一個圖形所有的內(nèi)角的度數(shù)加起來,所得的總和就是這個圖形的()。

  4、你知道圖中長方形和正方形的內(nèi)角和是多少度嗎?你是怎么知道的?

  長方形內(nèi)角和正方形內(nèi)角和

  任務二:探索三角尺的內(nèi)角和,猜想三角形的內(nèi)角和。

  1、請拿出一副三角尺,你知道每塊三角尺上各個角的度數(shù)?在圖上標出來。

  2、算一算,每個三角尺3個內(nèi)角的和是多少度。

  3、根據(jù)你剛才的計算結果,你能猜想一下,任意一個三角形它的內(nèi)角和的度數(shù)呢?

  任務三:驗證任意三角形內(nèi)角和是否為180°

  1、請從數(shù)學書本第113頁剪下3個三角形,用量角器量出每個三角形3個內(nèi)角的度數(shù)。

  算一算,每個三角形3個內(nèi)角的和是多少度。

  2還可以用什么辦法來驗證剪下的這3個三角形的內(nèi)角和等于180度?(把你的驗證方法展示在下面。)如果你想不出來請看下面的提示。

  溫馨提示:*角正好是180°,這三個內(nèi)角能正好拼成一個*角嗎?

  3、自己任意畫一個三角形,先剪下來,再拼一拼。

  4、你發(fā)現(xiàn)了什么?寫在下面。

  5、請你回顧一下我們研究三角形形內(nèi)角和是180度的過程?簡單的寫下來。

  任務四:拓展延伸

  任務一中還有梯形、*行四邊形和六邊形,如果你有興趣,你可以研究他們的內(nèi)角和。

  任務五:自主學習檢測

  1、右邊三角形中,∠1=75°,∠2=40°,∠3=()°

  2、第3個三角形還可以怎樣計算,哪種更簡便?

  3、一塊三角尺的內(nèi)角和是180°,用兩塊完全一樣的三角尺拼成一個三角形,拼成的三角形內(nèi)角和是多少度?

  4、用一張長方形紙折一折,填一填

  配套學習資料蘇教版小學數(shù)學四年級下冊教材

  制作技術介紹Camtasia Studio軟件制作、PPT。


《三角形的內(nèi)角和》教學設計10篇(擴展3)

——三角形內(nèi)角和教學設計10篇

三角形內(nèi)角和教學設計1

  課題

  三角形的內(nèi)角和

  

  教學目標

  1.讓學生親自動手,通過量、剪、拼等活動發(fā)現(xiàn)、證實三角形內(nèi)角和是180°,并會應用這一知識解決生活中簡單的實際問題。

  2.在學生在動手獲取知識的過程中,培養(yǎng)學生的實踐能力,并通過動手操作把三角形內(nèi)角和轉化為*角的探究活動,向?qū)W生滲透“轉化”數(shù)學思想。

  3.使學生體驗成功的喜悅,激發(fā)學生主動學習數(shù)學的興趣。

  重點難點

  重點:讓學生經(jīng)歷“三角形內(nèi)角和是180°”這一知識的形成、發(fā)展和應用過程。

  難點:探索、驗證三角形內(nèi)角和是180°的過程。

  過程

  

  體驗目標

  “學”與“教”

  創(chuàng)設問題情境

  課件出示:兩個三角板

  遵循由特殊到一般的規(guī)律進行探究,引發(fā)學生的猜想后,引導學生探討所有的三角形的內(nèi)角和是不是也是180°。

  這是同學們熟悉的三角尺,請同學們說一說這兩個三角尺的三個內(nèi)角分別是多少度?

  生: 45°、90°、45°。

  生: 30°、90°、60°。

  師:仔細觀察,算一算這兩個三角形的內(nèi)角和是多少度?

  生:90°+45°+45°=180°。

  生:90°+60°+30°=180°。

  師:通過剛才的算一算,我們得到這兩個三角形的內(nèi)角和是180°,由此你想到了什么?

  生:直角三角形內(nèi)角和是180°,銳角三角形、鈍角三角形內(nèi)角和也是180°。

  師:這只是我們的一種猜想,三角形的內(nèi)角和是否真的等于180°,還需要我們?nèi)ヲ炞C。

  構建

  模型

  每個組準備六個三角形(銳角三角形2個、直角三角形2個、鈍角三角形2個)

  課件

  學生自己剪的一個任意三角形

  大膽放手讓學生通過有層次的自主操作活動,幫助學生結合已有的知識經(jīng)驗,探究驗證三角形內(nèi)角和的不同方法。

  讓學生在經(jīng)歷“提出猜想—實驗驗證—得出結論”中感悟、體驗知識的形成過程,將“三角形內(nèi)角和是180°”一點一滴,浸入學生大腦,融入已有認知結構。

  這一系列活動同時還潛移默化地向?qū)W生滲透了“轉化”的數(shù)學思想,為后繼學習奠定了必要的基礎。

  師:之前老師為每個同學準備了①-⑥六個三角形,下面請組長分發(fā)給每個三角形,拿到手后,先別著急,先想一想你準備用什么方法去驗證三角形內(nèi)角和?

  學生動手操作驗證

  師:匯報時,請先說一說是幾號三角形?然后說一說這個三角形是什么三角形?

  學生匯報:

  生1:③號三角形是直角三角形,內(nèi)角和是180°。

  生2:②號三角形是銳角三角形,內(nèi)角和是180°。

  生3:⑤號三角形是鈍角三角形,內(nèi)角和是180°。

  生4:④號三角形是直角三角形,內(nèi)角和是180°。

  生5:①號三角形是鈍角三角形,內(nèi)角和是180°。

  生6:⑥號三角形是銳角三角形,內(nèi)角和是180°。

  師:除了量的方法外,還有其他方法驗證三角形內(nèi)角和嗎?

  生1:分別剪下三角形三個角拼成*角,*角是180°,所以推理得出三角形內(nèi)角和是180°。

  生2:分別撕下三角形三個角拼成*角,*角是180°,所以推理得出三角形內(nèi)角和是180°。

  生3:把三角形的三個角折成*角,*角是180°,所以推理得出三角形內(nèi)角和是180°。

  這些方法都驗證了:三角形的內(nèi)角和是180°。

  師:觀察這些三角形的內(nèi)角和是多少度?這些三角形的內(nèi)角和都是180°,這是不是老師故意安排好的呢?

  師:有沒有**疑,用什么方法驗證?

  生用自己剪的任意三角形再次驗證三角形內(nèi)角和是否180°。

  生:得出內(nèi)角和還是180°。

  師:不管是老師提供的三角形,還是你們自己準備的三角形,通過我們的算一算、拼一拼、折一折,都得出了三角形的內(nèi)角和是180°。

  師:我們已經(jīng)學習了三角形的分類,三角形可以分成銳角三角形、直角三角形、鈍角三角形。這些三角形的內(nèi)角和是180°,我們能把它們概括成一句話嗎?

  生:三角形的內(nèi)角和是180°。

  師:看來我們的猜想是正確的。

  師:早在20xx多年前著名數(shù)學家歐幾里得就已經(jīng)得到這個結論,到了初中以后同學們還會用更加嚴密的方法證明三角形的內(nèi)角和是180°。

  解釋

  運用拓展

  課件

  正方形紙

  讓學生更深的對所學的新知加以鞏固,從而促使學生綜合運用知識,解決問題的能力。同時在練習中發(fā)展學生的觀察、歸納、概括能力和初步的空間想象力。

  1.∠1=40°,∠2=48°,求∠3有多少度?

  2.算出下面三角形∠3的度數(shù)。

 、拧1=42°,∠2=38°,∠3=?

 、啤1=28°,∠2=62°,∠3=?

 、恰1=80°,∠2=56°,∠3=?

  師:你是怎樣算的?這三個三角形各是什么三角形?

  **:在一個三角形中最多有幾個鈍角?

  在一個三角形中最多有幾個直角?

  3.游戲:將準備的正方形紙對折成一個三角形?

  師:這個三角形的內(nèi)角和是多少度?再對折一次,現(xiàn)在內(nèi)角和是多少度?如果繼續(xù)折下去,越折越小,三角形的內(nèi)角和會是多少度?

  說明:三角形大小變了,內(nèi)角和不變。

  4.有兩個完全一樣的三角尺拼成一個三角形,這個三角形的內(nèi)角和是多少度?

  說明:三角形形狀變了,內(nèi)角和不變。

  5.根據(jù)所學知識,你能想辦法求出下面圖形的內(nèi)角和嗎?

  板書

  設計

  三角形內(nèi)角和

 、偬 鈍角三角形 內(nèi)角和180°

  ②號 銳角三角形 內(nèi)角和180°

  三角形內(nèi)角和是180°

 、厶 直角三角形 內(nèi)角和180°

  ④號 直角三角形 內(nèi)角和180°

 、萏 鈍角三角形 內(nèi)角和180°

  ⑥號 銳角三角形 內(nèi)角和180°

  學具教具準備

  課件三角形紙片量角器正方形紙

三角形內(nèi)角和教學設計2

  設計思路

  遵循由特殊到一般的規(guī)律進行探究活動是這節(jié)課設計的主要特點之一。學生對三角尺上每個角的度數(shù)比較熟悉,就從這里入手。先讓學生算出每塊三角尺三個內(nèi)角的和是180°,引發(fā)學生的猜想:其它三角形的內(nèi)角和也是180°嗎?接著,引導學生小組合作,任意畫出不同類型的三角形,用通過量一量、算一算,得出三角形的內(nèi)角和是180°或接近180°(測量誤差),再引導學生通過剪拼的方法發(fā)現(xiàn):各類三角形的三個內(nèi)角都可以拼成一個*角。再利用課件演示進一步驗證,由此獲得三角形的內(nèi)角和是180°的結論。這一系列活動潛移默化地向?qū)W生滲透了“轉化”數(shù)學思想,為后繼學習奠定了必要的基礎。

  最后讓學生運用結論解決實際問題,練習的安排上,注意練習層次,共安排三個層次,逐步加深。練習形式具有趣味性,激發(fā)了學生主動解題的積極性。第一個練習從知識的直接應用到間接應用,數(shù)學信息的出現(xiàn)從比較顯現(xiàn)到較為隱藏。這些題檢測不同層次的學生是否掌握所學知識應該達到的基本要求,顧及到智力水*發(fā)展較慢和中等的同學,第3個練習設計了開放性的`練習,在小組內(nèi)完成。由一個同學出題,其它三個同學回答。先給出三角形兩個內(nèi)角的度數(shù),說出另外一個內(nèi)角。有唯一的答案。訓練多次后,只給出三角形一個內(nèi)角,說出其它兩個內(nèi)角,答案不唯一,可以得出無數(shù)個答案。讓學生在游戲中消除疲倦激發(fā)興趣,拓展學生思維。兼顧到智力水*發(fā)展較快的同學。在整個教學設計中,本著“學貴在思,思源于疑”的思想,不斷創(chuàng)設問題情境,讓學生去實驗、去發(fā)現(xiàn)新知識的奧妙,從而讓學生在動手操作、積極探索的活動中掌握知識,積累數(shù)學活動經(jīng)驗,發(fā)展空間觀念和推理能力。

  教學目標

  1、讓學生親自動手,通過量、剪、拼等活動發(fā)現(xiàn)、證實三角形內(nèi)角和是180°,并會應用這一知識解決生活中簡單的實際問題。

  2、讓學生在動手獲取知識的過程中,培養(yǎng)學生的創(chuàng)新意識、探索精神和實踐能力。并通過動手操作把三角形內(nèi)角和轉化為*角的探究活動,向?qū)W生滲透“轉化”數(shù)學思想。

  3、使學生體驗成功的喜悅,激發(fā)學生主動學習數(shù)學的興趣。

  教材分析

  三角形的內(nèi)角和是三角形的一個重要特征。本課是安排在學習三角形的概念及分類之后進行的,它是學生以后學習多邊形的內(nèi)角和及解決其它實際問題的基礎。學生在掌握知識方面:已經(jīng)掌握了三角形的分類,比較熟悉*角等有關知識;能力方面:經(jīng)過三年多的學習,已具備了初步的動手操作能力和主動探究能力以及合作學習的習慣。

  因此,教材很重視知識的探索與發(fā)現(xiàn),安排了一系列的實驗操作活動。教材呈現(xiàn)教學內(nèi)容時,不但重視體現(xiàn)知識的形成過程,而且注意留給學生充分進行自主探索和交流的空間,為教師靈活**教學提供了清晰的思路。概念的形成沒有直接給出結論,而是通過量、算、拼等活動,讓學生探索、實驗、發(fā)現(xiàn)、討論交流、推理歸納出三角形的內(nèi)角和是180°。

  教學重點

  讓學生經(jīng)歷“三角形內(nèi)角和是180°”這一知識的形成、發(fā)展和應用的全過程。

  教學準備

  多**課件、學具。

  教學過程

  一、激趣引入

 。ㄒ唬┱J識三角形內(nèi)角

  師:我們已經(jīng)認識了什么是三角形,誰能說出三角形有什么特點?

  生1:三角形是由三條線段圍成的圖形。

  生2:三角形有三個角,……

  師:請看屏幕(課件演示三條線段圍成三角形的過程)。

  師:三條線段圍成三角形后,在三角形內(nèi)形成了三個角,(課件分別閃爍三個角及的弧線),我們把三角形里面的這三個角分別叫做三角形的內(nèi)角。(這里,有必要向?qū)W生直觀介紹“內(nèi)角”。)

  (二)設疑,激發(fā)學生探究新知的心理

  師:請同學們幫老師畫一個三角形,能做到嗎?(激發(fā)學生主動學習的心理)

  生:能。

  師:請聽要求,畫一個有兩個內(nèi)角是直角的三角形,開始。(設置矛盾,使學生在矛盾中去發(fā)現(xiàn)問題、探究問題。)

  師:有誰畫出來啦?

  生1:不能畫。

  生2:只能畫兩個直角。

  生3:只能畫長方形。

  師(課件演示):是不是畫成這個樣子了?哦,只能畫兩個直角。

  師:問題出現(xiàn)在哪兒呢?這一定有什么奧秘?想不想知道?

  生:想。

  師:那就讓我們一起來研究吧!

 。ń沂久,巧妙引入新知的探究)

  二、動手操作,探究新知

 。ㄒ唬┭芯刻厥馊切蔚膬(nèi)角和

  師:請看屏幕。(播放課件)熟悉這副三角板嗎?請拿出形狀與這塊一樣的三角板,并同桌互相指一指各個角的度數(shù)。(課件閃動其中的一塊三角板)

  生:90°、60°、30°。(課件演示:由三角板抽象出三角形)

  師:也就是這個三角形各角的度數(shù)。它們的和怎樣?

  生:是180°。

  師:你是怎樣知道的?

  生:90°+60°+30°=180°。

  師:對,把三角形三個內(nèi)角的度數(shù)合起來就叫三角形的內(nèi)角和。

  師:(課件演示另一塊三角板的各角的度數(shù)。)這個呢?它的內(nèi)角和是多少度呢?

  生:90°+45°+45°=180°。

  師:從剛才兩個三角形內(nèi)角和的計算中,你發(fā)現(xiàn)什么?

  生1:這兩個三角形的內(nèi)角和都是180°。

  生2:這兩個三角形都是直角三角形,并且是特殊的三角形。

 。ǘ┭芯恳话闳切蝺(nèi)角和

  1、猜一猜。

  師:猜一猜其它三角形的內(nèi)角和是多少度呢?同桌互相說說自己的看法。

  生1:180°。

  生2:不一定。

  ……

  2、操作、驗證一般三角形內(nèi)角和是180°。

  (1)小組合作、進行探究。

  師:所有三角形的內(nèi)角和究竟是不是180°,你能用什么辦法來證明,使別人相信呢?

  生:可以先量出每個內(nèi)角的度數(shù),再加起來。

  師:哦,也就是測量計算,是嗎?那就請四人小組共同研究吧!

  師:每個小組都有不同類型的三角形。每種類型的三角形都需要驗證,先討論一下,怎樣才能很快完成這個任務。(課前每個小組都發(fā)有銳角三角形、直角三角形、鈍角三角形,指導學生選擇解決問題的策略,進行合理分工,提高效率。)

 。2)小組匯報結果。

  師:請各小組匯報探究結果。

  生1:180°。

  生2:175°。

  生3:182°。

  (三)繼續(xù)探究

  師:沒有得到**的結果。這個辦法不能使人很信服,怎么辦?還有其它辦法嗎?

  生1:有。

  生2:用拼合的辦法,就是把三角形的三個內(nèi)角放在一起,可以拼成一個*角。

  師:怎樣才能把三個內(nèi)角放在一起呢?

  生:把它們剪下來放在一起。

  1、用拼合的方法驗證。

  師:很好,請用不同的三角形來驗證。

  師:小組內(nèi)完成,仍然先分工怎樣才能很快完成任務,開始吧。

  2、匯報驗證結果。

  師:先驗證銳角三角形,我們得出什么結論?

  生1:銳角三角形的內(nèi)角拼在一起是一個*角,所以銳角三角形的內(nèi)角和是180°。

  生2:直角三角形的內(nèi)角和也是180°。

  生3:鈍角三角形的內(nèi)角和還是180°。

  3、課件演示驗證結果。

  師:請看屏幕,老師也來驗證一下,是不是跟你們得到的結果一樣?(播放課件)

  師:我們可以得出一個怎樣的結論?

  生:三角形的內(nèi)角和是180°。

 。ń處煱鍟喝切蔚膬(nèi)角和是180°學生齊讀一遍。)

  師:為什么用測量計算的方法不能得到**的結果呢?

  生1:量的不準。

  生2:有的量角器有誤差。

  師:對,這就是測量的誤差。

三角形內(nèi)角和教學設計3

  【教學內(nèi)容】

  《人教版九年義務教育教科書 數(shù)學》四年級下冊《三角形的內(nèi)角和》

  【教學目標】

  1.使學生知道三角形的內(nèi)角和是180 ,并能運用三角形的內(nèi)角和是180 解決生活中常見的問題。

  2.讓學生經(jīng)歷量一量、折一折、拼一拼等動手操作的過程。通過觀察、 判斷、 交流和推理探索用多種方法證明三角形的內(nèi)角和是180 。

  3.培養(yǎng)學生自主學習、互動交流、合作探究的能力和習慣,培養(yǎng)學習數(shù)學的興趣,感受學習數(shù)學的樂趣。

  【教學重點】

  使學生知道三角形的內(nèi)角和是180 ,并能運用它解決生活中常見的問題。

  【教學難點】

  通過多種方法驗證三角形的內(nèi)角和是180 。

  【教學準備】

  課件。四組教學用三角板。鉛筆。大帆布兜子。固體膠。剪刀?曜尤舾。

  【教學過程】

  一、激趣導入,提煉學習方法

  1.課程開始,教師耳朵上別著一根鉛筆,肩背大帆布兜子,里面裝著一個量角器和幾把缺了直角的三角板,手拿一張不規(guī)則的白紙,以一位老木匠的身份出現(xiàn)在學生面前。激發(fā)學生的好奇心。然后**:“你們好,我是一個有三十多年工作經(jīng)驗的老木匠了。我收了三個徒弟,他們已經(jīng)從師學藝三年了,今天我想讓他們下山掙錢,可又不放心,想出幾道題考驗考驗他們,又不知我的題合不合適,大家想不想先當一會我的徒弟試試這幾道題呢?”

  2.繼續(xù)以老木匠的身份說:前幾天我造了一架柁,徒弟們能不能用我手中的工具驗證一下橫木和立柱是不是成直角的。

  3.選擇工具,總結方法。

  讓選擇不同工具的同學用自己的方法驗證。教師隨機板書:量一量、拼一拼、折一折。

  師:你們真是愛動腦筋的好徒弟,那么請聽好師傅的第二個問題。

  4.導入新課。

  圖中有很多三角形,不論什么樣的三角形都有三個角,這三個角就叫做三角形的內(nèi)角,徒弟們能不能用學過的方法或者你喜歡的方法求一求三角形三個內(nèi)角的和是多少?(板書課題:三角形的內(nèi)角和)

  二、動手操作,探索交流新知

  1.分組活動,探索新知

  根據(jù)學生的選擇把學生分成三組,分別采用量一量、折一折和拼一拼的方法探索新知。

  量一量組同學發(fā)給以下幾種學具:

  折一折組同學發(fā)給上面的三角形一組。

  拼一拼組同學發(fā)給上面的三角形一組、剪刀一把還有下面這樣的白紙一張。

  在學生探索的過程中教師要走近學生,與他們共同交流探討,在學生有困難的時候要適當給予引導。

  2.多方互動,交流新知

  師:請我的大徒弟(量一量組)的同學先來匯報你們的研究成果。

  (1)首先要求學生說一說你們小組是怎樣進行探究的。

  (2)說出你們組的探究結果怎樣。(在此過程中教師不能急于糾正學生不正確的結論,因為這是知識的形成過程。)

  (3)請學生說說通過探究活動你們組得出的結論是什么。

  師:大徒弟就是大徒弟,匯報的真不錯。二徒弟(折一折組)你們有沒有更好的辦法呢?

  引導這一組從探究的過程和結論與同學、老師交流。

  師:別看小徒弟(拼一拼組)這么小,方法可能是最好的?靵戆涯銈兊姆椒ńo大家匯報匯報。

  同樣引導這一組從探究的過程和結論與同學、老師交流。

  3.思想碰撞,夯實新知

  師:三個徒弟你們能說說誰的方法最好嗎?

  學生都會說自己的方法最好,再讓其他同學發(fā)表自己的意見,此時生生之間,師生之間交流。(教師要引導學生說出量一量的方法可能由于量的不夠準確,所以結果可能比180 大一些,或小一些。而其他兩種方法沒有改變角的大小,所以他們的是正確的。)

  師:不論你量的怎樣認真都會有不準確的地方,這就叫誤差。而其他兩組同學的方法更準確。三角形的內(nèi)角和就是180 。(板書:三角形的內(nèi)角和是180 )

  四、走進生活,提升運用能力

  1.出示課前那架柁標出它的頂角是120 ,求它的一個底角是多少度?

  2.給你三根木條,能做出一個有兩個直角的三角形嗎?

  五、總結

  師:徒弟們你們經(jīng)過三年的苦學,終于學有所成了。今天,能說說你們在我這里都學到了什么手藝嗎?

  六、拓展新知,課外延伸

  師:俗話說“活到老,學到老!蹦銈兿律胶筮要繼續(xù)探索,所以我要把我畢生都沒有完成的任務交給你們?nèi)パ芯俊?/p>

  大屏幕出示:

  能用你今天學過的知識和方法探索一下四邊形的內(nèi)角和是多少度嗎?

三角形內(nèi)角和教學設計4

  教學要求

  1、通過動手操作,使學生理解并掌握三角形的內(nèi)角和是180°的結論。

  2、能運用三角形的內(nèi)角和是180°這一規(guī)律,求三角形中未知角的度數(shù)。

  3、培養(yǎng)學生動手動腦及分析推理能力。

  教學重點

  三角形的'內(nèi)角和是180°的規(guī)律。

  教學難點

  使學生理解三角形的內(nèi)角和是180°這一規(guī)律。

  教學用具

  每個學生準備銳角三角形、直角三角形、鈍角三角形紙片各一張,量角器。

  教學過程:

  一、出示預習提綱

  1、三角形按角的不同可以分成哪幾類?

  2、一個*角是多少度?1個*角等于幾個直角?

  3、如圖,已知∠1=35°,∠2=75°,求∠3的度數(shù)。

  二、展示匯報交流

  1、投影出示一組三角形:(銳角三角形、鈍角三角形、直角三角形)。三角形有幾個角?老師指出:三角形的這三個角,就叫做三角形的三個內(nèi)角。(板書:內(nèi)角)

  2、三角形三個內(nèi)角的度數(shù)和叫做三角形的內(nèi)角和。(板書課題:三角形的內(nèi)角和)今天我們一起來研究三角形的內(nèi)角和有什么規(guī)律。

  3、以小組為單位先畫4個不同類型的三角形,利用手中的工具分別計算三角形三個內(nèi)角的和各是多少度?

  4、指名學生匯報各組度量和計算的結果。你有什么發(fā)現(xiàn)?

  5、大家算出的三角形的內(nèi)角和都接近180°,那么,三角形的內(nèi)角和與180°究竟是怎樣的關系呢?就讓我們一起來動手實驗研究,我們一定能弄清這個問題的。

  6、剛才我們計算三角形的內(nèi)角和都是先測量每個角的度數(shù)再相加的。在量每個內(nèi)角度數(shù)時只要有一點誤差,內(nèi)角和就有誤差了。我們能不能換一種方法,減少度量的次數(shù)呢?

  提示學生,可以把三個內(nèi)角拼成一個角,就只需測量一次了。

  7、請拿出桌上的直角三角形紙片,想一想,怎樣折可以把三個角拼在一起,試一試。

  8、三個角拼在一起組成了一個什么角?我們可以得出什么結論?(直角三角形的內(nèi)角和是180°)

  9、拿一個銳角三角形紙片試試看,折的方法一樣。再拿鈍角三角形折折看,你發(fā)現(xiàn)了什么?(直角三角形和鈍角三角形的內(nèi)角和也是180°)

  10、那么,我們能不能說所有三角形的內(nèi)角和都是180°呢?為什么?(能,因為這三種三角形就包括了所有三角形)11。老師板書結論:三角形的內(nèi)角和是180°。

  12、一個三角形中如果知道了兩個內(nèi)角的度數(shù),你能求出另一個角是多少度嗎?怎樣求?

  13、出示教材85頁做一做。讓學生試做。

  14、指名匯報怎樣列式計算的。兩種方法均可。

  ∠2=180°—140°—25°=15°

  ∠2=180°(140°+25°)=15°

  課后反思:

  對于三角形的內(nèi)角和,學生并不陌生,在*時的做題中已經(jīng)涉及到了?墒菍W生并不知道如何去驗證,所以本節(jié)課,重點讓孩子們經(jīng)歷體驗,感悟圖形。從而收獲了經(jīng)驗。特別是動手操作將三角形拼成一個直角時,有的孩子將角剪得非常小,很不好拼,在此進行了重點的提示。

三角形內(nèi)角和教學設計5

  知識與技能

  1、通過小組合作,運用直觀操作的方法,探索并發(fā)現(xiàn)三角形內(nèi)角和等于180。能應用三角形內(nèi)角和的性質(zhì)解決一些簡單問題。

  2、經(jīng)歷親自動手實踐、探索三角形內(nèi)角和的過程,體會運用“量一量”、“算一算”、“拼一拼”、“折一折”進行驗證的數(shù)學思想方法,提高動手操作能力和數(shù)學思考能力。

  情感態(tài)度與價值觀

  3、使學生在數(shù)學活動中獲得成功的體驗,感受探索數(shù)學規(guī)律的樂趣。培養(yǎng)學生的創(chuàng)新意識、探索精神和實踐能力,在學生親自動手實踐和歸納中,感受理性的美。

  教學重點:

  1、探索和發(fā)現(xiàn)三角形三個內(nèi)角和的度數(shù)和等于180o。

  2、已知三角形的兩個角的度數(shù),會求出第三個角的度數(shù)。

  教學難點:

  已知三角形的兩個角的度數(shù),會求出第三個角的度數(shù)。

  方法與過程

  教法:主動探究法、實驗操作法。

  學法:小組合作交流法

  教學準備:小黑板、學生、老師準備幾個形狀不同的三角形、量角器。

  教學課時:1課時

  教學過程

  一、預習檢查

  說一說在預習課中操作的感受,應注意哪些問題,三角形的內(nèi)角和等于多少度? 組內(nèi)交流訂正。

  二、情景導入呈現(xiàn)目標

  故事引入。一天,大三角形對小三角形說:“我的個頭大,所以我的內(nèi)角和一定比你的大!毙∪切魏懿桓市牡卣f:“是這樣的嗎?”揭示課題,出示目標。產(chǎn)生質(zhì)疑,引入新課。

  三、探究新知 

  自主學習

  1、活動一、比一比2、活動二、量一量

 。1)什么是內(nèi)角?

 。2)如何得到一個三角形的內(nèi)角和?

  (3)小組活動,每組同學分別畫出大小,形狀不同的若干個三角形。分別量出三個內(nèi)角的度數(shù),并求出它們的和。

 。4)填寫小組活動記錄表。發(fā)現(xiàn)大小,形狀不同的每個三角形,三個內(nèi)角的度數(shù)和都接近度。

  3、說一說,做一做。

 。1)我們把三個角撕下來,再拼在一起,看一看會是怎樣的。

 。2)把三個角折疊在一起,,三個角在一條直線上。從而得到三角形三個內(nèi)角和等于()度。

  四、當堂訓練(小黑板出示內(nèi)容)

  1、三角形的內(nèi)角和是()°,一個等腰三角形,它的一個底角是26°,它的頂角是()。

  2、長5厘米,8厘米,()厘米的三根小棒不能圍成一個三角形。

  3、三角形具有()性。

  4、一個三角形中有一個角是45°,另一個角是它的2倍,第三個角是(),這是一個()三角形。

  5、按角的大小,三角形可以分為()三角形、()三角形、()三角形。

  6、交流學案第三題!∠**做,最后組內(nèi)交流。

  五、點撥升華

  任意三角形三個角的度數(shù)和等于180度。**思索小組交流總結方法教師點撥。

  六、課堂總結

  通過這節(jié)課的學習,你有什么新的收獲或者還有什么疑問?先小組內(nèi)說一說,最后班上交流。

  七、拓展提高

  媽媽給淘氣買了一個等腰三角形的風箏。它的頂角是40°,它的一底角是多少? 先**做,最后組內(nèi)交流。

  板書設計:

  三角形的內(nèi)角和

  測量三個角的度數(shù)求和:結論:

  教學反思:三角形內(nèi)角和等于180°,對于大多數(shù)同學來說并不是新知識。因為在此之前學生已經(jīng)運用過這一知識。因此,我覺得這一堂課的重點不是讓學生記住這一結論,也不是怎樣運用它去解結問題。而是讓學生證明這一結論,即要讓學生親歷探索過程并在探索中驗證。在教學中,通過豐富的材料讓學生動手操作,通過量、撕拼、折拼等實驗活動,讓學生得到的不僅僅是三角形內(nèi)角和的知識,更重要的是學到了怎樣由已知知識探索未知的思維方式與方法,激發(fā)了他們主動探索知識的欲望。通過多種實驗進行操作驗證也讓學生明白了只要善于思考,善于動手就能找到解決問題的方法。

  當然,在教學中也還有一些不順利的地方,比如一些動手能力差的學生未能及時跟進,對于方法不對的學生未能及時指導和幫助等。但是本堂課采用這樣的方式展開教學是學生喜歡的也是有成效的。

三角形內(nèi)角和教學設計6

  【設計理念】

  新課標重視讓學生經(jīng)歷數(shù)學知識的形成過程,要求教師創(chuàng)設有效的問題情境激發(fā)學生的參與欲望,提供足夠的時間和空間讓學生經(jīng)歷觀察、猜測、驗證、交流反思等過程,使學生在動手操作、合作交流等活動中親身經(jīng)歷知識的形成過程。這樣,學生不僅可以掌握知識,而且可以積累探究數(shù)學問題的活動經(jīng)驗,發(fā)展空間觀念和推理能力。

  教材內(nèi)容】新人教版義務教育課程標準實驗教科書四年級下冊數(shù)學第67頁例6、“做一做”及練習十六的第1、2、3題。

  【教材分析】

  三角形的內(nèi)角和是三角形的一個重要特征。本課是安排在三角形的概念及分類之后教學的,它是學生以后學習多邊形的內(nèi)角和及解決其它實際問題的基礎。教材很重視知識的探索與發(fā)現(xiàn),安排兩次實驗操作活動。教材呈現(xiàn)教學內(nèi)容時,不但重視體現(xiàn)知識的形成過程,而且注意留給學生充分進行自主探索和交流的空間和時間,為教師靈活**教學提供了清晰的思路。概念的形成沒有直接給出結論,而是通過量、拼等活動,讓學生探索、實驗、交流、推理歸納出三角形的內(nèi)角和是180°。

  【學情分析】

 。、在學習本課時,學生已經(jīng)有了探索三角形內(nèi)角和的知識基礎:知道直角和*角的度數(shù),會用量角器度量角的度數(shù);認識長方形、正方形,知道他們的四個角都是直角;認識了三角形,知道了三角形按角分有銳角三角形、直角三角形和鈍角三角形;已經(jīng)知道了等腰三角形和正三角形。

 。、已經(jīng)有一部分學生知道了三角形內(nèi)角和是180°,只是知其然而不知所以然。

  【教學目標】

  1通過“量、剪、拼”等活動發(fā)現(xiàn)、驗證三角形的內(nèi)角和是180°,并能運用這個知識解決一些簡單的問題。

  2.在觀察、猜想、操作、合作、分析交流等具體活動中,提高動手操作能力,積累基本的數(shù)學活動經(jīng)驗,發(fā)展空間觀念和推理能力。

  3.在參與數(shù)學學習活動的過程中,獲得成功的體驗,感受數(shù)學探究的嚴謹與樂趣。

  【教學重點】

  探索發(fā)現(xiàn)、驗證“三角形內(nèi)角和是180°”,并運用這個知識解決實際問題。

  【教學難點】驗證“三角形的內(nèi)角和是180°”。

  【教(學)具準備】

  多**課件;銳角三角形、直角三角形、鈍角三角形紙片若干個各類三角形(也包括等邊、等腰)、長方形、正方形若干個;每人一個量角器;一把剪刀;每人一副三角尺。

  【教學步驟】

  一、復習舊知引出課題

  1、你已經(jīng)知道有關三角形的哪些知識?

  2、出示課題:三角形的內(nèi)角和

  設計意圖:也自然導入新課。

  二、提出問題引發(fā)猜想

  1、提出問題:看到這個課題,你有什么問題想問的?

  預設:(1)三角形的內(nèi)角指的是哪些角?

 。2)三角形的內(nèi)角和是什么意思?

 。3)三角形的內(nèi)角一共是多少度?

  2、引發(fā)猜想

  猜一猜:三角形的內(nèi)角和是多少度?你是怎么猜的?

  設計意圖:提出一個問題比解決一個問題更重要。課始在復習三角形已學知識后,引導學生提出有關三角形的新問題,讓學生學習自己想研究的內(nèi)容,無疑激發(fā)了學生的學習興趣,培養(yǎng)了學生的問題意識。由于學生在*時使用三角板時已經(jīng)若隱若現(xiàn)地有了特殊的直角三角形的內(nèi)角和是180度這一感覺,因此本環(huán)節(jié),要求學生猜一猜三角形的內(nèi)角和是多少,并說說是怎么猜的,以激發(fā)學生已有知識經(jīng)驗,并體會到猜想要合理且有根據(jù),同時也為推理驗證的引出作必要的鋪墊。

  三、操作驗證形成結論

  1、交流驗證方法:

 。1)用什么方法證明三角形的內(nèi)角和是180度呢?

  預設:

 、倭克惴

 、诩羝捶

  ③折拼法等

 。2)三角形的個數(shù)有無數(shù)個,驗證哪些三角形可以**所有的三角形?我們的操作過程怎么分工才會做到省時又高效?

  2、動手驗證

  3、全班匯報交流

  4、小結:剛才通過大家的動手操作驗證了三角形的內(nèi)角和是180°度。但動手操作會存在一定的誤差,我們的結論也可能存在偏差。

  5、方法拓展

  推理驗證:用直角三角形的內(nèi)角和來證明其他三角形內(nèi)角和是180°的方法。

  6、形成結論:任意三角形的內(nèi)角和是180°。

  設計意圖:《標準》指出:“教師應激發(fā)學生的積極性,向?qū)W生提供充分從事數(shù)學活動的機會,幫助他們在自主探索和合作交流的過程中真正理解和掌握基本的數(shù)學知識與技能、數(shù)學思想和方法,獲得廣泛的數(shù)學活動經(jīng)驗!辈聹y后先**思考驗證的方法,再進行全班交流,給學生充分的活動時間和空間,讓學生動手操作,使學生在量、剪、拼、折等一系列操作活動中發(fā)現(xiàn)了三角形內(nèi)角和是180°這個結論。在探索活動前,交流如何使研究樣本具有**性和全面性與如何分工做到操作省時高效這兩個問題,培養(yǎng)學生嚴謹、科學正確的研究態(tài)度,讓學生在活動中積累基本的數(shù)學活動經(jīng)驗,為后續(xù)的學習提供了經(jīng)驗支撐。

  四、應用結論解決問題

  1、鞏固新知:想一想,算一算。

  2、解決問題:等腰三角形風箏的頂角是多少度?

  3、辨析訓練,完善結論。

  五、課堂總結,歸納研究方法

  今天這節(jié)課你學到了哪些知識?你是怎樣得到這些知識的?

  六、課后延伸:用今天所學的方法繼續(xù)研究四邊形的內(nèi)角和。

  七、板書設計:

  三角形的內(nèi)角和

  猜測:三角形的內(nèi)角和是180°?

  驗證:量拼

  結論:任意三角形的內(nèi)角和是180°

三角形內(nèi)角和教學設計7

  一、說教材

  北師版八年級下冊第六章《證明一》,是在前面對幾何結論已經(jīng)有了一定的直觀認識的基礎上編排的,而前幾冊對有關幾何結論都曾進行過簡單的說理,本章內(nèi)容則嚴格給出這些結論的證明,并要求學生掌握證明的一般步驟及書寫表達格式!度切蝺(nèi)角和定理的證明》則是對前幾節(jié)證明的自然延續(xù)。此外,它的證明中引入了輔助線,這些都為后繼學習奠定了基礎。

  二、說目標

  1.知識目標:掌握“三角形內(nèi)角和定理的證明”及其簡單的應用。

  2.能力目標培養(yǎng)學生的數(shù)學語言表達、邏輯推理、問題思考、組內(nèi)及組間交流、動手實踐等能力。

  3.情感、態(tài)度、價值觀:

  在良好的師生關系下,建立輕松的學習氛圍,使學生體會獲得知識的成就感及與他人合作的樂趣,以增強其數(shù)學學習的自信心。

  4.教學重點、難點

  重點:三角形的內(nèi)角和定理的證明及其簡單應用。

  難點:三角形的內(nèi)角和定理的證明方法的討論。

  三、說學校及學生現(xiàn)實情況

  我校是藍田縣一所普通初中,四面非山即嶺,距藍田縣城四十里之遙。但由于國家對西部教育的大力**,學校有遠程多**網(wǎng)絡教室,為師生提供了良好的學習硬件環(huán)境。我校學生幾乎全部來自本鎮(zhèn)農(nóng)村,而我所教授的八年級四班學生,大多家庭貧苦,所以學習認真踏實,有強烈的求知欲;此外,善于鉆研是他們的特點,并且,有較強的合作交流意識。

  四、說教法

  根據(jù)本節(jié)課教學內(nèi)容特點,我采用啟發(fā)、引導、探索相結合的教學方法,使學生充分發(fā)揮學習主動性、創(chuàng)造性。

  五、說教學設計

  〈一〉、創(chuàng)設情景,直入主題

  一堂新課的引入是教師與學生活動的開始,而一個成功的引入,可使學生破除畏難心理,對知識在短時間內(nèi)產(chǎn)生濃厚的興趣,接下來的教學活動就變得順理成章。我的具體做法是:簡單回憶舊知識,“證明的一般步驟是什么?”學生輕松做答,我肯定之后緊接著說:“本節(jié)課就是用證明的方法學習一個熟悉的結論!是什么呢?請看大屏幕!”。盡量使問題簡單化,這樣更利于學生投入新課。

  〈二〉、交流對話,引導探索

  1、巧妙**,合理引導

  證明思想的引入時,問:同學們,七年級時如何得到此結論?(留一定時間讓他們討論、交流、達成共識)學生回答后,我及時肯定并鼓勵后拋出問題:他們的共同之處是什么?學生容易回答:湊成一*角。我說:很好!那你們用這樣的思想能證明這個命題是個真命題嗎?趕快試試吧!這樣,既引導了證明的方向,又激發(fā)了學生的學習興趣。接下來學生做題,我巡視。同時讓一學生板演。

  2、恰當示范,培養(yǎng)學生正確的書寫能力

  在學生做完之后,我與他們一道分析板演同學證明是否合理,并利用多**給出正確書寫方法。

  3、一題多解,放手讓學生走進自主學習空間

  正因為學生的預習,所以他們證明的方法有所局限,這時,我拋出問題:再想想,還有其他方法嗎?將課堂時間又交還他們,將其思維推向**。學生思考,繼而熱烈討論,此時,我又走到學生中去,對有困難的學生多加關注和指導,不放棄任何一個,同時,借此機會增進教師與學困生之間的情誼,為繼續(xù)學習奠定基礎。最后,請有新方法的同學敘述其思想方法,我用大屏幕展示不同做法的合情推理過程。

  4、展示歸納,合理演繹

  利用多**展示三角形內(nèi)角和定理的幾種表達形式,以促其學以致用。

  5、反饋練習

  用隨堂練習來鞏固學生所學新知,另一方面進一步提高學生的書寫能力。同時,在他們作完之后,多**展示正確寫法,加強教學效果。

  〈三〉、課堂小結

  1 采用讓學生感性的談認識,談收獲。設計問題:

  2(1)、本節(jié)課我們學了什么知識?

 。2)、你有什么收獲?

  目的是發(fā)揮學生主體意識,培養(yǎng)其語言概括能力。

  六、說教學反思

  本節(jié)課主要是以嚴謹?shù)倪壿嬜C明方法,驗證三角形內(nèi)角和等于180度。讓學生充分體會有理有據(jù)的推理才是可靠的。而證明思想、書寫的培養(yǎng),是本節(jié)課的重點。自主學習、合作交流是新課程理念,也是我本節(jié)課的設計意圖。從學生課堂表現(xiàn)可以看出,教學效果良好。而學生的一些出乎意料的做法讓我倍感驚喜!把學生還給課堂,把課堂還給學生,也是我一貫的做法。

三角形內(nèi)角和教學設計8

  教學目標:

  1、通過測量一量、拼一拼、折一折三個活動,探索和發(fā)現(xiàn)三角形三個內(nèi)角的度數(shù)和等于180°。

  2、已知三角形兩個角的度數(shù),會求出第三個角的度數(shù)。

  3、經(jīng)歷三角形內(nèi)角和的研究方法,感受數(shù)學研究方法。

  教學重點:

  1、探索和發(fā)現(xiàn)三角形三個內(nèi)角的度數(shù)和等于180°。

  2、已知三角形兩個角的度數(shù),會求出第三個角的度數(shù)。

  教學難點:掌握探究方法(猜想-驗證-歸納總結),學會用“轉化”的數(shù)學思想探究三角形內(nèi)角和。

  教學用具:表格、課件。

  學具準備:各種三角形、剪刀、量角器。

  一、創(chuàng)設情境揭示課題。

  1、一天兩個三角形發(fā)生了爭執(zhí),他們請你們來評評理。大三角形說:“我的個頭大,所以我的內(nèi)角和一定比你大!毙∪切魏懿桓市牡卣f:“我有一個鈍角,我的內(nèi)角和一定比你大。”。誰說得有道理呢?今天讓我們來做一回裁判吧。

  生1:大三角形大(個子大)

  生2:小三角形大(有鈍角)

  (教師不做判斷,讓學生帶著問題進入新課)

  2、什么是三角形的內(nèi)角和?(板書:內(nèi)角和)

  講解:三角形內(nèi)兩條邊所夾的角就叫做這個三角形的內(nèi)角。每個三角形都有三個內(nèi)角,這三個內(nèi)角的度數(shù)加起來就是三角形的內(nèi)角和。

  二、自主探究,合作交流。

 。ㄒ唬┨岢鰡栴}:

  1、你認為誰說得對?你是怎么想的?

  2、你有什么辦法可以比較一下這兩個三角形的內(nèi)角和呢?

  生1:用量角器量一量三個內(nèi)角各是多少度,把它們加起來,再比較。

  生2:用拼一拼的辦法把三個角拼到一起看它們能不能組成*角。

  生3:用折一折的辦法把三個角折到一起看它們能不能組成*角

 。ǘ┨剿髋c發(fā)現(xiàn)

  活動一:量一量

 。1)①了解活動要求:(屏幕顯示)

  A、在練習本上畫一個三角形,量一量三角形三個內(nèi)角的度數(shù)并標注。(測量時要認真,力求準確)

  B、把測量結果記錄在表格中,并計算三角形內(nèi)角和。

  C、討論:從剛才的測量和計算結果中,你發(fā)現(xiàn)了什么?

 。ㄒ龑仡櫥顒右螅

 、谛〗M合作。

 、蹍R報交流。

  你們測量了幾個三角形?它們的內(nèi)角和分別是多少?從測量和計算結果中你們發(fā)現(xiàn)了什么?

 。ㄒ龑W生發(fā)現(xiàn)每個三角形的三個內(nèi)角和都在180°,左右。)

 。2)提出猜想

  剛才我們通過測量和計算發(fā)現(xiàn)了三角形內(nèi)角和都在180度左右,那你能不能大膽的猜測一下:三角形內(nèi)角和是否相等?三角形的內(nèi)角和等于多少度呢?(板書:猜測)

  活動二:拼一拼,驗證猜想

  這個猜想是否成立呢?我們要想辦法來驗證一下。(板書驗證)

  引導:180°,跟我們學過的什么角有關?我們課前準備了各種三角形紙片,你能不能利用這些三角形紙片,想辦法把三角形的三個內(nèi)角轉換成一個*角呢?

  (1)小組合作,討論驗證方法。(把三個角撕下來,拼在一起,3個角拼成了一個*角,所以三角形內(nèi)角和就是180°)。

 。2)討論:銳角三角形、直角三角形、鈍角三角形是否都能得出相同的結論呢?

  (3)分組匯報,討論質(zhì)疑

 。4)課件演示,驗證結果

  活動三:折一折

  師生一起活動,教師先讓學生看課件演示,然后拿出準備好的三角形紙艮老師一起折一折。

 。ò讶切蔚慕1折向它的對邊,使頂點落在對邊上,然后另外兩個角相向?qū)φ,使它們的頂點與角1的頂點互相重合,也證明了三角形內(nèi)角和等于180°,)。

  討論:銳角三角形、直角三角形、鈍角三角形能否得到相同的結論?

  **:還有沒有其它的方法?

  3、回顧兩種方法,歸納總結,得出結論。

  (1)引導學生得出結論。

  孩子們,三角形內(nèi)角和到底等于多少度呢?”

  學生答:“180°!”

 。2)總結方法,齊讀結論

  我們通過動作操作,折一折,拼一拼,把三角形的三個內(nèi)角轉換成了一個*角,成功的得到了這個結論,讓我們?yōu)樽约旱某晒恼疲↓R讀結論。(板書:得到結論)

 。3)解釋測量誤差

  為什么我們剛才通過測量,計算出來的三角形內(nèi)角和不是180°,呢?

  那是因為我們在測量時,由于測量工具、測量操作等各方面的原因,使我們的測量結果存在一定的誤差。實際上,三角形內(nèi)角和就等于180°

  (三)回顧問題:

  現(xiàn)在你知道這兩個三角形誰說得對了嗎?(都不對。

  為什么?請大家一起,自信肯定的告訴我。

  生:因為三角形內(nèi)角和等于1800180°。(齊讀)

  三、鞏固深化,加深理解。

  1、試一試:數(shù)學書28頁第3題

  ∠A=180°-90°-30°

  2、練一練:數(shù)學書29頁第一題(生**解決)

  ∠A=180°-75°-28°

  3、小法官:數(shù)學書29頁第二題

  四、回顧課堂,滲透數(shù)學方法。

  1、總結:猜想—驗證—歸納—應用的數(shù)學方法。

  2、介紹:三角形內(nèi)角和等于180度這個結論的由來;數(shù)學領域里還未被證明的其它猜想,如哥德巴赫猜想、霍啟猜想、龐加萊猜想等。

  3、課堂延伸活動:探索——多邊形內(nèi)角和

  板書設計:

  探索與發(fā)現(xiàn)(一)

  三角形內(nèi)角和等于180°

三角形內(nèi)角和教學設計9

  教學目標:

  1、通過量、剪、拼、擺等直觀操作的方法,讓學生探索并發(fā)現(xiàn)三角形內(nèi)角和等于180度。

  2、在活動交流中培養(yǎng)學生合作學習的意識和能力,讓學生經(jīng)歷猜測探索總結的數(shù)學學習過程,在實驗活動中體驗探索的過程和方法。

  3、通過運用三角形內(nèi)角和的性質(zhì)解決一些簡單的問題,使學生體會數(shù)學與現(xiàn)實生活的聯(lián)系,體會到數(shù)學的價值,增加學生學數(shù)學的信心和興趣。

  教學重點:

  探索發(fā)現(xiàn)三角形內(nèi)角和等于180并能應用。

  教學難點:

  三角形內(nèi)角和是180的探索和驗證。

  教學過程:

  一、創(chuàng)設情境,提出問題

  師:大家喜歡猜謎語嗎?

  生:喜歡。

  師:下面請大家猜一個謎語(大屏幕出示形狀似座山,穩(wěn)定性能堅。三竿首尾連,學問不簡單。

 。ù蛞粠缀螆D形))

  生:三角形。

  師:三角形中都有哪些學問?

  生:三角形有三條邊,三個角,具有穩(wěn)定性。

  生:三角形按角分,可以分成銳角三角形、直角三角形、鈍角三角形。

  生:三角形按邊分,可以分成等腰三角形,不等邊三角形,其中等腰三角形又包含了兩條邊相等的三角形和等邊三角形。

  生:一個三角形中最多只能有一個直角,最多只能有一個鈍角,最少有兩個銳角。

  生:三角形的內(nèi)有和是180。

  生:(一臉疑惑)

  師:(板書:三角形的內(nèi)角和是180),你有什么疑惑? 生:什么是內(nèi)角?

  生:每個三角形的內(nèi)角和都是180嗎?

 。ǜ鶕(jù)學生的問題,在三角形的內(nèi)角和是180后面加上一個?)

  二、自主探索,實踐驗證

  1、理解內(nèi)角 師:什么是內(nèi)角?

  生:我認為三角形的內(nèi)角就是指三角形的三個角。

  師:三角形的每個角都是三角形的內(nèi)角,每個三角形都有三個內(nèi)角。

  2、理解內(nèi)角和。

  師:那三角形的內(nèi)角和又是指什么?

  生:我認為三角形的內(nèi)角和就是把三角形的三個內(nèi)角的度數(shù)加起來的和。

  師:為了方便,我們將三角形的每個內(nèi)角編上序號1、2、3、我們叫它1、2、3,這三個角的度數(shù)和,就是這個三角形的內(nèi)角和。

  3、實踐驗證

  師:每個三角形的內(nèi)角和都是180嗎?用什么方法來驗證呢?

  生:量一量每個角的度數(shù),然后加起來看看是不是180。

  師:請大家拿出課前準備的三角形,親自量一量,算一算。(學生動手量一量)

  師:誰愿意把你的勞動成果和大家分享一下?

  生:我量的這個三角形的三個內(nèi)角的度數(shù)分別是60、60、60,加起來一共是180。

  師:這位同學量的是一個銳角三角形,并且是比較特殊的三角形等邊三角形。

  生:我量這個三角形的三個內(nèi)角的度數(shù)分別是45、45、90,加起來一共是180。

  師:這是我們?nèi)浅咧械囊粋,也比較特殊,是一個等腰直角三角形。

  生:我量的是三角尺中的另一個,三個內(nèi)角的度數(shù)分別是60、30、90,加起來一共是180 生:我量的是鈍角三角形,三個內(nèi)角的度數(shù)分別是85、60、38,加起來一共是183。

  師:你發(fā)現(xiàn)了什么?

  生:有的三角形的內(nèi)角和是180,而有的三角形的內(nèi)角和卻不是180。

  師:看來三角形的內(nèi)角和不一定是180。

  生:老師,測量會有誤差,量出來的不是很精確,那么求出來的結果也不夠精確。雖然不都是三個內(nèi)角加起來不都是180,但都接近180。

  生:都接近180就能說一定是180嗎?

  師:科學來不得半點虛假,看來這個是不能讓大家信服的。那還可以用什么方法來驗證呢?下面請同學們小組合作,發(fā)揮小組成員的智慧,充分利用大家的學具進行驗證,比一比哪些組的方法富有新意,開始!

 。▽W生在小組內(nèi)進行探索驗證。教師巡視,參與到學生的研究中)

  師:請每個小組選擇一個代言人,和大家分享一下你們的智慧。

  生:(邊展示邊交流)我們小組運用了折一折的方法,把三角形的三個內(nèi)角都向內(nèi)折,三個內(nèi)角就拼成了一個*角,也就是180,所以我們小組得出三角形的內(nèi)角和是180。

  師:你折的只是銳角三角形,只能證明銳角三角形的內(nèi)角和是180,直角三角形,鈍角三角形是不是也是這樣的?

  生:我們小組也有折的直角三角形,鈍角三角形。

 。ㄆ渌某蓡T展示不同的三角形)

  師:看這個小組的同學想問題多全面呀,不僅想到了用什么方法,還想到了用不同的三角形進行驗證,老師實在是佩服你們組的智慧,讓我們把掌聲送給他們!

  師:哪個小組和他們的方法不一樣?

  生:我們小組把三角形的三個內(nèi)角都撕了下來,拼在了一起,正好拼成了一個*角,也就是180。我們也實驗了不同的三角形,三個內(nèi)角都可以拼成*角,所以我們小組得出結論,三角形的內(nèi)角和是180。

  師:這個小組的方法簡便,易操作,很好。

  生:我們小組成員是這樣想的,一個長方形有4個直角,每個直角90,那么長方形的內(nèi)角和就是360,每個長方形都可以*均分成兩個直角三角形,每個直角三角形的內(nèi)角和就是180。 師:你們小組很聰明,從長方形的內(nèi)角和聯(lián)想到直角三角形的內(nèi)角和是180,從不同的角度去思考問題,謝謝你為我們提供了這么好的方法!

  4、小結

  師:剛才同學們用量、折、剪、拼、計算、推理等這么多巧妙的方法得出了無論是什么樣的三角形的內(nèi)角和都是1800,你還有什么疑問嗎?

  生:沒有。

  師:(去掉問號)那就讓我們大聲地讀出來三角形的內(nèi)角和是1800。

  三、鞏固應用,加深理解

  1、說一說每個三角形的內(nèi)角和是多少度

  師:(出示一個大三角形)這個大三角形的內(nèi)角和是多少度?

  生: 180

  師:(出示一個小三角形)這個小三角形的內(nèi)角和是多少度?

  生:180

  師:(演示)把這兩個三角形拼在一起,拼成的大三角形的內(nèi)角和是多少度?

  生:180

  師:為什么每個三角形的內(nèi)角和是1800,而合起來還是180呢?另外那180去哪兒了?

  生:把兩個三角形拼成一個大三角形,兩個直角不再是大三角形的內(nèi)角,所以少了180

  師:(演示)把一個大三角形分成兩個三角形,每個三角形的內(nèi)角和是多少度?

  生:180

  2、求下面各角的度數(shù)

  師:如果老師告訴你一個三角形的兩個角的度數(shù),你能說出第三個角的度數(shù)嗎?

  (出)

  生:三角形內(nèi)角和是180,在第一個三角形中,用180-75-28,A=77

  生:用180-90-35,C =55。

  生:第二個三角形是直角三角形,B是直角,也可以直接用90-35=55。

  生:第三個三角形中,用180-20-45,B=115。

  3、一個等腰三角形的風箏,它的一個底角是70,它的頂角是多少度?

  生:等腰三角形的兩個底角相等,所以用180-70-70 4、

  師:三角形的內(nèi)角和在我們的生活中應用很廣泛,老師給大家?guī)硪粋在建筑中應用的例子。

  在設計這座大橋時,如果***將斜拉的鋼索與橋柱形成的夾角設計成了56,建筑師在造橋時怎樣才能確定鋼索與橋柱是否形成了這個角度?

  生:用量角器量一量

  師:量哪個角?量一量斜拉的鋼索與橋柱形成的夾角嗎?

  生:橋面與橋柱形成一個直角,是90,斜拉的鋼索與橋柱形成的夾角是56,那么用180-90-56=34,就是斜拉的鋼索與橋面的夾角,所以只要讓斜拉的鋼索與橋面的夾角是34,那么斜拉的鋼索與橋柱形成的夾角就是56

  師:你真是個善于觀察、善于思考的孩子,努力學習,將來一定會成為一名優(yōu)秀的建筑師。

  四、回顧總結,拓展延伸

  師:40分鐘很快就過去了,你愿意把自己的收獲與大家共同分享嗎?

  生:我知道了三角形的內(nèi)角和是180。

  生:無論是大三角形,還是小三角形,無論是銳角三角形,還是鈍角三角形,還是銳角三角形,內(nèi)角和都是180。

  生:把一個大三角形分成兩個小三角形,每個三角形的內(nèi)角和還是180,把兩個小三角形拼成一個大三角形,大三角形的內(nèi)角和還是180。

  生:我可以用撕、拼、折等方法來驗證三角形的內(nèi)角和是180。

  師:這個同學不僅學會了知識,而且學會了方法,我們只有學會了方法,才能更好地去探究更多的知識。

  師:那你現(xiàn)在知道為什么一個三角形內(nèi)只能有一個直角或一個鈍角嗎?

  生:兩個直角的度數(shù)之和是180,再加上一個角,三個角的度數(shù)之和超過了180,所以一個三角形中最多只能有一個直角。

  生:兩個鈍角的度數(shù)之和就超過了180,再加上一個角,就更大了,所以一個三角形中最多只能有一個鈍角。

  師:我們學習知識,必須知其然并知其所以然。

  師:三角形中還有許許多多的學問,讓我們在以后的學習中繼續(xù)去研究。

三角形內(nèi)角和教學設計10

  【教學內(nèi)容】

  《人教版九年義務教育教科書 數(shù)學》四年級下冊《三角形的內(nèi)角和》

  【教學目標】

  1.使學生知道三角形的內(nèi)角和是180 ,并能運用三角形的內(nèi)角和是180 解決生活中常見的問題。

  2.讓學生經(jīng)歷量一量、折一折、拼一拼等動手操作的過程。通過觀察、 判斷、 交流和推理探索用多種方法證明三角形的內(nèi)角和是180 。

  3.培養(yǎng)學生自主學習、互動交流、合作探究的能力和習慣,培養(yǎng)學習數(shù)學的興趣,感受學習數(shù)學的樂趣。

  【教學重點】

  使學生知道三角形的內(nèi)角和是180 ,并能運用它解決生活中常見的問題。

  【教學難點】

  通過多種方法驗證三角形的內(nèi)角和是180 。

  【教學準備】

  課件。四組教學用三角板。鉛筆。大帆布兜子。固體膠。剪刀?曜尤舾。

  【教學過程】

  一、激趣導入,提煉學習方法

  1.課程開始,教師耳朵上別著一根鉛筆,肩背大帆布兜子,里面裝著一個量角器和幾把缺了直角的三角板,手拿一張不規(guī)則的白紙,以一位老木匠的身份出現(xiàn)在學生面前。激發(fā)學生的好奇心。然后**:“你們好,我是一個有三十多年工作經(jīng)驗的老木匠了。我收了三個徒弟,他們已經(jīng)從師學藝三年了,今天我想讓他們下山掙錢,可又不放心,想出幾道題考驗考驗他們,又不知我的題合不合適,大家想不想先當一會我的徒弟試試這幾道題呢?”

  2.繼續(xù)以老木匠的身份說:前幾天我造了一架柁,徒弟們能不能用我手中的工具驗證一下橫木和立柱是不是成直角的。

  3.選擇工具,總結方法。

  讓選擇不同工具的同學用自己的方法驗證。教師隨機板書:量一量、拼一拼、折一折。

  師:你們真是愛動腦筋的好徒弟,那么請聽好師傅的第二個問題。

  4.導入新課。

  圖中有很多三角形,不論什么樣的三角形都有三個角,這三個角就叫做三角形的內(nèi)角,徒弟們能不能用學過的方法或者你喜歡的方法求一求三角形三個內(nèi)角的和是多少?(板書課題:三角形的內(nèi)角和)

  二、動手操作,探索交流新知

  1.分組活動,探索新知

  根據(jù)學生的選擇把學生分成三組,分別采用量一量、折一折和拼一拼的方法探索新知。

  量一量組同學發(fā)給以下幾種學具:

  折一折組同學發(fā)給上面的三角形一組。

  拼一拼組同學發(fā)給上面的三角形一組、剪刀一把還有下面這樣的白紙一張。

  在學生探索的過程中教師要走近學生,與他們共同交流探討,在學生有困難的時候要適當給予引導。

  2.多方互動,交流新知

  師:請我的大徒弟(量一量組)的同學先來匯報你們的研究成果。

  (1)首先要求學生說一說你們小組是怎樣進行探究的。

  (2)說出你們組的探究結果怎樣。(在此過程中教師不能急于糾正學生不正確的`結論,因為這是知識的形成過程。)

  (3)請學生說說通過探究活動你們組得出的結論是什么。

  師:大徒弟就是大徒弟,匯報的真不錯。二徒弟(折一折組)你們有沒有更好的辦法呢?

  引導這一組從探究的過程和結論與同學、老師交流。

  師:別看小徒弟(拼一拼組)這么小,方法可能是最好的?靵戆涯銈兊姆椒ńo大家匯報匯報。

  同樣引導這一組從探究的過程和結論與同學、老師交流。

  3.思想碰撞,夯實新知

  師:三個徒弟你們能說說誰的方法最好嗎?

  學生都會說自己的方法最好,再讓其他同學發(fā)表自己的意見,此時生生之間,師生之間交流。(教師要引導學生說出量一量的方法可能由于量的不夠準確,所以結果可能比180 大一些,或小一些。而其他兩種方法沒有改變角的大小,所以他們的是正確的。)

  師:不論你量的怎樣認真都會有不準確的地方,這就叫誤差。而其他兩組同學的方法更準確。三角形的內(nèi)角和就是180 。(板書:三角形的內(nèi)角和是180 )

  四、走進生活,提升運用能力

  1.出示課前那架柁標出它的頂角是120 ,求它的一個底角是多少度?

  2.給你三根木條,能做出一個有兩個直角的三角形嗎?

  五、總結

  師:徒弟們你們經(jīng)過三年的苦學,終于學有所成了。今天,能說說你們在我這里都學到了什么手藝嗎?

  六、拓展新知,課外延伸

  師:俗話說“活到老,學到老!蹦銈兿律胶筮要繼續(xù)探索,所以我要把我畢生都沒有完成的任務交給你們?nèi)パ芯俊?/p>

  大屏幕出示:

  能用你今天學過的知識和方法探索一下四邊形的內(nèi)角和是多少度嗎?


《三角形的內(nèi)角和》教學設計10篇(擴展4)

——三角形內(nèi)角和教學設計10篇

三角形內(nèi)角和教學設計1

  探索三角形內(nèi)角和的度數(shù)以及已知兩個角度數(shù)求第三個角度數(shù)。

  教學目標:

  1、通過測量、撕拼、折疊等探索活動,使學生發(fā)現(xiàn)三角形內(nèi)角和的度數(shù)是180?

  2、已知三角形兩個角的度數(shù),會求第三個角的度數(shù)。

  3、培養(yǎng)學生動手實踐,動腦思考的習慣。

  教學重點:

  了解三角形三個內(nèi)角的度數(shù)。

  教學難點:

  理解三角形三個內(nèi)角大小的關系。

  教具學具準備:

  課件三角形若干量角器剪刀。

  教材與學生

  教材創(chuàng)設了一個有趣的問題情境,通過對大小兩個三角形內(nèi)角和的大小比較來激發(fā)學生探索的興趣。教材為了得到三角形內(nèi)角和是180的結論安排了兩個活動,通過學生測量,折疊,撕拼來找到答案。

  學生在已有的會用量角器來度量一個角的度數(shù)的基礎上,會首先想到這種方法。但測量的誤差會導致測量不同,因此,學生會想到采取其他更好的辦法,通過親手實踐,得出結論。

  教學過程:

  一、呈現(xiàn)真實狀態(tài)。

  師:今天我們來研究三角形內(nèi)角和度數(shù)。這里有兩個三角形,一個是大三角形,一個是小三角形(圖略),到底哪一個三角形的內(nèi)角和比較大呢?

  學生各抒己見。

  二、提出問題:

  師;剛才我們觀察三角形哪個內(nèi)角和大,同學們有兩種不同的猜想,可以肯定,必定有錯下面我們來測量驗證。

 。1)以小組為單位請同學們拿出量角器,量一量,算一算圖中大小兩個三角形內(nèi)角和度數(shù),并做好記錄,記錄每個內(nèi)角的度數(shù)。

 。2)組內(nèi)交流。

 。3)全班交流。由小組匯報測出結果(三角形內(nèi)角和)

 。4)師小結:我們通過測量發(fā)現(xiàn),每個三角形的內(nèi)角和測出結果接近180。

  三。自主探索、研究問題、歸納總結:

  師引導**:三角形的內(nèi)角和會不會就是180呢?

  (一)組內(nèi)探索:

 。1)以小組為單位探索更好的辦法。

 。2)以小組為單位邊展示邊匯報探索的過程與發(fā)現(xiàn)的結果。

 。ㄓ械男〗M想不出來,可以安排小組和小組之間進行交流,目的是讓學生通過實踐發(fā)現(xiàn)結果,在探索中發(fā)現(xiàn)問題,在討論中解決問題,是學生學習到良好的學習方法)

  (3)把你沒有想到的方法動手做一次

 。ㄊ箤W生更直觀地理解三角形的內(nèi)角和是180的證明過程)

  (4)根據(jù)學生的反饋情況教師進行操作演示。

  (二)教師演示

  撕拼法1。教師取出三角形教具,把三個角撕下來,拼在一起,如圖所示

  2.師:這三個內(nèi)角放在一起你有什么發(fā)現(xiàn)?

  生:發(fā)現(xiàn)三個內(nèi)角拼成一個*角。

  師:*角是多少度呢?說明什么?

  生:180?說明三個內(nèi)角和剛好等于180。

  師:這種方法是不是適用各種三角形呢?

  3。學生每人動手實踐,看看是不是不同的三角形是否都有這個特點,也能拼出一個*角呢?

  進行實驗后,結果發(fā)現(xiàn)同樣存在這一規(guī)律,三角形三個內(nèi)角和是180。

  折疊法:師:剛才我們通過測量發(fā)現(xiàn)三角形內(nèi)角和接近180,那是因為測量的不那么精確,所以說“接近”,又通過撕拼方法發(fā)現(xiàn)三角形的三個內(nèi)角剛好拼成一個*角,進一步說明三個內(nèi)角和是180,現(xiàn)在再來演示另一種實驗,再次證明我們的發(fā)現(xiàn)。

  你們也來試一試好嗎?

  在學生完成這一實踐后肯定這一發(fā)現(xiàn)

  三角形三個內(nèi)角和等于180?

  :充分發(fā)揮了學生的主觀能動性,讓學生大膽去思考發(fā)言,把課堂交給學生,最后老師在演示達成共識,這樣學生學到知識印象頗深,也理解最為透徹,提高課堂教學的效率

  四。鞏固練習,知識升華。

  1.完成課本第28頁的“試一試”第三題。

  2.想一想:鈍角三角形最多有幾個鈍角?為什么?

  銳角三角形中的兩個內(nèi)角和能小于90嗎?

  3.有一個四邊形,你能不用量角器而算出它的四個內(nèi)角和嗎?

  試一試,看誰算得快。

  師:誰來說說自己的計算過程?

  角的和叫做三角形的內(nèi)角和。(板書課題)下面請大家認真觀察這兩個算式,從結果上看,你發(fā)現(xiàn)了什么?

  生:它們的內(nèi)角和都是 180 度。

  師:觀察的真仔細。c擊課件,出示多種多樣的三角形后**)同學們,咱們都知道,這兩個三角形是特殊三角形,在我們的生活中還有許許多多不是這個樣子的三角形,請看大屏幕,這些任意三角形,它們的內(nèi)角和是不是都是 180 度呢?

 。刍卮鹂赡苡卸荩

  (一種全部說是:)

  師:請問,你們是怎么想的,為什么這么認為?

  生: ……

  師:看來,大家是通過這兩個三角形猜想的,是嗎?想不想驗證一下你們的猜想,(生:想)好,咱們一起走進三角形王國,一起去研究它們內(nèi)角和的秘密吧。◣熢谡n題“內(nèi)角和”下面劃上橫線,打上問號)

 。ㄒ环N有一部分同學說是,有一部分同學說不是:)

  師:看來,大家的意見不一致, 想不想驗證一下你們的猜想,(生:想)好,咱們一起走進三角形王國,一起去研究它們內(nèi)角和的秘密吧。◣熢谡n題“內(nèi)角和”下面劃上橫線,打上問號)

 。ǘ﹦邮植僮,探究新知

  師:老師看你們有答案了,哪位同學愿意說一說你的奇思妙想?

  生:我準備用量的方法。

  師:然后呢?

  生:然后把它們?nèi)齻內(nèi)角的度數(shù)相加起來,就知道了三角形的內(nèi)角和是多少?

  師:說的真不錯,還有沒有其它的方法?

  生:我是把三角形的三個角剪下來,拼在一起( 師鼓勵: 你的想法很有創(chuàng)意, 等一會兒用你的行動來驗證你的猜想吧。

  生:……

 。ㄈ缟粫r想不到,師可引導:他是把三個內(nèi)角的度數(shù)相加在一起,我們能不能想辦法把三個內(nèi)角放在一起進行觀察,看看能不能發(fā)現(xiàn)些什么呢?)

  師: 好啦, 老師相信咱們班的同學個個都是小數(shù)學家, 一定能找出更多的方法的, 請你們在研究之前,也像老師一樣,在三個內(nèi)角上編上序號,角一、角二、角三,現(xiàn)在就請同學們對銳角三角形、直角三角形和鈍角三角形等各種類型的三角形進行研究,看看它們的內(nèi)角和各有什么特點。咱們比一比,看一看,哪個小組的方法多,方法好!

  開始吧!(學生研究,師巡回指導)預設時間:5 分鐘

  師:老師看各小組已經(jīng)研究好了,哪位同學愿意上來交流一下?

  師:請你告訴大家,你是怎么研究的,最后發(fā)現(xiàn)了什么結果?

 。 預設: 如果第一類同學說的是量的方法)

  師:你是用什么來研究的?

  生:量角器。

  師: 那請你說一下你度量的結果好嗎?

 。 生匯報度量結果)

  師: 剛才有的同學測量的結果是180 度,有的同學測量的結果是179 度,有的同學測量的結果是182 度,各不相同,但是這些結果都比較接近于多少?

  生:180 度。

  師:那到底三角形的內(nèi)角和是不是180 度呢?還有哪位同學有其它的方法進行驗證嗎?

  生:我是先把三角形的三個角剪掉以后粘在一起,然后在量出它們?nèi)齻角組成的度數(shù)。

  師:他演示的真好,你們聽明白了嗎? 李 老師把他的過程給大家在大屏幕上演示一下。

 。◣熯呏v解邊點擊 FLASH :把三角形按照三個內(nèi)角撕成三塊,先把角一放在右邊,再把角二放在左邊,最后把角三調(diào)個頭,插在角一角二的中間,這樣它們?nèi)齻內(nèi)角就形成了一個大角,角一的這條邊,角二這條邊看起來在一條直線上,那到底是不是在一條直線上呢,我們一起用直尺來量一下,師演示后問學生:是不是在一條直線上,那這個大角是個什么角呢?通過剛才拼的過程,你有什么發(fā)現(xiàn)?)

  師:好極了,剛才這個小組的同學用拼的方法得到XX 三角形的內(nèi)角和是180 度,你們還有別的方法嗎?

  生:我們還用了折的方法(生介紹方法)

  師: 你們聽明白了嗎? 李老師把他的過程給大家在大屏幕上演示一下。

  (師邊講解邊點擊 FLASH :先找到兩條邊的中點,把它連起來,把角一沿著中間的這條線向?qū)厡φ,再把角二向里對折,使它的頂點與角一對齊,最后把角三也用同樣的方法對折,這樣它們?nèi)齻內(nèi)角就形成了一個大角,這個大角是個什么角呢?)

  生:是個*角。180 度。

  師:除了用了量、拼、折的方法來研究以外,剛才在操作的過程中老師還發(fā)現(xiàn)了一個同學用了一種方法來進行研究,大家想知道嗎?

  師:請這位同學來說給大家聽聽吧!

  生:我把兩個相同的直角三角形拼成了一個長方形,因為長方形里面有四個直角,所以它的內(nèi)角和是360 度,那么一個三角形的內(nèi)角和就是180 度。

  師:剛才我們用量、拼、折、推理的方法都得到了三角形的內(nèi)角和是 180 度,同學們,現(xiàn)在我們回想一下,剛才測量的不同結果是一個準確數(shù)還是一個近似數(shù)?為什么會出現(xiàn)這種情況呢?

  生 1 :量的不準。

  生 2 :有的量角器有誤差。

  師:對,這就是測量的誤差,如果測量儀器再精密一些,我們的方法再準確一些,那么任意一個三角形的內(nèi)角和也將是 180 度。

  師:同學們,我們剛才用不同的方法,不同的三角形研究了三角形的內(nèi)角和,得到了一個相同的發(fā)現(xiàn),這個發(fā)現(xiàn)就是?

  生:三角形的內(nèi)角和是180 度。(師板書)

  師:把你們偉大的發(fā)現(xiàn)讀一讀吧!

 。ㄈ┩卣箲茫罨J識

  師:請看老師手上的這兩個三角形,左邊這個內(nèi)角和是多少度?(生: 180 度)右邊呢(生:也是 180 度)

  師:現(xiàn)在老師把它們拼在一起,這個大三角形的內(nèi)角和又是多少度呢?

 。ㄉ鸷髱熞龑w納得出:三角形的內(nèi)角和與形狀大小無關,組成的大三角形的內(nèi)角和依然是 180 度。)

  師:剛才我們在討論學習三角形知識的時候,三角形中的兩個好朋友卻爭執(zhí)了起來,想知道怎么回事嗎?讓我們一起去看看吧。ǔ鍪菊n件,課件內(nèi)容:一個大一些的直角三角形說:“我的個頭比你大,我的內(nèi)角和一定比你大”。另一個稍小的銳角三角形說:“是這樣嗎”?)

  師:到底誰說的對呢?今天我們就用我們今天學到的知識來為它們解決解決吧!

  師:真不錯,你們當了一回小法官,幫助三角形兄弟解決了問題,它倆很感謝你們,三角形王國中還有很多生活中的問題,小博士們,你們愿意解答嗎?

  師:好,請看大屏幕!

 。ǔ鍪净A練習)在一個三角形中角一是 140 度,角三是 25 度,求角二的度數(shù)。

  生答后,師**:你是怎樣想的?

  生陳述后,師鼓勵:說的真好!

  出示自行車、等邊三角形的路標牌、告訴頂角求底角的房頂、直角三角形的電線桿架進行練習。

 。ǔ鍪荆┬〖t的爸爸給小紅買了一個等腰三角形的風箏,它的一個底角是 70 度,它的頂角是多少度?

  師:看來啊,三角形的知識在咱們生活中還有著這么廣泛的運用呢!昨天,我們班發(fā)生了一件事情,小明不小心將鏡框上的一塊三角形玻璃摔破了,(課件呈現(xiàn)情境)他想重新買一塊玻璃安上,小明非常聰明,只帶了其中的一塊到玻璃店去,就配到了和原來一模一樣的玻璃了。你知道他帶的是哪一塊嗎?

  (預設:師:根據(jù)三角形的內(nèi)角和是180 度,你能求出下面四邊形、五邊形、六邊形的內(nèi)角和嗎?

  師:太棒了,這位同學把這個四邊形分割成了二個三角形求出了它的內(nèi)角和,你能像他一樣棒求出五邊形和六邊形的`內(nèi)角和嗎?

  師: 同學們,今天我們一起學習了三角形的內(nèi)角和,你有哪些收獲呢?

  師:嗯,真不錯, 你們知道嗎? 三角形的內(nèi)角和等于 180 度是 法國著名的數(shù)學家帕斯卡 在 1635 年他 12 歲時獨自發(fā)現(xiàn)的, 今天憑著同學們的聰明智慧也研究出了三角形的內(nèi)角和是180 度,老師為你們感到驕傲,老師相信在你們的勤奮學習和刻苦鉆研下,你們就是下一個“帕斯卡”!

  師:好,下課!同學們再見!

三角形內(nèi)角和教學設計2

  【設計理念】

  新課標重視讓學生經(jīng)歷數(shù)學知識的形成過程,要求教師創(chuàng)設有效的問題情境激發(fā)學生的參與欲望,提供足夠的時間和空間讓學生經(jīng)歷觀察、猜測、驗證、交流反思等過程,使學生在動手操作、合作交流等活動中親身經(jīng)歷知識的形成過程。這樣,學生不僅可以掌握知識,而且可以積累探究數(shù)學問題的活動經(jīng)驗,發(fā)展空間觀念和推理能力。

  教材內(nèi)容】新人教版義務教育課程標準實驗教科書四年級下冊數(shù)學第67頁例6、“做一做”及練習十六的第1、2、3題。

  【教材分析】

  三角形的內(nèi)角和是三角形的一個重要特征。本課是安排在三角形的概念及分類之后教學的,它是學生以后學習多邊形的內(nèi)角和及解決其它實際問題的基礎。教材很重視知識的探索與發(fā)現(xiàn),安排兩次實驗操作活動。教材呈現(xiàn)教學內(nèi)容時,不但重視體現(xiàn)知識的形成過程,而且注意留給學生充分進行自主探索和交流的空間和時間,為教師靈活**教學提供了清晰的思路。概念的形成沒有直接給出結論,而是通過量、拼等活動,讓學生探索、實驗、交流、推理歸納出三角形的內(nèi)角和是180°。

  【學情分析】

 。、在學習本課時,學生已經(jīng)有了探索三角形內(nèi)角和的知識基礎:知道直角和*角的度數(shù),會用量角器度量角的度數(shù);認識長方形、正方形,知道他們的四個角都是直角;認識了三角形,知道了三角形按角分有銳角三角形、直角三角形和鈍角三角形;已經(jīng)知道了等腰三角形和正三角形。

 。、已經(jīng)有一部分學生知道了三角形內(nèi)角和是180°,只是知其然而不知所以然。

  【教學目標】

  1通過“量、剪、拼”等活動發(fā)現(xiàn)、驗證三角形的內(nèi)角和是180°,并能運用這個知識解決一些簡單的問題。

  2.在觀察、猜想、操作、合作、分析交流等具體活動中,提高動手操作能力,積累基本的數(shù)學活動經(jīng)驗,發(fā)展空間觀念和推理能力。

  3.在參與數(shù)學學習活動的過程中,獲得成功的體驗,感受數(shù)學探究的嚴謹與樂趣。

  【教學重點】

  探索發(fā)現(xiàn)、驗證“三角形內(nèi)角和是180°”,并運用這個知識解決實際問題。

  【教學難點】驗證“三角形的內(nèi)角和是180°”。

  【教(學)具準備】

  多**課件; 銳角三角形、直角三角形、鈍角三角形紙片若干個各類三角形(也包括等邊、等腰)、長方形、正方形若干個;每人一個量角器;一把剪刀;每人一副三角尺。

  【教學步驟】

  一、復習舊知 引出課題

  1、你已經(jīng)知道有關三角形的哪些知識?

  2、出示課題:三角形的內(nèi)角和

  設計意圖:也自然導入新課。

  二、提出問題 引發(fā)猜想

  1、提出問題:

  看到這個課題,你有什么問題想問的?

  預設:

  (1)三角形的內(nèi)角指的是哪些角?

 。2)三角形的內(nèi)角和是什么意思?

 。3)三角形的內(nèi)角一共是多少度?

  2、引發(fā)猜想

  猜一猜:三角形的內(nèi)角和是多少度?你是怎么猜的?

  設計意圖:提出一個問題比解決一個問題更重要。課始在復習三角形已學知識后,引導學生提出有關三角形的新問題,讓學生學習自己想研究的`內(nèi)容,無疑激發(fā)了學生的學習興趣,培養(yǎng)了學生的問題意識。由于學生在*時使用三角板時已經(jīng)若隱若現(xiàn)地有了特殊的直角三角形的內(nèi)角和是180度這一感覺,因此本環(huán)節(jié),要求學生猜一猜三角形的內(nèi)角和是多少,并說說是怎么猜的,以激發(fā)學生已有知識經(jīng)驗,并體會到猜想要合理且有根據(jù),同時也為推理驗證的引出作必要的鋪墊。

  三、操作驗證 形成結論

  1、交流驗證方法:

 。1)用什么方法證明三角形的內(nèi)角和是180度呢?

  預設: ①量算法 ②剪拼法 ③折拼法等

 。2)三角形的個數(shù)有無數(shù)個,驗證哪些三角形可以**所有的三角形?我們的操作過程怎么分工才會做到省時又高效?

  2、動手驗證

  3、全班匯報交流

  4、小結:剛才通過大家的動手操作驗證了三角形的內(nèi)角和是180 °度。但動手操作會存在一定的誤差,我們的結論也可能存在偏差。

  5、方法拓展

  推理驗證:用直角三角形的內(nèi)角和來證明其他三角形內(nèi)角和是180 °的方法。

  6、形成結論:

  任意三角形的內(nèi)角和是180 °。

  設計意圖:《標準》指出:“教師應激發(fā)學生的積極性,向?qū)W生提供充分從事數(shù)學活動的機會,幫助他們在自主探索和合作交流的過程中真正理解和掌握基本的數(shù)學知識與技能、數(shù)學思想和方法,獲得廣泛的數(shù)學活動經(jīng)驗!辈聹y后先**思考驗證的方法,再進行全班交流,給學生充分的活動時間和空間,讓學生動手操作,使學生在量、剪、拼、折等一系列操作活動中發(fā)現(xiàn)了三角形內(nèi)角和是180°這個結論。在探索活動前,交流如何使研究樣本具有**性和全面性與如何分工做到操作省時高效這兩個問題,培養(yǎng)學生嚴謹、科學正確的研究態(tài)度,讓學生在活動中積累基本的數(shù)學活動經(jīng)驗,為后續(xù)的學習提供了經(jīng)驗支撐。

  四、應用結論 解決問題

  1、鞏固新知:想一想,算一算。

  2、解決問題:等腰三角形風箏的頂角是多少度?

  3、辨析訓練,完善結論。

  五、課堂總結,歸納研究方法

  今天這節(jié)課你學到了哪些知識?你是怎樣得到這些知識的?

  六、課后延伸:用今天所學的方法繼續(xù)研究四邊形的內(nèi)角和。

  七、板書設計:

  三角形的內(nèi)角和

  猜測: 三角形的內(nèi)角和是180°?

  驗證: 量 拼

  結論: 任意三角形的內(nèi)角和是180°

三角形內(nèi)角和教學設計3

  一、教學目標

  1.知識目標:通過測量、撕拼(剪拼)、折疊等方法,探索和發(fā)現(xiàn)三角形三個內(nèi)角的度數(shù)和等于180°這一規(guī)律,并能實際應用。

  2.能力目標:培養(yǎng)學生主動探索、動手操作的能力。使學生養(yǎng)成良好的合作習慣。

  3.情感目標:讓學生體會幾何圖形內(nèi)在的結構美。并充分體會到學習數(shù)學的快樂。

  二、教學過程

 。ㄒ唬﹦(chuàng)設情境,導入新課

  1、師:我們已經(jīng)認識了三角形,你知道哪些關于三角形的知識?

  (學生暢所欲言。)

  2、師:我們在討論三角形知識的時候,三角形中的三個好朋友卻吵了起來,想知道是怎么回事嗎?讓我們一起去看看吧!

  師口述:一個大的直角三角形說:“我的個頭大,我的內(nèi)角和一定比你們大!币粋鈍角三角形說:“我有一個鈍角,我的內(nèi)角和才是最大的)一個小的銳角三角形很委屈的樣子說“是這樣嗎?”,

  3、到底誰說的對呢?今天我們就來研究有關三角形內(nèi)角和的知識。(板書課題:三角形內(nèi)角和)

 。ǘ┳灾魈骄,發(fā)現(xiàn)規(guī)律

  1、認識什么是三角形的內(nèi)角和。

  師:你知道什么是三角形的內(nèi)角和嗎?

  通過學生討論,得出三角形的內(nèi)角和就是三角形三個內(nèi)角的度數(shù)和。

  2、探究三角形內(nèi)角和的特點。

 、僮寣W生想一想、說一說怎樣才能知道三角形的內(nèi)角和?

  學生會想到量一量每個三角形的內(nèi)角,再相加的方法來得到三角形的內(nèi)角和。(如果學生想到別的方法,只要合理的,教師就給予肯定,并鼓勵他們對自己想到的方法進行)

 、谛〗M合作。

  通過小組合作后交流,匯報。(教師同時板書出幾個小組匯報的結果)讓學生們發(fā)現(xiàn)每個三角形的內(nèi)角和都在180°左右。

  引導學生推測出三角形的內(nèi)角和可能都是180°。

  3、驗證推測。

  讓學生動腦筋想一想,怎樣才能驗證自己的推想是否正確,學生可能會想到用折拼或剪拼的方法來看一看三角形的三個角和起來是不是180°,也就是說三角形的三個角能不能拼成一個*角。

 。ㄐ〗M合作驗證,教師參與其中。)

  4、全班交流,共同發(fā)現(xiàn)規(guī)律。

  當學生匯報用折拼或剪拼的方法的時候,指名學生上黑板展示結果。

  學生交流、師生共同總結出三角形的內(nèi)角和等于180°。教師同時板書(三角形內(nèi)角和等于180°。)

  5、師談話:三個三角形討論的問題現(xiàn)在能解決了嗎?你現(xiàn)在想對這三個三角形說點什么嗎?(讓學生暢所欲言,對得出的三角形內(nèi)角和是180°做系統(tǒng)的整理。)

 。ㄈ╈柟叹毩暎卣箲

  根據(jù)發(fā)現(xiàn)的三角形的新知識來解決問題。

  1、完成“試一試”

  讓學生**完成后,集體交流。

  2、游戲:選度數(shù),組三角形。

  請選出三個角的度數(shù)來組成一個三角形。

  150°10°15°18°20°32°

  35°50°52°54°56°58°

  130°70°72°75°60°

  學生回答的同時,教師操作課件,把學生選擇的度數(shù)拖入方框內(nèi),通過電腦計算相加是否等于180°,來驗證學生的選擇是否正確。驗證學生選的對了以后,再讓學生判斷選擇的度數(shù)所組成的三角形按角的大小分類,屬于哪種三角形。并說出理由。

  3、“想想做做”第1題

  生**完成,集體訂正,并說說解題方法。

  4、“想想做做”第2題

  **:為什么兩個三角形拼成一個三角形后,內(nèi)角和還是180度?

  5、“想想做做”第3題

  生動手折折看,填空。

  **:三角形的內(nèi)角和與三角形的大小有關系嗎?三角形越大,內(nèi)角和也越大嗎?

  6、“想想做做”第5題

  生**完成,說說不同的解題方法。

  7、“想想做做”第6題

  學生說說自己的想法。

  8、思考題

  教師拿一個大三角形,**學生內(nèi)角和是多少?用剪刀剪成兩個三角形,**學生內(nèi)角和是多少?為什么?再剪下一個小三角形,**學生內(nèi)角和是多少?為什么?最后建成一個四邊形,**學生內(nèi)角和是多少?你能推導

  出四邊形的內(nèi)角和公式嗎?

 。ㄋ模┱n堂總結

  本節(jié)課我們學習了哪些內(nèi)容?(生**說),同學們說得真好,我們要勇于從事實中尋找規(guī)律,再將規(guī)律運用到實踐當中去。

  三教后反思:

  “三角形的內(nèi)角和”是小學數(shù)學教材第八冊“認識圖形”這一單元中的一個內(nèi)容。通過鉆研教材,研究學情和學法,與同組老師交流,我將本課的教學目標確定為:

  1、通過測量、撕拼、折疊等方法,探索和發(fā)現(xiàn)三角形三個內(nèi)角的度數(shù)和等于180度。

  2、已知三角形兩個角的度數(shù),會求出第三個角的度數(shù)。

  本節(jié)教學是在學生在學習“認識三角形”的基礎上進行的,“三角形內(nèi)角和等于180度”這一結論學生早知曉,但為什么三角形內(nèi)角和會一樣?這也正是本節(jié)課要與學生共同研究的問題。所以我將這節(jié)課教學的重難點設定為:通過動手操作驗證三角形的內(nèi)角和是180°。教學方法主要采用了實驗法和演示法。學生的折、拼、剪等實踐活動,讓學生找到了自己的驗證方法,使他們體驗了成功,也學會了學習。下面結合自己的教學,談幾點體會。

 。ㄒ唬﹦(chuàng)設情景,激發(fā)興趣

  俗話說:“良好的開端是成功的一半”。一堂課的開頭雖然只有短短幾分鐘,但它卻往往影響一堂課的成敗。因此,教師必須根據(jù)教學內(nèi)容和學生實際,精心設計每一節(jié)課的開頭導語,用別出心裁的導語來激發(fā)學生的學習興趣,讓學生主動地投入學習。本節(jié)課先創(chuàng)設畫角質(zhì)疑的情景,當學生畫不出來含有兩個直角的三角形時,學生想說為什么又不知怎么說,學生探究的興趣因此而油然而生。

  (二)給學生空間,讓他們自主探究

  “給學生一些**,讓他們自己選擇;給學生一個條件,讓他們自己去鍛煉;給學生一些問題,讓他們自己去探索;給學生一片空間,讓他們自己飛翔。”我記不清這是誰說過的話,但它給我留下深刻的印象。它正是新課改中學生主體性的表現(xiàn),是以人為本新理念的體現(xiàn)。所以在本節(jié)課中我注重創(chuàng)設有助于學生自主探究的機會,通過“想辦法驗證三角形內(nèi)角和是180度”這一核心問題,引發(fā)學生去思考、去探究。我讓他們將課前準備好的三角形拿出來進行研究,學生通過折一折、拼一拼、剪一剪等活動找到自己的驗證方法。學生拿著他們手中的三角形,在講臺上講述自己的驗證方法,雖然有的方法很不成熟,但也可以看出這個過程中,滲透了他們發(fā)現(xiàn)的樂趣。這樣,學生在經(jīng)歷“再創(chuàng)造”的過程中,完成了對新知識的構建和創(chuàng)造。

  (三)以學定教,注重教學的有效性

  新課表指出:數(shù)學教學活動必須建立在學生的認知發(fā)展水*和已有的知識經(jīng)驗基礎之上。要把學生的個人知識、直接經(jīng)驗和現(xiàn)實世界作為數(shù)學教學的重要資源,即以學定教,注重每個教學環(huán)節(jié)的有效性。本課中當我提出“為什么一個三角形中不能有兩個角是直角”時,有學生指出如果有兩個直角,它就拼不成了一個三角形;也有學生說如果有兩個直角,它就趨向于長方形或正方形!盀槭裁磿@樣呢”?學生沉默片刻后,忽然有個學生舉手了:“因為三角形的內(nèi)角和是180度,兩個直角已經(jīng)有180度了,所以不可能有兩個角是直角。”這樣的回答把本來設計的教學環(huán)節(jié)打亂了,此時我靈機把問題拋給學生,“你們理解他說的話嗎、你怎么知道內(nèi)角和是180度、誰都知道三角形的內(nèi)角和是180度”等,當我看到大多數(shù)的已經(jīng)知道這一知識時,我就把學生直接引向主題“想不想自己研究證明一下三角形的內(nèi)角和是不是180度!奔ぐl(fā)了學生探究的興趣,使學生馬上投入到探究之中。

  在練習的時候,由于形式多樣,所以學生的興趣非常高漲,效果很好。通過多邊形內(nèi)角和的思考以及驗證,發(fā)展了學生的空間想象力,使課堂的知識得以延伸。<

三角形內(nèi)角和教學設計4

  設計思路

  遵循由特殊到一般的規(guī)律進行探究活動是這節(jié)課設計的主要特點之一。學生對三角尺上每個角的度數(shù)比較熟悉,就從這里入手。先讓學生算出每塊三角尺三個內(nèi)角的和是180°,引發(fā)學生的猜想:其它三角形的內(nèi)角和也是180°嗎?接著,引導學生小組合作,任意畫出不同類型的三角形,用通過量一量、算一算,得出三角形的內(nèi)角和是180°或接近180°(測量誤差),再引導學生通過剪拼的方法發(fā)現(xiàn):各類三角形的三個內(nèi)角都可以拼成一個*角。再利用課件演示進一步驗證,由此獲得三角形的內(nèi)角和是180°的結論。這一系列活動潛移默化地向?qū)W生滲透了“轉化”數(shù)學思想,為后繼學習奠定了必要的基礎。

  最后讓學生運用結論解決實際問題,練習的安排上,注意練習層次,共安排三個層次,逐步加深。練習形式具有趣味性,激發(fā)了學生主動解題的積極性。第一個練習從知識的直接應用到間接應用,數(shù)學信息的出現(xiàn)從比較顯現(xiàn)到較為隱藏。這些題檢測不同層次的學生是否掌握所學知識應該達到的基本要求,顧及到智力水*發(fā)展較慢和中等的同學,第3個練習設計了開放性的練習,在小組內(nèi)完成。由一個同學出題,其它三個同學回答。先給出三角形兩個內(nèi)角的度數(shù),說出另外一個內(nèi)角。有唯一的答案。訓練多次后,只給出三角形一個內(nèi)角,說出其它兩個內(nèi)角,答案不唯一,可以得出無數(shù)個答案。讓學生在游戲中消除疲倦激發(fā)興趣,拓展學生思維。兼顧到智力水*發(fā)展較快的同學。在整個教學設計中,本著“學貴在思,思源于疑”的思想,不斷創(chuàng)設問題情境,讓學生去實驗、去發(fā)現(xiàn)新知識的奧妙,從而讓學生在動手操作、積極探索的活動中掌握知識,積累數(shù)學活動經(jīng)驗,發(fā)展空間觀念和推理能力。

  教學目標

  1、讓學生親自動手,通過量、剪、拼等活動發(fā)現(xiàn)、證實三角形內(nèi)角和是180°,并會應用這一知識解決生活中簡單的實際問題。

  2、讓學生在動手獲取知識的過程中,培養(yǎng)學生的創(chuàng)新意識、探索精神和實踐能力。并通過動手操作把三角形內(nèi)角和轉化為*角的探究活動,向?qū)W生滲透“轉化”數(shù)學思想。

  3、使學生體驗成功的喜悅,激發(fā)學生主動學習數(shù)學的興趣。

  教材分析

  三角形的內(nèi)角和是三角形的一個重要特征。本課是安排在學習三角形的概念及分類之后進行的,它是學生以后學習多邊形的內(nèi)角和及解決其它實際問題的基礎。學生在掌握知識方面:已經(jīng)掌握了三角形的分類,比較熟悉*角等有關知識;能力方面:經(jīng)過三年多的學習,已具備了初步的動手操作能力和主動探究能力以及合作學習的習慣。

  因此,教材很重視知識的探索與發(fā)現(xiàn),安排了一系列的.實驗操作活動。教材呈現(xiàn)教學內(nèi)容時,不但重視體現(xiàn)知識的形成過程,而且注意留給學生充分進行自主探索和交流的空間,為教師靈活**教學提供了清晰的思路。概念的形成沒有直接給出結論,而是通過量、算、拼等活動,讓學生探索、實驗、發(fā)現(xiàn)、討論交流、推理歸納出三角形的內(nèi)角和是180°。

  教學重點

  讓學生經(jīng)歷“三角形內(nèi)角和是180°”這一知識的形成、發(fā)展和應用的全過程。

  教學準備

  多**課件、學具。

  教學過程

  一、激趣引入

 。ㄒ唬┱J識三角形內(nèi)角

  師:我們已經(jīng)認識了什么是三角形,誰能說出三角形有什么特點?

  生1:三角形是由三條線段圍成的圖形。

  生2:三角形有三個角,……

  師:請看屏幕(課件演示三條線段圍成三角形的過程)。

  師:三條線段圍成三角形后,在三角形內(nèi)形成了三個角,(課件分別閃爍三個角及的弧線),我們把三角形里面的這三個角分別叫做三角形的內(nèi)角。(這里,有必要向?qū)W生直觀介紹“內(nèi)角”。)

 。ǘ┰O疑,激發(fā)學生探究新知的心理

  師:請同學們幫老師畫一個三角形,能做到嗎?(激發(fā)學生主動學習的心理)

  生:能。

  師:請聽要求,畫一個有兩個內(nèi)角是直角的三角形,開始。(設置矛盾,使學生在矛盾中去發(fā)現(xiàn)問題、探究問題。)

  師:有誰畫出來啦?

  生1:不能畫。

  生2:只能畫兩個直角。

  生3:只能畫長方形。

  師(課件演示):是不是畫成這個樣子了?哦,只能畫兩個直角。

  師:問題出現(xiàn)在哪兒呢?這一定有什么奧秘?想不想知道?

  生:想。

  師:那就讓我們一起來研究吧!

 。ń沂久,巧妙引入新知的探究)

  二、動手操作,探究新知

  (一)研究特殊三角形的內(nèi)角和

  師:請看屏幕。(播放課件)熟悉這副三角板嗎?請拿出形狀與這塊一樣的三角板,并同桌互相指一指各個角的度數(shù)。(課件閃動其中的一塊三角板)

  生:90°、60°、30°。(課件演示:由三角板抽象出三角形)

  師:也就是這個三角形各角的度數(shù)。它們的和怎樣?

  生:是180°。

  師:你是怎樣知道的?

  生:90°+60°+30°=180°。

  師:對,把三角形三個內(nèi)角的度數(shù)合起來就叫三角形的內(nèi)角和。

  師:(課件演示另一塊三角板的各角的度數(shù)。)這個呢?它的內(nèi)角和是多少度呢?

  生:90°+45°+45°=180°。

  師:從剛才兩個三角形內(nèi)角和的計算中,你發(fā)現(xiàn)什么?

  生1:這兩個三角形的內(nèi)角和都是180°。

  生2:這兩個三角形都是直角三角形,并且是特殊的三角形。

 。ǘ┭芯恳话闳切蝺(nèi)角和

  1、猜一猜。

  師:猜一猜其它三角形的內(nèi)角和是多少度呢?同桌互相說說自己的看法。

  生1:180°。

  生2:不一定。

  ……

  2、操作、驗證一般三角形內(nèi)角和是180°。

 。1)小組合作、進行探究。

  師:所有三角形的內(nèi)角和究竟是不是180°,你能用什么辦法來證明,使別人相信呢?

  生:可以先量出每個內(nèi)角的度數(shù),再加起來。

  師:哦,也就是測量計算,是嗎?那就請四人小組共同研究吧!

  師:每個小組都有不同類型的三角形。每種類型的三角形都需要驗證,先討論一下,怎樣才能很快完成這個任務。(課前每個小組都發(fā)有銳角三角形、直角三角形、鈍角三角形,指導學生選擇解決問題的策略,進行合理分工,提高效率。)

 。2)小組匯報結果。

  師:請各小組匯報探究結果。

  生1:180°。

  生2:175°。

  生3:182°。

  (三)繼續(xù)探究

  師:沒有得到**的結果。這個辦法不能使人很信服,怎么辦?還有其它辦法嗎?

  生1:有。

  生2:用拼合的辦法,就是把三角形的三個內(nèi)角放在一起,可以拼成一個*角。

  師:怎樣才能把三個內(nèi)角放在一起呢?

  生:把它們剪下來放在一起。

  1、用拼合的方法驗證。

  師:很好,請用不同的三角形來驗證。

  師:小組內(nèi)完成,仍然先分工怎樣才能很快完成任務,開始吧。

  2、匯報驗證結果。

  師:先驗證銳角三角形,我們得出什么結論?

  生1:銳角三角形的內(nèi)角拼在一起是一個*角,所以銳角三角形的內(nèi)角和是180°。

  生2:直角三角形的內(nèi)角和也是180°。

  生3:鈍角三角形的內(nèi)角和還是180°。

  3、課件演示驗證結果。

  師:請看屏幕,老師也來驗證一下,是不是跟你們得到的結果一樣?(播放課件)

  師:我們可以得出一個怎樣的結論?

  生:三角形的內(nèi)角和是180°。

 。ń處煱鍟喝切蔚膬(nèi)角和是180°學生齊讀一遍。)

  師:為什么用測量計算的方法不能得到**的結果呢?

  生1:量的不準。

  生2:有的量角器有誤差。

  師:對,這就是測量的誤差。

三角形內(nèi)角和教學設計5

  教學目標:

  1、教會學生主動探究新識的方法,學會運用轉化遷移數(shù)學思想。

  2、學生通過量、剪、拼、擺、分割等驗證三角形內(nèi)角和方法的比較,主動掌握三角形內(nèi)角和是1800,并運用所學知識解決簡單的實際問題,發(fā)展學生的觀察、歸納、概括能力和初步的空間想象力。

  教學重點: 理解并掌握三角形的內(nèi)角和是180°。

  教學難點: 驗證所有三角形的內(nèi)角之和都是180°。

  教具準備: 多**課件。

  學具準備: 量角器、正方形、剪刀、各類三角形(包括直角三角形、銳角三角形、鈍角三角形)

  教學過程:

  一、導入

  師:知道今天我們學習什么內(nèi)容嗎?我們先來解讀一下課題,三角形,你手中有么?舉起來我看看,你拿的什么三角形?你呢?師:三角形按角分類,可分為直角三角形、鈍角三角形和銳角三角形。

  師:什么是內(nèi)角?你能把你手中三角形的三個內(nèi)角用角1、角2、角3標出來嗎?

  師:還有一個關鍵字“和”,什么是三角形的內(nèi)角和?

  師:你認為三角形的內(nèi)角和是多少度?你呢?都知道啊?是多少度啊?看來都知道了,就不用再學了吧?你還想學什么?

  師:看來我們不僅要知道三角形的內(nèi)角和是180度,還要親自證明一下為什么是180度。這才真了不起呢。能證明嗎?你想怎么證明阿?

  生:量一量的方法。

  師:光量就知道了?還要算一算。

  師:這種方法可行嗎?下面咱就來試試,請同學們4人一組,分工合作,先測量內(nèi)角,再計算求和。小組長把計算的過程記錄下來。開始吧。

  驗證:量角、求和

  小組匯報

  生一:我們組量的是銳角三角形,三個角分別是50度、60度、70度,銳角三角形的內(nèi)角和是180度。

  生二:我們組量的是直角三角形,三個角分別是90度、35度、55度,直角三角形的內(nèi)角和是180度。

  生三:我們組量的是鈍角三角形,三個角分別是120度、40度、20度,鈍角三角形的內(nèi)角和是180度。

  師:從剛才的交流中,你發(fā)現(xiàn)了什么?

  生:不管是銳角三角形、直角三角形,還是鈍角三角形,內(nèi)角和都是180度。

  師:下面同學測量得出180度的請你舉手,有沒有不是180度的?為什么有不同的答案呢?反思一下。我們在測量的時候容易出現(xiàn)誤差,得出的結論就難以讓人信服。看來似乎用量的方法還不能充分證明。(劃問號)

  師:還敢接受更大挑戰(zhàn)嗎?把量角器和你的工具都收起來,只借助這張三角形紙片證明出三角形的內(nèi)角和是180度,你有辦法嗎?或許下面的同學還有別的方法,下面就請同學們互相交流交流,動手試一試吧!

  師:這種方法怎么樣?(鼓掌)老師感到非常的驚喜,你看他們沒有破壞三角形,就這樣輕輕的一折,就解決了問題,真是很巧妙。

  師:你們小組每個同學都動腦筋了,謝謝你們。

  師:還有那個小組用的這種方法?你們也非常的聰明。還有別的方法嗎?

  師:其實大家能用3種方法證明已經(jīng)很不簡單了,現(xiàn)在我們就能很自信的說三角形的內(nèi)角和是180度。(擦別的)

  師:其實對我來說重要的不是知識的結論,讓老師感動的是你們那種渴望求知,敢于探索的精神。更讓老師高興的是你們積極思考所得出的創(chuàng)造性的方法。現(xiàn)在我們再來一塊回顧一下。

  師:這幾種方法都足以說明三角形的內(nèi)角和是180度。(結論)

  師:剛才同學們發(fā)揮自己的聰明才智,想了很多方法來證明。王老師也有一種方法能證明。老師這里有一個活動角,借助課本的一邊就構成了一個三角形,請你睜大眼睛仔細觀察,你發(fā)現(xiàn)了什么?

  請你再仔細觀察,你發(fā)現(xiàn)了什么?其實兩個底角減少的度數(shù),正是頂角增大的度數(shù)。如果我繼續(xù)按下去你覺得會怎樣?我們來看看是不是這樣,三角形呢?兩個底角呢?剛才三角形的動態(tài)過程是不是也能證明三角形的內(nèi)角和是180度?

  師:看來只要大家肯動腦筋,面對同一問題就會有不同的解決方法。

  師:現(xiàn)在我們知道了“三角形的內(nèi)角和是180度”,能不能用這個知識來解決一些問題。

  生:能。

  二、遷移和應用

 。ㄒ唬c將臺:

  下面哪三個角是同一個三角形的內(nèi)角?

 。1)30 °、60 °、45 °、90 °

 。2)52 °、46 °、54 °、80 °

  (3)45 °、46 °、90 °、45 °

 。ǘ┪視

  1、已知∠1,∠2,∠3是三角形的三個內(nèi)角。

 。1)∠1=38° ∠2=49°求∠3

 。2)∠2=65° ∠3=73° 求∠1

  2、已知∠1和∠2是直角三角形中的兩個銳角

 。1)∠1=50°求∠2

 。2)∠2=48°求∠1

  3、已知等腰三角形的一個底角是70°,它的頂角是多少度?

 。ㄈ。變變變!

 。1)一個三角形中, ∠1 、∠2、∠3。

 。2)如果把∠3剪掉,變成了幾邊形?它的內(nèi)角和變成多少度呢?

 。3)如果再把∠2剪掉,剩下圖形的內(nèi)角和是多少度呢?

  三、全課小結

  師:通過一節(jié)課的探索,你有什么收獲?

  生答(略)

  我的幾點認識:

  結合《三角形的內(nèi)角和》這節(jié)課,我對空間與圖形這一部分內(nèi)容,簡單的談一下自己的認識。

  空間與圖形這一部分內(nèi)容,可以用這幾個字來概括:難理解,難受,難掌握。在本節(jié)課的教學中,三角形的內(nèi)角和概念比較抽象,學生比較難理解。尤其是讓學生探究三角形的內(nèi)角和是180度,對學生來說更是難上加難。如果光憑在頭腦中想,不動手實踐,對于三角形的內(nèi)角和,學生也只能機械記憶是180度。那如何更好的讓學生掌握和接受呢?針對這些特點我采用了一下幾點做法:

  1、根據(jù)學生的知識特點和生活經(jīng)驗,在原有基礎上創(chuàng)造性的使用教材。

  在教學本節(jié)課的內(nèi)容時,學生在自己的日常生活或大部分都已經(jīng)知道三角形的內(nèi)角和是180。因材在這樣的情況下,我創(chuàng)造性的使用教材。不是讓學生通過自己動手操作之后才發(fā)現(xiàn)三角形的內(nèi)角和是180,而是直接把問題拋給學生,你們知道三角形的內(nèi)角和是多少度嗎?

  你們怎么知道的?能自己證明么?這樣學生從被動學習者的角色,

  立刻轉入主動學習者的角色之中。這樣既能使學生很好的掌握知識,又能使學生激發(fā)興趣,提高積極性。

  2、讓學生在小組交流中進行思維的碰撞,在動手操作的實踐過程中得到知識情感價值的升華。

  在探究的過程中,我們采用了小組合作學習方式,這樣既能給學生提供交流的空間,又能在短時間內(nèi)有效學習。學生先交流方法,商定出可行的辦法和方略,然后合作進行實踐。學生會為了一個問題爭的面紅耳赤,在這個過程中我們驚喜的看到生在交流和動手操作過程中得到了提高。通過自己的實踐證明,學生發(fā)現(xiàn)三角形的內(nèi)角和的確是180度。

  總之,在教學空間與圖形的內(nèi)容時,一定要讓學生看到“圖形",讓學生想象"空間”。

三角形內(nèi)角和教學設計6

  教學要求

  1、通過動手操作,使學生理解并掌握三角形的內(nèi)角和是180°的結論。

  2、能運用三角形的內(nèi)角和是180°這一規(guī)律,求三角形中未知角的度數(shù)。

  3、培養(yǎng)學生動手動腦及分析推理能力。

  教學重點

  三角形的內(nèi)角和是180°的規(guī)律。

  教學難點

  使學生理解三角形的內(nèi)角和是180°這一規(guī)律。

  教學用具

  每個學生準備銳角三角形、直角三角形、鈍角三角形紙片各一張,量角器。

  教學過程:

  一、出示預習提綱

  1、三角形按角的不同可以分成哪幾類?

  2、一個*角是多少度?1個*角等于幾個直角?

  3、如圖,已知∠1=35°,∠2=75°,求∠3的度數(shù)。

  二、展示匯報交流

  1、投影出示一組三角形:(銳角三角形、鈍角三角形、直角三角形)。三角形有幾個角?老師指出:三角形的這三個角,就叫做三角形的三個內(nèi)角。(板書:內(nèi)角)

  2、三角形三個內(nèi)角的度數(shù)和叫做三角形的內(nèi)角和。(板書課題:三角形的內(nèi)角和)今天我們一起來研究三角形的內(nèi)角和有什么規(guī)律。

  3、以小組為單位先畫4個不同類型的三角形,利用手中的工具分別計算三角形三個內(nèi)角的和各是多少度?

  4、指名學生匯報各組度量和計算的結果。你有什么發(fā)現(xiàn)?

  5、大家算出的三角形的內(nèi)角和都接近180°,那么,三角形的內(nèi)角和與180°究竟是怎樣的關系呢?就讓我們一起來動手實驗研究,我們一定能弄清這個問題的。

  6、剛才我們計算三角形的內(nèi)角和都是先測量每個角的度數(shù)再相加的。在量每個內(nèi)角度數(shù)時只要有一點誤差,內(nèi)角和就有誤差了。我們能不能換一種方法,減少度量的次數(shù)呢?

  提示學生,可以把三個內(nèi)角拼成一個角,就只需測量一次了。

  7、請拿出桌上的直角三角形紙片,想一想,怎樣折可以把三個角拼在一起,試一試。

  8、三個角拼在一起組成了一個什么角?我們可以得出什么結論?(直角三角形的內(nèi)角和是180°)

  9、拿一個銳角三角形紙片試試看,折的方法一樣。再拿鈍角三角形折折看,你發(fā)現(xiàn)了什么?(直角三角形和鈍角三角形的內(nèi)角和也是180°)

  10、那么,我們能不能說所有三角形的內(nèi)角和都是180°呢?為什么?(能,因為這三種三角形就包括了所有三角形)11。老師板書結論:三角形的內(nèi)角和是180°。

  12、一個三角形中如果知道了兩個內(nèi)角的度數(shù),你能求出另一個角是多少度嗎?怎樣求?

  13、出示教材85頁做一做。讓學生試做。

  14、指名匯報怎樣列式計算的。兩種方法均可。

  ∠2=180°—140°—25°=15°

  ∠2=180°(140°+25°)=15°

  課后反思:

  對于三角形的內(nèi)角和,學生并不陌生,在*時的做題中已經(jīng)涉及到了。可是學生并不知道如何去驗證,所以本節(jié)課,重點讓孩子們經(jīng)歷體驗,感悟圖形。從而收獲了經(jīng)驗。特別是動手操作將三角形拼成一個直角時,有的孩子將角剪得非常小,很不好拼,在此進行了重點的提示。

三角形內(nèi)角和教學設計7

  教學內(nèi)容:

  本節(jié)課的教學內(nèi)容是義務教育課程標準實驗教科書數(shù)學四年級下冊第五單位的第四課時《三角形的內(nèi)角和》,主要內(nèi)容是:驗證三角形的內(nèi)角和是180°等。

  教學內(nèi)容分析:三角形的內(nèi)角和是180是三角形的一個重要性質(zhì),它有助于學生理解三角形的三個內(nèi)角之間的關系,也是進一步學習的基礎。

  教學對象分析:作為四年級的學生已有一定的生活經(jīng)驗,在*時的生活中已經(jīng)接觸到三角形,在尊重學生已有的知識的基礎上和利用他們已掌握的學習方法,教師把課堂教學**生動、活潑,突出知識性、趣味性和生活性,使學生能在輕松愉快的氣氛中學習。

  教學目標:

  1、知識目標:學生通過量、剪、拼、擺等操作學具活動,找到新舊知識之間的聯(lián)系,主動掌握三角形內(nèi)角和是180°,并運用所學知識解決簡單的實際問題。

  2、能力目標:培養(yǎng)學生的觀察、歸納、概括能力和初步的空間想象力。

  3、情感目標:培養(yǎng)學生的創(chuàng)新意識、探索精神和實踐能力,在學生親自動手和歸納中,感受到理性的美。

  教學重點:理解并掌握三角形的內(nèi)角和是180°。

  教學難點:驗證所有三角形的內(nèi)角之和都是180°。

  教具準備:多**課件、各種三角形等。

  學具準備:三角形、剪刀、量角器等。

  教學過程:

  一、出示課題,復習舊知

  1、認識三角形的內(nèi)角。

 。ǎ保⿵土暼切蔚母拍睢

 。ǎ玻┙榻B三角形的“內(nèi)角”。

  2、理解三角形的內(nèi)角“和”。

  【設計理念】通過復習三角形的概念的過程,不僅可以鞏固學生的舊知識而且可以為新知識教學提供知識鋪墊。

  二、動手操作,探究新知

  1、通過預習,認識結論,提出疑問

  2、驗證三角形的內(nèi)角和

 。1)用“量一量、算一算”的方法進行驗證

 、賲R報測量結果

  ②產(chǎn)生疑問:為什么結果不**?

 、劢鉀Q疑問:因為存在測量誤差。

 。2)用“剪一剪、拼一拼”的方法進行驗證

 、僦笇Ъ舴。

 、俜謩e拼:銳角三角形、直角三角形、鈍角三角形。

  ③驗證得出:三角形的內(nèi)角和是180°。

 。3)用“折一折”的方法進行驗證

 、僦笇д鄯。

  ①分別折:銳角三角形、直角三角形、鈍角三角形。

 、墼俅悟炞C得出:三角形的內(nèi)角和是180°。

  3、看書質(zhì)疑

  【設計理念】此過程采用直觀教學**。通過讓學生動手量、拼等直觀演示操作直接作用于學生的感官,激活學生的思維,有助于學生的認識由具體到抽象的轉化。從而明確三角形的內(nèi)角和是180°。

  三、實踐應用,解決問題:

  1、在一個三角形中,∠1=140°,∠3=25°,求∠2的度數(shù)。

  2、求出三角形各個角的度數(shù)。(圖略)

  3、爸爸給小紅買了一個等腰三角形的風箏。它的一個底角是

  70°,它的頂角是多少度?

  4、根據(jù)三角形的內(nèi)角和是180°,你能求出下面的四邊形和正六邊形的內(nèi)角和嗎?(圖略)

  5、數(shù)學游戲。

  【設計理念】練習設計的優(yōu)化是優(yōu)化教學過程的一個重要方向,所以在新授后的鞏固練習中注意設計層層遞進,既有坡度、又注意變式,更有一練一得之妙,從而使學生牢固掌握新知。

  四、總結全課、延伸知識:

  1、今天你們學到了哪些知識?是怎樣獲取這些知識的?你感覺學得怎樣?

  2、知識延伸:給學生介紹一種更科學的驗證方法——轉化。

  【設計理念】課堂總結不僅要關注學生學會了什么,更要關注用什么方法學,要有意識的促進學生反思。

  板書設計:三角形的內(nèi)角和是180°

  方法:①量一量拼角(略)

 、谄匆黄

 、壅垡徽

  【設計理念】此板書設計我力求簡明扼要、布局合理、條理分明,體現(xiàn)了簡潔美和形象美,把知識的重點充分地展現(xiàn)在學生的眼前,起了畫龍點睛的作用。

三角形內(nèi)角和教學設計8

  教學內(nèi)容:本節(jié)課的教學內(nèi)容是義務教育課程標準實驗教科書數(shù)學四年級下冊第五單位的第四課時《三角形的內(nèi)角和》,主要內(nèi)容是:驗證三角形的內(nèi)角和是180°等。

  教學內(nèi)容分析:三角形的內(nèi)角和是180是三角形的一個重要性質(zhì),它有助于學生理解三角形的三個內(nèi)角之間的關系,也是進一步學習的基礎。

  教學對象分析:作為四年級的學生已有一定的生活經(jīng)驗,在*時的生活中已經(jīng)接觸到三角形,在尊重學生已有的知識的基礎上和利用他們已掌握的學習方法,教師把課堂教學**生動、活潑,突出知識性、趣味性和生活性,使學生能在輕松愉快的氣氛中學習。

  教學目標:

  1、知識目標:學生通過量、剪、拼、擺等操作學具活動,找到新舊知識之間的聯(lián)系,主動掌握三角形內(nèi)角和是180°,并運用所學知識解決簡單的實際問題。

  2、能力目標:培養(yǎng)學生的觀察、歸納、概括能力和初步的空間想象力。

  3、情感目標:培養(yǎng)學生的創(chuàng)新意識、探索精神和實踐能力,在學生親自動手和歸納中,感受到理性的美。

  教學重點:理解并掌握三角形的內(nèi)角和是180°。

  教學難點:驗證所有三角形的內(nèi)角之和都是180°。

  教具準備:多**課件、各種三角形等。

  學具準備:三角形、剪刀、量角器等。

  教學過程:

  一、出示課題,復習舊知

  1、認識三角形的內(nèi)角。

 。ǎ保⿵土暼切蔚母拍。

  (2)介紹三角形的“內(nèi)角”。

  2、理解三角形的內(nèi)角“和”。

  【設計理念】通過復習三角形的概念的過程,不僅可以鞏固學生的舊知識而且可以為新知識教學提供知識鋪墊。

  二、動手操作,探究新知

  1、通過預習,認識結論,提出疑問

  2、驗證三角形的內(nèi)角和

  (1)用“量一量、算一算”的方法進行驗證

  ①匯報測量結果

 、诋a(chǎn)生疑問:為什么結果不**?

 、劢鉀Q疑問:因為存在測量誤差。

 。2)用“剪一剪、拼一拼”的方法進行驗證

  ①指導剪法。

 、俜謩e拼:銳角三角形、直角三角形、鈍角三角形。

 、垓炞C得出:三角形的內(nèi)角和是180°。

 。3)用“折一折”的方法進行驗證

 、僦笇д鄯ā

 、俜謩e折:銳角三角形、直角三角形、鈍角三角形。

 、墼俅悟炞C得出:三角形的內(nèi)角和是180°。

  3、看書質(zhì)疑

  【設計理念】此過程采用直觀教學**。通過讓學生動手量、拼等直觀演示操作直接作用于學生的感官,激活學生的思維,有助于學生的認識由具體到抽象的轉化。從而明確三角形的內(nèi)角和是180°。

  三、實踐應用,解決問題:

  1、在一個三角形中,∠1=140°,∠3=25°,求∠2的度數(shù)。

  2、求出三角形各個角的度數(shù)。(圖略)

  3、爸爸給小紅買了一個等腰三角形的風箏。它的一個底角是

  70°,它的頂角是多少度?

  4、根據(jù)三角形的內(nèi)角和是180°,你能求出下面的四邊形和正六邊形的內(nèi)角和嗎?(圖略)

  5、數(shù)學游戲。

  【設計理念】練習設計的優(yōu)化是優(yōu)化教學過程的一個重要方向,所以在新授后的鞏固練習中注意設計層層遞進,既有坡度、又注意變式,更有一練一得之妙,從而使學生牢固掌握新知。

  四、總結全課、延伸知識:

  1、今天你們學到了哪些知識?是怎樣獲取這些知識的?你感覺學得怎樣?

  2、知識延伸:給學生介紹一種更科學的驗證方法——轉化。

  【設計理念】課堂總結不僅要關注學生學會了什么,更要關注用什么方法學,要有意識的促進學生反思。

  板書設計: 三角形的內(nèi)角和是180°

  方法:①量一量 拼角(略)

  ②拼一拼

 、壅垡徽

  【設計理念】此板書設計我力求簡明扼要、布局合理、條理分明,體現(xiàn)了簡潔美和形象美,把知識的重點充分地展現(xiàn)在學生的眼前,起了畫龍點睛的作用。

三角形內(nèi)角和教學設計9

  【教材分析】

  《三角形內(nèi)角和》是北師大版《數(shù)學》四年級下冊的內(nèi)容。是在學生學習了三角形的概念及特征之后進行的,它是掌握多邊形內(nèi)角和及其他實際問題的基礎,因此,掌握“三角形的內(nèi)角和是180度”這一規(guī)律具有重要意義。教材首先出示了兩個三角形比內(nèi)角和這一情境,讓學生通過測量、折疊、拼湊等方法,發(fā)現(xiàn)三角形的內(nèi)角和是180度。教材還安排了“試一試”,“練一練”的內(nèi)容。已知三角形兩個內(nèi)角的度數(shù),求出第三個角的度數(shù)。

  【學生分析】

  經(jīng)過近四年的課改實驗,孩子們已經(jīng)有了一定的自主探究,合作交流的能力。他們喜歡在實踐中感悟,在實踐中發(fā)表自己的見解,對數(shù)學產(chǎn)生了濃厚的興趣。1.知識方面:學生已經(jīng)掌握了三角形的概念、分類,熟悉了鈍角、直角、銳角、*角這些角的知識。2.能力方面:已具備了初步的動手操作能力和探究能力,并且能夠進行簡單的微機操作。

  【學習目標】

  知識目標:掌握三角形內(nèi)角和是180度這一規(guī)律,并能實際應用。

  能力目標: 培養(yǎng)學生主動探索、動手操作的能力。培養(yǎng)學生收集、整理、歸納信息的能力。使學生養(yǎng)成良好的合作習慣。

  情感目標: 讓學生體會幾何圖形內(nèi)在的結構美。

  【教學過程】

  一、 情景激趣,質(zhì)疑猜想。

  播放動畫片:在圖形王國中,有一天三角形大家庭里為“三角形內(nèi)角和的大小”爆發(fā)了一場激烈的爭吵。

  鈍角三角形大聲叫著:“我的鈍角大,我的內(nèi)角和一定比你們的內(nèi)角和大!变J角三角形也不示弱:“我的銳角雖然比鈍角小,但我的內(nèi)角和并不比你小!敝苯侨切握f:“別爭了,三角形的內(nèi)角和都是180°。我們的內(nèi)角和是一樣大的。”

  師:想一想,什么是三角形的三個內(nèi)角的和。

  生:三角形的三個內(nèi)角的度數(shù)和。

  師:同學們剛才看了動畫片你們知道誰說對了嗎?不知道的話想一想,猜一猜誰說的對?

  學生進行猜想,**發(fā)言。

 。ㄔO計意圖:教師借助多**技術創(chuàng)設問題情境,架起數(shù)學學習與現(xiàn)實生活,抽象數(shù)學與具體問題之間的橋梁,激發(fā)了學生的學習興趣。鼓勵學生主動質(zhì)疑猜想是培養(yǎng)學生學會學習的重要途徑。)

  二、自主探究,驗證猜想

  師:剛才大部分同學都猜直角三角形說的對。三角形的三個內(nèi)角的和都是 180°,你能設法驗證這個猜想嗎?

  生1:能。我量出三角形的三個內(nèi)角和度數(shù),加起來是否接近180°(量的時候可能會有些誤差)。

  生2:我把三角形的三個角剪下來拼一拼是否能拼成一個*角。

  生3:我把三角形的三個角撕下來,拼一拼是否180°。

  生4:我把三角形的三個角往里折,看一看這三個角是否折成一個*角。

  ……

  師:上面你們說了不少的驗證猜想的方法,請大家用準備好的材料用你喜歡的方法,動手驗證自己的猜想吧。▽W生把三角形的三個內(nèi)角分別標上∠1、∠2、∠3,以免在剪拼時把內(nèi)角搞混了。)

  學生邊實驗邊整理信息,完成實驗報告單后,學習小組內(nèi)進行交流討論。

 。ㄔO計意圖:驗證猜想為學生提供了“做數(shù)學”的機會,讓每個學生圍繞自己的猜想、決定自己的探索方向、選擇自己的方法,量一量、剪一剪、撕一撕、拼一拼、折一折,讓學生在操作中自主探究數(shù)學知識的產(chǎn)生發(fā)展過程。驗證自己的猜想,鼓勵學生用不同的方法進行驗證,促進學生創(chuàng)新能力的發(fā)展。)

  三、交流評價,歸納結論。

  學生操作驗證,完成實驗報告單后,利用投影儀展示學生填寫的實驗報告單。

  實驗報告單

  實驗名稱

  三角形內(nèi)角和

  實驗目的

  探究三角形內(nèi)角和是多少度。

  實驗材料

  尺子

  剪刀

  量角器

  銳角三角形紙片

  直角三角形紙片

  鈍角三角形紙片

  我的方法

  我的發(fā)現(xiàn)

  我的表現(xiàn)

  自評

  互評

  學生在展示過程中,充分交流和討論實驗中各自使用的方法和發(fā)現(xiàn),教師要對學生的閃光點及時進行表揚和鼓勵。

  師生共同歸納,得出結論:

  三角形內(nèi)角和等于180°

 。ㄔO計意圖:各學習小組匯報自己的驗證過程,展示探究的成果。對學生探索發(fā)現(xiàn)的方法、策略進行總結歸納,集思廣益,取長補短達到共識。在交流、歸納過程中,及時肯定其中的閃光點給予表揚和鼓勵,使他們體驗到成功的愉悅,促使他們獲得更大的成功。)

  四、分層練習,鞏固創(chuàng)新。

 、僬n件出示:

  師:這個三角形是什么三角形?知道幾個內(nèi)角的度數(shù)?

  生:直角三角形,知道一個角是30°,還有一個角是90°!螦=90°-30°=60°。

  師:根據(jù)今天所學的知識,誰能求出A的度數(shù)?大家自己試一試。

  學生做完后反饋講評時讓學生說說自己的方法。

  生1:用三角形內(nèi)角的和(180°)減去30°再減去90°,算出∠A是60°。

  ∠A=180°-30°-90°=60°。

  生2:先用30°加上90°得120°再用180°減去120°也可得∠A =60°。

 、趯W生完成完成P29的第一題。

  引導學生按照前面的方法**完成,教師巡視,集體訂正。

 、鄄乱徊氯切蔚牧硗鈨蓚角可能各是多少度。

  同桌同學互相說一說。(答案不唯一)

 、苄〗M操作探究活動。

  讓學生剪出幾個不同的四邊形,按表中所給的方法以做一做,并填一填。

  方 法

  四邊形內(nèi)角和

  用量角器量出每個內(nèi)角的度數(shù),并相加。

  把四邊形四個角剪下來,拼在一起。

  把四邊形分為兩個三角形。

  填表后讓學生想一想、互相說一說,四邊形內(nèi)角和是多少度?

 。ㄔO計意圖:引導學生將探究學習活動中所獲得的結論經(jīng)驗和方法運用于探索解決簡單的實際問題。**學生參與具有趣味性、操作性和開放性的練習活動,讓學生在鞏固練習中培養(yǎng)動手能力、實踐能力和創(chuàng)新思維。)

三角形內(nèi)角和教學設計10

  【設計理念】

  新課標重視讓學生經(jīng)歷數(shù)學知識的形成過程,要求教師創(chuàng)設有效的問題情境激發(fā)學生的參與欲望,提供足夠的時間和空間讓學生經(jīng)歷觀察、猜測、驗證、交流反思等過程,使學生在動手操作、合作交流等活動中親身經(jīng)歷知識的形成過程。這樣,學生不僅可以掌握知識,而且可以積累探究數(shù)學問題的活動經(jīng)驗,發(fā)展空間觀念和推理能力。

  【教材內(nèi)容】新人教版義務教育課程標準實驗教科書四年級下冊數(shù)學第67頁例6、“做一做”及練習十六的第1、2、3題。

  【教材分析】

  三角形的內(nèi)角和是三角形的一個重要特征。本課是安排在三角形的概念及分類之后教學的,它是學生以后學習多邊形的內(nèi)角和及解決其它實際問題的基礎。教材很重視知識的探索與發(fā)現(xiàn),安排兩次實驗操作活動。教材呈現(xiàn)教學內(nèi)容時,不但重視體現(xiàn)知識的形成過程,而且注意留給學生充分進行自主探索和交流的空間和時間,為教師靈活**教學提供了清晰的思路。概念的形成沒有直接給出結論,而是通過量、拼等活動,讓學生探索、實驗、交流、推理歸納出三角形的內(nèi)角和是180°。

  【學情分析】

  1、在學習本課時,學生已經(jīng)有了探索三角形內(nèi)角和的知識基礎:知道直角和*角的度數(shù),會用量角器度量角的度數(shù);認識長方形、正方形,知道他們的四個角都是直角;認識了三角形,知道了三角形按角分有銳角三角形、直角三角形和鈍角三角形;已經(jīng)知道了等腰三角形和正三角形。

 。病⒁呀(jīng)有一部分學生知道了三角形內(nèi)角和是180°,只是知其然而不知所以然。

  【教學目標】

  1通過“量、剪、拼”等活動發(fā)現(xiàn)、驗證三角形的內(nèi)角和是180°,并能運用這個知識解決一些簡單的問題。

  2.在觀察、猜想、操作、合作、分析交流等具體活動中,提高動手操作能力,積累基本的數(shù)學活動經(jīng)驗,發(fā)展空間觀念和推理能力。

  3.在參與數(shù)學學習活動的過程中,獲得成功的體驗,感受數(shù)學探究的嚴謹與樂趣。

  【教學重點】

  探索發(fā)現(xiàn)、驗證“三角形內(nèi)角和是180°”,并運用這個知識解決實際問題。

  【教學難點】驗證“三角形的內(nèi)角和是180°”。

  【教(學)具準備】

  多**課件; 銳角三角形、直角三角形、鈍角三角形紙片若干個各類三角形(也包括等邊、等腰)、長方形、正方形若干個;每人一個量角器;一把剪刀;每人一副三角尺。

  【教學步驟】

  一、復習舊知 引出課題

  1、你已經(jīng)知道有關三角形的哪些知識?

  2、出示課題:三角形的內(nèi)角和

  設計意圖:也自然導入新課。

  二、提出問題 引發(fā)猜想

  1、提出問題:看到這個課題,你有什么問題想問的?

  預設:(1)三角形的內(nèi)角指的是哪些角? (2)三角形的內(nèi)角和是什么意思?

 。3)三角形的內(nèi)角一共是多少度?

  2、引發(fā)猜想

  猜一猜:三角形的內(nèi)角和是多少度?你是怎么猜的?

  設計意圖:提出一個問題比解決一個問題更重要。課始在復習三角形已學知識后,引導學生提出有關三角形的新問題,讓學生學習自己想研究的內(nèi)容,無疑激發(fā)了學生的學習興趣,培養(yǎng)了學生的問題意識。由于學生在*時使用三角板時已經(jīng)若隱若現(xiàn)地有了特殊的直角三角形的內(nèi)角和是180度這一感覺,因此本環(huán)節(jié),要求學生猜一猜三角形的內(nèi)角和是多少,并說說是怎么猜的,以激發(fā)學生已有知識經(jīng)驗,并體會到猜想要合理且有根據(jù),同時也為推理驗證的引出作必要的鋪墊。

  三、操作驗證 形成結論

  1、交流驗證方法:

 。1)用什么方法證明三角形的內(nèi)角和是180度呢?

  預設: ①量算法 ②剪拼法 ③折拼法等

 。2)三角形的個數(shù)有無數(shù)個,驗證哪些三角形可以**所有的三角形?我們的操作過程怎么分工才會做到省時又高效?

  2、動手驗證

  3、全班匯報交流

  4、小結:剛才通過大家的動手操作驗證了三角形的內(nèi)角和是180 °度。但動手操作會存在一定的誤差,我們的結論也可能存在偏差。

  5、方法拓展

  推理驗證:用直角三角形的內(nèi)角和來證明其他三角形內(nèi)角和是180 °的方法。

  6、形成結論:任意三角形的內(nèi)角和是180 °。

  設計意圖:《標準》指出:“教師應激發(fā)學生的積極性,向?qū)W生提供充分從事數(shù)學活動的機會,幫助他們在自主探索和合作交流的過程中真正理解和掌握基本的數(shù)學知識與技能、數(shù)學思想和方法,獲得廣泛的數(shù)學活動經(jīng)驗!辈聹y后先**思考驗證的方法,再進行全班交流,給學生充分的活動時間和空間,讓學生動手操作,使學生在量、剪、拼、折等一系列操作活動中發(fā)現(xiàn)了三角形內(nèi)角和是180°這個結論。在探索活動前,交流如何使研究樣本具有**性和全面性與如何分工做到操作省時高效這兩個問題,培養(yǎng)學生嚴謹、科學正確的研究態(tài)度,讓學生在活動中積累基本的數(shù)學活動經(jīng)驗,為后續(xù)的學習提供了經(jīng)驗支撐。

  四、應用結論 解決問題

  1、鞏固新知:想一想,算一算。

  2、解決問題:等腰三角形風箏的頂角是多少度?

  3、辨析訓練,完善結論。

  五、課堂總結,歸納研究方法

  今天這節(jié)課你學到了哪些知識?你是怎樣得到這些知識的?

  六、課后延伸:用今天所學的方法繼續(xù)研究四邊形的內(nèi)角和。

  七、板書設計:

  三角形的內(nèi)角和

  猜測: 三角形的內(nèi)角和是180°?

  驗證: 量 拼

  結論: 任意三角形的內(nèi)角和是180°


《三角形的內(nèi)角和》教學設計10篇(擴展5)

——《三角形的內(nèi)角和》教學反思10篇

《三角形的內(nèi)角和》教學反思1

  本節(jié)課的內(nèi)容一般作為講授內(nèi)容,只要告訴學生三角形的內(nèi)角和是180度,學生記住結論教學即可完成。問題是通過這個內(nèi)容的教學,我們要達到什么樣的教學目標?為了達到更高的目標我把本節(jié)課定為活動課,讓學生在玩中學,并從中學會學習知識的科學方法。

  課的一開始我就由兩個大小不同的三角形在爭論誰的內(nèi)角和大入手。在學生的認知結構中,對于這場爭論的結果是什么已經(jīng)沒有懸念了,但這樣的爭論會引發(fā)他們思考,為什么不同的三角形內(nèi)角和會一樣?是不是所有的三角形內(nèi)角和都一樣?這也正是我本節(jié)課要與學生共同研究的問題。這時學生想說為什么又不知怎么說,又因不知道怎么說而感情特別激動。處于這種狀態(tài)的學生***特別集中,學習興趣異常高漲,到了一觸即發(fā)的地步。于是我讓他們將課前準備好的'三角形拿出來進行研究,體現(xiàn)學生的主體意識與參與意識。當學生通過折一折、拼一拼、撕一撕、畫一畫之后找到自己的驗證方法時,他們體驗了成功,也學會了學習。在這節(jié)課中我們共同找到了幾種驗證三角形內(nèi)角和是180°方法。學生們拿著他們手中的三角形,在講臺上講述自己的驗證方法,雖然有的方法很不成熟,但也可以看出這個過程中,滲透了他們發(fā)現(xiàn)的樂趣。有的學生將三角形的三個角都撕下來拼接到一起,有的同學將三角形的三個角沿著三角形的中位線拼在一起。當孩子們正愉悅于自己的發(fā)現(xiàn)時,我適時提出:四邊形的內(nèi)角和是多少呢?五邊形的內(nèi)角和是多少呢?……N邊形的內(nèi)角和是多少呢?孩子們求知的欲望再一次被激發(fā),專注的研究著……當我進行**時,還沒有研究出方法的小組成員是那么用心的傾聽其他同學的發(fā)言。當有的同學說要將多邊形分割成學過的三角形進行研究時,他們發(fā)出贊嘆的聲音。于是我們進一步研究求多邊形內(nèi)角和的方法,他們從中體會到了探索的樂趣與成功的興奮;于是孩子們又發(fā)現(xiàn)多邊形外角和的奇妙之處,真是萬種變化定在其中。

  這節(jié)課下課后我自己都有一點興奮,因為我的孩子給了我意外的驚喜。但試想一下,如果我上課之初,就告訴孩子三角形的內(nèi)角和為180°,并且告訴孩子我的驗證方法,即便告訴的方法再多,再詳細,他們學到的也只是我的有限的方法,而且是老師的方法,不是自己發(fā)現(xiàn)的方法。但換一種教學方式,孩子們不但找到了所有我知道的方法,也找到了我意想不到的方法,我們大家在研究中都是受益者。也許沒有什么比這更讓人興奮的了。

《三角形的內(nèi)角和》教學反思2

  1、通過直觀操作的方法,探索并發(fā)現(xiàn)三角形的內(nèi)角和等于180度,在實驗活動中,體驗探索的過程和方法。

  2、能運用三角形的內(nèi)角和的性質(zhì)解決一些簡單的問題。上課時,我先出示了書本上的圖片,大的三角形對小的三角形說:“我的三個角的和一定比你大”。問學生是這樣的嗎。起先就有同學問了,什么是內(nèi)角和,我稍微解釋后,同學們就開始些爭論了,帶著這個問題,我讓孩子們自己在練習本上畫三角形(什么樣的三角形都可以)。然后讓他們量出三個角的度數(shù),并求出他們的和。我在巡視的過程中,選出了一些同學的三角形以及他們測量出來的結果。也發(fā)現(xiàn)有些同學已經(jīng)忘記量角的方法,或者量的過程不認真,導致結果出錯,我在巡視的過程中就給予糾正。

  最后,同學們也都發(fā)現(xiàn),大小、形狀不同的三角形,其內(nèi)角和都在180度左右。然后讓他們看智慧老人的一句話“實際上,三角形三個內(nèi)角和就是180度,只是因為測量有誤差”,所以有些同學量出來的并不剛好是180度。那么智慧老人的話有沒有道理呢?我拋出了這么一個疑問,讓同學們想辦法證明。最開始,有人提出了用折的方法,我就拿出了事先準備好的三角形,讓他折給大家看,發(fā)現(xiàn)三個角拼在一起后就成了一個*角,也就是180度。但是問到還有沒有其他方法的時候,就沒有同學回答了,時間也快到了,我就自己匆匆忙忙的把先撕后拼的方法給講了。之后講了一道內(nèi)角和的應用,然后就讓他們下課了。

  在這節(jié)課的過程當中,我對自己不滿意的地方有幾個,主要是后半節(jié):

  首先,同學在用折一折的方法證明三角形的內(nèi)角和時,雖然**演示的同學有折出來,但速度不是很快,而且但并不是沒個同學都能折出來的,所以在上面的同學折出來后,我覺得讓其他同學也試一下,肯定有人沒辦法,所以要提醒他們,折時要注意*行折。這樣也會更有說服力。但是我也沒讓大家準備三角形,也就沒辦法了。這里我更體會到提前備好一周的課的重要性了。這也是我們校長和教導時常強調(diào)的,以后一定得改正。

  其次,讓同學們想辦法用令一種方法證明時,我顯得急躁了,雖然同學們沒有一下子想出來,但是我也應該多給他們些時間,讓他們多思考,或者稍微給點提示。我想起上學期中關村的老師上認識角的時候,就很耐心的給孩子們時間去探索,去發(fā)現(xiàn)。所以在課堂的時間安排上,我還要思考如何才能更加合理。

  最后,也是我經(jīng)常在思考的。為什么我們班發(fā)言的情況總是那么不如人意呢。沒次到我的師傅班上聽課時,我都發(fā)現(xiàn)他們班孩子充滿了激情,而到了我們班,情況就**的改變呢?是**的方式有問題嗎?不過可能有一點,是因為我在課堂當中對于學生的回答激勵性的語言太少了,導致有部分人失去熱情,還有就是自己上課總是急于求成,讓孩子們失去了思考的機會,也使有些人已經(jīng)懶得思考了。在這方面我以后還得**的改善才行。

《三角形的內(nèi)角和》教學反思3

  我在講“三角形的內(nèi)角和”時,開始就由求兩個我們已經(jīng)熟悉的直角三角尺的內(nèi)角和入手。在學生的認知結構中,他們已經(jīng)知道了兩塊三角尺的內(nèi)角和是180°了。在此基礎上,引導學生猜測,其他三角形的內(nèi)角和是不是也是180°。這也正是我本節(jié)課要與學生共同研究的問題。這時學生想說為什么又不知怎么說,又因不知道怎么說而感情特別激動。處于這種狀態(tài)的學生***特別集中,學習興趣異常高漲,到了一觸即發(fā)的地步。于是我讓他們將課前準備好的三角形拿出來進行研究,體現(xiàn)學生的主體意識與參與意識。當學生通過量一量、折一折、撕一撕之后找到自己的`驗證方法時,他們體驗了成功,也學會了學習。在這節(jié)課中我們共同找到了幾種驗證三角形內(nèi)角和是180°方法。學生們拿著他們手中的三角形,講述自己的驗證方法,雖然有的方法很不成熟,但也可以看出這個過程中,滲透了他們發(fā)現(xiàn)的樂趣。有的學生將三角形的三個角都撕下來拼接到一起,有的同學將三角形的三個角沿著三角形的中位線折到一起……

  但試想一下,如果我上課之初,就告訴孩子三角形的內(nèi)角和為180°,并且告訴孩子我的驗證方法,即便告訴的方法再多,再詳細,他們學到的也只是我的有限的方法,而且是老師的方法,不是自己發(fā)現(xiàn)的方法。

  不過在進行動手操作的時候,有些小組沒有抓到很好的要領,而我也沒給予及時的指導;或者說,因為時間的關系,我的指導沒有很好的說清楚,導致個別小組動手的時候不是很清楚。

  對于活動性課程,我的把握不是很到位。在活動中出現(xiàn)的小問題,有的時候我經(jīng)常會不知所措,不知道應該怎樣及時解決,這個是我今后要努力的方向。

《三角形的內(nèi)角和》教學反思4

  1.機智,開放地吸納各種信息,善于捕捉教育契機,合理地調(diào)控自己的教學行為。

  2、教師的教學方式要適應學生的學習。新課程明確倡導動手實踐、自主探究、合作交流的學習方式。這就要求教師的角色,應當從過去知識的傳授者轉變?yōu)閷W生自主性、探究性、合作性學習活動的設計者和**者。在教學過程中,我給學生設置了一個開放的、面向?qū)嶋H的、富有挑戰(zhàn)性的問題情境,讓學生**、自主地去探究驗證其他學生已發(fā)現(xiàn)的知識,通過實驗、操作、表達、交流等活動,經(jīng)歷探究過程,獲得知識與能力,掌握解決問題的方法,獲得情感體驗。我想:只要我們堅持“為學習而設計”、“為學生的發(fā)展而教”,那么我們的課堂將會更加生機勃勃、充滿智慧的歡樂和創(chuàng)造的快意。

  3、讓每位學生都有所發(fā)展。這節(jié)課我進行了8次課堂巡視,其中4次參與學生的討論、交流,兩次分別對三名學困生進行重點輔導,巡視時關注面較廣,目的性明確。但在“個別學生課堂行為表現(xiàn)”的重點觀察中,一位學困生在前半節(jié)課*舉了兩次手,未被我關注,之后再沒舉過一次手。課后這位學生找到我問我原因。我與他進行了個別談話,問他為什么后半節(jié)課沒再舉手,回答是:“反正也不會**到我!睂W生的態(tài)度似乎有些不以為然,其實蘊含著不滿。說明我們教師在課堂中不應忽略個體差異、害怕問題暴露,相反應充分重視、關愛學困生,讓每位學生都有所發(fā)展。

  4、對數(shù)學學習的評價要做到既關注學生學習的結果,更要重視他們學習的過程;要關注學生數(shù)學學習的水*,更要關注他們在數(shù)學活動中所表現(xiàn)出來的情感與態(tài)度,幫助學生認識自我,建立信心。對學生的精彩回答應予以熱情的肯定,促使學生的思維更加活躍。

  5、加強對學生的思維和方法的指導。創(chuàng)造一個好的數(shù)學問題情境,提供孩子們理解數(shù)學的模型和材料是教學設計活動中的第一步,但是要讓學生看到其中所蘊涵的數(shù)學觀念,作為教師不能讓這些數(shù)學活動只停留在表面。因此我鼓勵兒童進

《三角形的內(nèi)角和》教學反思5

  今天教學《三角形的內(nèi)角和》,對于三角板,學生是不陌生的,所以我們從一副三角板入手,讓學生算出一副三角板的內(nèi)角和是180°,于是拋出問題,在其他三角形中三個內(nèi)角的和是不是也是180°呢?學生當然會猜是。我覺得今天孩子不僅學到了三角形的內(nèi)角和,還學到了對待一個猜想就要想辦法來驗證的數(shù)學思想。當我要求孩子們來驗證的時候,有的孩子想到了量,有的孩子想到了折,這里我先讓孩子們都去量,量了以后,因為有的同學量的不精確,所以我建議更精確的驗證方法,孩子又想到了折,我又讓孩子們?nèi)フ邸J潞笙胂,如果我一開始就讓孩子們嘗試用自己喜歡的方法去驗證一下,說不定碰撞的火花會跟激烈些。我這樣一步一步來的話,就有些按部就班,沒有那種水到渠成的感覺了。后來,校長提出,一開始有個孩子說到他量到175°,比較接近180°的時候,我只是強調(diào)要精確,卻沒有很好的利用這一資源,如果我這時候讓孩子把他畫的這個三角形撕下來,折一折來驗證的話 ,學生的印象會更加深刻。這點我沒想到,看來我還不夠智慧啊!

  楊教導也提出,后面的習題三,正方形內(nèi)角和是360°,而把它對折變成三角形,就變成了180°,把三角形對折還是180°,這道題我沒有深入,這是教材沒把握好。

  以后要注意,但是這節(jié)課上孩子的表現(xiàn)還是比較令我滿意的,比*時好!呵呵!

《三角形的內(nèi)角和》教學反思6

  “合作探究,實驗論證”生動地詮釋了新教育的基本理念,本課新知識傳授很好的把握三個環(huán)節(jié)。

  一是學生**思考,教師引導學生討論驗證方法,掌握要領。上課開始,我通過**三角板中每個角的度數(shù)以及每塊三角板的內(nèi)角的和是多少?初步讓學生感知直角三角形的內(nèi)角和是180,然后質(zhì)疑:,這僅僅是一副三角板的內(nèi)角和,而且也是直角三角形,那是不是所有的三角形中的三個內(nèi)角的都是180°呢?這個問題一提出去就激發(fā)學生的探究學習的熱情。因此接著就讓學生討論:有什么辦法可以驗證得出這樣的結論。學生提出度量、折一折、拼一拼等方法。

  二是動手操作驗證猜想。讓學生拿出課前準備的銳角三角形、直角三角形、鈍角三角形以小組為單位有選擇的用度量的方法或者用折一折的方法或者拼一拼的方法等等,通過小組合作交流,印證猜想,得出任意三角形的內(nèi)角和是180°的結論。

  三是進行總結強化了學生對結論的理解與記憶,激發(fā)學生探索知識的熱情?茖W驗證了結果,讓學生用簡潔的語言總結結論:三角形的內(nèi)角和是180°。

  《三角形的內(nèi)角和》是九年制義務教育人教版四年級下冊第五章《三角形》的第二節(jié)內(nèi)容,本節(jié)課是在學生學習了與三角形有關的概念、邊、角之間的關系的基礎上,讓學生動手操作,通過一些活動得出“三角形的內(nèi)角和等于180°”成立的理由,由淺入深,循序漸進,引導學生觀察、猜測、實驗,總結。逐步培養(yǎng)學生的邏輯推理能力.

  “問題的提出往往比解答問題更重要”,其實三角形內(nèi)角和是多少?大部分的學生已經(jīng)知道了這一知識,所以很輕松地就可以答出。但是只是“知其然而不知其所以然”,所以我特別重視問題的提出,再讓學生各抒已見,暢所欲言,鼓勵學生傾聽他人的方法。

  本課的重點就是要讓學生知道“知其然還要知其所以然”,所以在第二環(huán)節(jié)里。鼓勵學生親自動手操作驗證猜想。為此,我設計了大量的操作活動:畫一畫、量一量、剪一剪、折一折、拼一拼、撕一撕等,我沒有限定了具體的操作環(huán)節(jié),但為了節(jié)省時間,讓學生分組活動,感覺更利于我的目標落實。但在分組活動中,我更注意解決學生活動中遇到了問題的解決,比如說畫,老師走入學生中指導要領,因此學生交上來畫的作品也非常的漂亮。學生觀察能力得到了培養(yǎng)。再比如說折,有的學生就是折不好,因為那第一折有一定的難度,它不僅要頂點和邊的重合,其實還要折痕和邊的*行,這個認識并不是每個學生都能達到的。教師也要走上前去點撥一下。再比如撕,如果事先沒有標好具體的角,撕后就找不到要拼的角了……所以在限定的操作活動中,既體現(xiàn)了老師的“扶”又體現(xiàn)了老師的“放”。做到了“扶”而不死,“伴”而有度,“放”而不亂。我還制作了動畫課件,更直觀的展示了活動過程,生動又形象,吸引學生的***。使學生感受到每種活動的特點,這對他認識能力的`提高是有幫助的。在此環(huán)節(jié)增加了學生的合作探究精神培養(yǎng)。

  在歸納總結環(huán)節(jié),有意識地培養(yǎng)學生的說理能力,邏輯推理能力,增強了語言表達能力。

  最后通過習題鞏固三角形內(nèi)角和知識,培養(yǎng)學生思維的廣闊性,為了強化學生對這節(jié)課的掌握,我除了設計了一些基本的已知三角形二個內(nèi)角求第三個角的練習題外,還設計了幾道習題,第一道是已知一個三角形有二個銳角,你能判斷出是什么三角形嗎?通過這一問題的思考,使學生明白,任意三角形都有二個銳角,因此直角三角形的定義是有一個角是直角的三角形叫直角三角形;鈍角三角形的定義是有一個鈍角的三角形叫鈍角三角形;而銳角三角形則必須是三個角都是銳角的三角形才是銳角三角形的道理。這道題有助于幫助學生解決三角形按角分的定義的理解。第二道題是一個三角形最大角是60°,它是什么三角形?通過對此題的研究,使學生發(fā)現(xiàn)判斷是什么三角形主要看最大角的大小,如果最大角是銳角,也可以判斷是銳角三角形。同時加深了學生對等邊三角形的特點的認識和理解。第三題我拓展延伸到三角形外角,第四題我設計了多邊形的內(nèi)角和的探究。

《三角形的內(nèi)角和》教學反思7

  備學提綱:

  1、你能用哪些方法驗證“三角形的內(nèi)角和是180°”這一猜想?至少想出兩種。寫出具體的操作過程。

  2、閱讀課本P28-29,記下收獲和問題。

  3、準備三個銳角三角形,三個直角三角形,三個鈍角三角形和一張正方形紙。

  批閱了孩子們的預習作業(yè),亮點是孩子開始會**題了,如:

  1、什么是內(nèi)角?

  2、兩個三角尺拼成一個三角形,這個三角形的內(nèi)角和是多少?是360°嗎

  3、兩個三角形拼成一個大三角形,畫出來的時候中間有1豎,1豎兩邊的直角為什么不算呢?

  4、所有的三角形的內(nèi)角和都是180°嗎?

  5、用正方形紙折幾次,才有8個三角形呢?

  6、既然有內(nèi)角那有沒有外角呢?如果有外角,那外角的度數(shù)是和內(nèi)角的一樣嗎?

  存在的問題:

  1、孩子們想到的驗證內(nèi)角和的方法局限在:用計算直角三角形的各個角的度數(shù)的和;畫一個三角形,量出每個角的度數(shù)再計算。只有一人(季##提到用折的方法來驗證,看來,孩子們還是不會讀數(shù)學課本,沒有看懂課本上圖示的折的過程,要加強閱讀課本的指導,這是以前忽視閱讀文本帶來的不良結果,直接影響了孩子們的自學能力。

  2、我設計的預習題,沒能從學生的實際出發(fā),我覺得孩子們已經(jīng)知道了三角形的內(nèi)角和是180°,就沒有引導他們?nèi)ダ斫馐裁唇袃?nèi)角?這也是孩子們不知如何去驗證內(nèi)角和的一個原因。

  今天的課堂,花了一些時間指導孩子如何閱讀課本,尤其是閱讀課本上的圖,看著課本上的圖示來操作,所以教學環(huán)節(jié)不那么緊湊了,印象最深的是:

  孫##和陳##兩個有些內(nèi)向的女孩子,在課堂上能主動***說出自己的想法,帶著自己的三角形到前面來演示如何用折的方法驗證三角形的內(nèi)角和是180°。劉##今天能主動補充別人的回答。

  每一個孩子都充滿著無窮的潛力,他們暫時的落后,是因于學習對象沒有激起他們的興趣,是因為缺少一個能挖掘潛力的人!

《三角形的內(nèi)角和》教學反思8

  新課程將探究式學習作為學生學習的主要方式之一,著重點放在讓學生在主動參與的過程進行學習,在探究問題的活動中獲取知識并主動建構新的認知結構,了解獲取知識的途徑和技巧。

  這節(jié)課我設計了以“觀察—猜想—驗證—應用”為主線,讓學生在自主學習中“不知不覺”學習到新的知識。在學生猜測三角形內(nèi)角和是多少度的基礎上,引導學生通過探究活動來驗證自己的觀點是否正確,激發(fā)求知的渴望和學習的熱情,最后達成共識。

  這節(jié)課我創(chuàng)設了學生喜歡的情境:“三個三角形的爭吵”入手,讓學生自己動手探索三角形的內(nèi)角和。讓學生“量一量”“剪—拼”貼近了學生的生活,降低了學習難度,注重學生們的動手實踐,親生去體驗去感悟。在操作反饋的過程中我提出了兩個問題:第一,你選用什么三角形,采用什么方法來驗證;第二,經(jīng)過操作得到什么結論。學生分小組對大小不一的三角形進行驗證,經(jīng)歷量、剪、拼一系列操作活動,從而得出“三角形內(nèi)角和是180°”這一結論。

  本節(jié)課不足之處:

  1學生在還沒學習三角形的特性和三角形三邊的關系及三角形的 內(nèi)角和的基礎上進行學習三角形內(nèi)角和。就無法復習三角形的有關知識。

  2、在解決三角形內(nèi)角和是什么這個問題,說的不夠透徹,課后我 改成這樣,先讓兩個學生說,說完讓一個學生指出來,指完并讓他用黑色水筆畫出來。為驗證三角形內(nèi)是180度做鋪墊。

  3、學生在介紹剪拼的方法時,可以讓介紹的學生先**演示是如 何把內(nèi)角拼在一起,這樣學生在動手操作的時候就可以節(jié)省時間。而且由于內(nèi)角和這個概念沒有講清楚,學生在這一環(huán)節(jié)花了一定的時間。

  4、在學生匯報方法時,還應該用尺子比一下拼后的三個角是在一 條直線上,更直觀的說明三個角形成一個*角,三角形的內(nèi)角和是180°。

  5、練習設計是有分層次,但是學生說的較少,我比較急地去分析, 留給學生的時間不足這是我今后要特別注意的一個方面。

  本節(jié)課我引導學生用測量或剪拼的方法探究三角形的內(nèi)角和。并會運用三角形的內(nèi)角和解決實際問題,但整堂課引導的比較急躁,今后我要朝著更加完美的方向努力,我愿意鍛煉和改變自己。

《三角形的內(nèi)角和》教學反思9

  背景

  最近,張店區(qū)教研室舉行了“青年教師優(yōu)質(zhì)課”評選,我們學校有位剛畢業(yè)一年的年輕教師參加。經(jīng)過大家共同選教材、研究商量后,確定參評課題為“三角形的內(nèi)角和”。這是新實驗教材四年級下冊的內(nèi)容,從教材上看,教學內(nèi)容比較簡單,就是讓學生親自動手,通過量、剪、拼、折等方法推導出三角形內(nèi)角和是180°,會應用這一規(guī)律進行計算。很顯然,許多學生肯定有這樣的知識經(jīng)驗,每個班都有部分學生已經(jīng)能說出這一知識點。根據(jù)這樣的'現(xiàn)狀我們讓年輕教師根據(jù)自己的理解先備課、設計教學思路,隨后我們進行了跟蹤聽課。

  試講教學片斷:

  創(chuàng)設情境,引入新知:

  教師先出示色彩鮮艷,用卡紙制作的學具:鈍角三角形、銳角三角形、直角三角形等,讓學生分辨,復**節(jié)課的內(nèi)容。學生回答的輕車熟路,感覺非常簡單。繼而教師拿出直角三角形,說道:“請大家畫出一個直角三角形。”很快,學生便大功告成,舉起畫完的作品讓老師看。

  老師邊點頭邊露出贊許的微笑。接著提出第二個問題:“聰明的同學們,能不能畫出有‘兩個’直角的三角形呢?畫畫試試!睕]出5秒鐘,反應快的學生便脫口而出:“老師,畫不出來!”老師緊接追問:“為什么呢?”學生:“因為三角形的內(nèi)角和是180°,兩個直角就是180°了,畫不出第三個角了。所以畫不成三角形。”學生說得太好了,老師趕緊接過了話題:“這位同學說三角形的內(nèi)角和是180°,你們知道嗎?”其他學生似乎還沒明白怎么回事,只好連忙點頭說知道。教師肯定的說:“是的,三角形的內(nèi)角和就是180°,我們怎么想辦法驗證一下呢?請大家想想辦法。”學生經(jīng)過很長時間的合作、探究,得出了三種辦法,全班交流匯報。練習分為基本練習和綜合練習兩個層次。學生計算的沒多大問題。最后一題是思維拓展練習:研究一下四邊形的內(nèi)角和?五邊形、六邊形的內(nèi)角和呢?多邊形呢?因時間的關系,無一人能夠想出策略。

  反思:

  教師創(chuàng)設情境采用的是給學生制造思維障礙的方法,讓學生畫出有“兩個”直角的三角形,欲擒故縱,有其果,學生肯定會究其因,同時,還能讓學生在體驗中,尋找數(shù)學的真諦,此創(chuàng)設情境的方法真是妙哉。聽課時,我也為他這樣的設計感到高興,心想,一定能產(chǎn)生好的教學效果,但事實卻不是如此,學生一堂課顯得比較沉悶,只有部分好學生在迎合老師,學生并沒有充分的參與到數(shù)學學習中來。課后,我反復的思考,為什么會這樣呢?后來發(fā)現(xiàn)原因有以下幾點:

  一是因為教師在出示問題時,沒有把“兩個”直角三角形的“兩個”強調(diào)清楚,有許多學生沒有聽清要求;

  二是因為教師沒有留給學生充分的思考的時間,好學生反應快,答案脫口而出,其他學生思維還沒產(chǎn)生任何的碰撞,更沒經(jīng)歷實驗的過程。

  三是我們現(xiàn)在教育體制下的學生大都缺少質(zhì)疑權威的意識和習慣,顯得順從,沒有主張和個性。在好學生說出三角形的內(nèi)角和是180°后,其他學生對于這一知識點真正知道的有多少?但正因為是好學生的回答,在其他學生眼中,這是學習的權威啊,他說的肯定是對的,結果大家只有稀里糊涂的點頭附和,是的,三角形的內(nèi)角和是180度。

  在這一環(huán)節(jié)的教學中,很多學生就吃了夾生飯,根本沒有透徹的理解和掌握?此凭实那榫硠(chuàng)設,如果得不到教師適度的調(diào)控和把握,也煥發(fā)不出它應有的光彩。

  新課標指出:數(shù)學教學活動必須建立在學生的認知發(fā)展水*和已有的知識經(jīng)驗基礎之上。教師應激發(fā)學生的學習積極性,向?qū)W生提供充分從事數(shù)學活動的機會,幫助他們在自主探索和合作交流的過程中真正理解和掌握基本的數(shù)學知識與技能、數(shù)學思想和方法,獲得廣泛的數(shù)學活動經(jīng)驗。深刻的思考、仔細的推敲以上情境的創(chuàng)設,也不難發(fā)現(xiàn),它盡管有它的閃光點,但也有不足的地方,就是它的設計引入沒有從大部分學生的知識經(jīng)驗出發(fā),沒有照顧到全體,知道三角形內(nèi)角和是180°的學生畢竟是少數(shù),這也就是它沒能激發(fā)起學生學習欲望的原因所在。因此,在數(shù)學課堂教學中,我們要時刻注意發(fā)掘教材孕伏的智力因素,審時度勢,把握時機,因勢利導地為學生創(chuàng)造良好的教學情境 ,激發(fā)學生的興趣,讓學生在學習數(shù)學中愉快地探索。

  再者,最后一題,是在學習了三角形內(nèi)角和基礎上的拓展,任何多邊形都可以轉化為多個三角形來計算內(nèi)角和,學生無一人能夠想出辦法,仔細想想,是我們的題目出的太難,還是學生太笨呢?都不是,是我們教師的引導作用沒發(fā)揮出來,沒能激發(fā)起學生學習的內(nèi)部活力,也就無談學生的動手實驗、猜想、驗證。當然,學生的實驗、猜想、驗證能力的培養(yǎng)并不是一堂課的問題,而是朝朝夕夕,無聲無息的滲透。作為任何一個站在教學前沿的教師,我們都應有這樣的教學理念,讓自己的學生在數(shù)學學習中通過觀察、實驗、歸納、類比、推斷獲得數(shù)學猜想,體驗數(shù)學活動豐富的探索性和創(chuàng)造性,感受證明的必要性、證明過程的嚴謹性以及結論的確定性。

  再次實踐:

  經(jīng)過大家的共同評課和授課教師自己的反思,我們重新改變了創(chuàng)設情境的方法。

  師出示一正方形紙,問:這是一張(正方形)的紙,它有(4)個角,這4個角在數(shù)學里,我們給它一個名稱,把它叫做正方形的(內(nèi)角),而且每個內(nèi)角都是(直角),那么它的內(nèi)角和是多少度呢?為什么?

  生1:正方形的內(nèi)角和是360°,因為每個內(nèi)角都是90°,有4個內(nèi)角,就是4個90°,也就是360°。

  師:現(xiàn)在,我們把這個正方形紙沿著對角線剪開后會怎樣呢?

 。◣熝菔,并指導生拿出正方形紙折一折、剪一剪)

  生3:通過剛才的觀察與操作,我發(fā)現(xiàn)這樣沿對角線剪開后,得到了2個三角形,都是等腰直角三角形。

  師:誰來猜想一下其中的1個三角形的內(nèi)角和是多少度?

  生:通過剛才的觀察與操作,我發(fā)現(xiàn)三角形的內(nèi)角和是180°。因為正方形的內(nèi)角和是360°,沿對角線剪開后,等于把正方形*均分成了兩份,也就是把360°*均分成兩份,每份是180°,所以這個三角形的內(nèi)角和是180°。

  生:我發(fā)現(xiàn)三角形的內(nèi)角和是180°。因為沿正方形對角線剪開后,等于把正方形原來的直角*均分成了兩份,每份是45°,兩個45°加上90°就得到180°,所以我知道三角形的內(nèi)角和是180°!

  師:同學們猜的對不對呢?用什么辦法可以知道?

  生:驗證。

  師:對,需要經(jīng)過驗證。

 。ǚ中〗M對三角形進行驗證?此膬(nèi)角和是不是180°)

  **學生匯報 (測量的同學邊匯報邊板書,剪拼的同學利用投影匯報。)

  生1:我們用量角器對3個角進行了測量,再分別把3個角的度數(shù)相加,得出了內(nèi)角和為360°。

  生2:我們將這個直角三角形的兩個銳角用量角器測量,把兩個銳角相加是90°,再加上直角的度數(shù),這樣我們知道直角三角形的內(nèi)角和是180°。

  生3:我們小組將三角形的兩個銳角剪下來,然后拼在一起組成了一個直角,再把另一個直角拿來拼在一起,這樣組成了*角,證實直角三角形的內(nèi)角和是180°。

  生4:我們是先將一個角折過來,使它頂點落在底邊上,再把另外兩個角也折過來,這樣三個角正好拼成一個*角,所以我們知道這個鈍角三角形的內(nèi)角和是180°。

《三角形的內(nèi)角和》教學反思10

  學生在學習了三角形的特征以及三角形分類的基礎上,進一步研究三角形三個角的關系。根據(jù)教學目標和學生掌握知識的情況,課堂上我圍繞以下幾點去完成教學目標:

  一、創(chuàng)設情境,營造研究氛圍

  怎樣提供一個良好的研究*臺,使學生有興趣去研究三角形內(nèi)角的和呢?為此我拋出大、小兩個三角形爭吵的情境,讓學生評判誰說的對?為什么爭吵?導入課引出研究問題!叭切蔚膬(nèi)角指的是什么?”“三角形的內(nèi)角和是多少?”激發(fā)學生求知的欲望,引起探究活動。我在研究三角形內(nèi)角和時,沒有按教材設計的量角求和環(huán)節(jié)進行,而是從學生熟悉的正方形紙的內(nèi)角和是360°入手,再把正方形紙沿著對角線剪開后會怎樣呢?猜想一下其中的1個三角形的內(nèi)角和是幾度?學生很快得出一個直角三角形內(nèi)角和是180°。猜測以下是不是各種形狀、大小不同的三角形內(nèi)角和都是180°呢?再**學生去探究,動手驗證,并得出結論。生在不斷的發(fā)現(xiàn)中很自然地得到“三角形內(nèi)角和是180°”的猜想。這樣既使學生在這個探究過程中得到快樂的情感體驗,又使學生有高度的熱情去繼續(xù)深入地研究“是否任何三角形內(nèi)角和都是180°”。

  二、小組合作,自主探究

  任何一項科學研究活動或發(fā)明創(chuàng)造都要經(jīng)歷從猜想到驗證的過程!笆欠袢魏稳切蝺(nèi)角和都是180°”,這個猜想如何驗證,這正是小組合作的契機。通過小組內(nèi)交流,使學生認識到可以通過多種途徑來驗證,可以量一量、拼一拼、折一折,讓學生在小組內(nèi)完成從特殊到一般的研究過程。然后再小組匯報研究結果以及存在問題。教師根據(jù)學生實際情況充分把握好生成性資源,讓學生認識到有些客觀原因會影響到研究的結果的準確性。例如,有些小組的學生量出內(nèi)角和的度數(shù)要高于180°或低于180°,先讓學生討論一下有哪些因素會影響到研究結果的準確性。

  三、練習設計,由易到難

  研究是為了應用,在應用“三角形內(nèi)角和是180°”這一結論時,第一層練習是已知三角形中兩個內(nèi)角的度數(shù),求另一個角。第二層練習是已知等腰三角形中頂角或底角的度數(shù),讓學生應用結論求另外的內(nèi)角度數(shù)。第三層練習是讓學生用學過的知識解決四邊形、五邊形、六邊形的內(nèi)角和。練習設計**體現(xiàn)開放性,“你還知道了什么”,讓學生根據(jù)計算結果運用已有經(jīng)驗去判斷思索。

  四、教學中存在不足

  在教學中,由于我對學生了解的不夠充分,讓學生自己想其它的驗證方法,難度較大,浪費了大量時間,使教學任務不能完成,練習較少,新知沒有得到充分鞏固,以后應引起重視。在設計教案時要了解學生,深入教材,精心設計。


《三角形的內(nèi)角和》教學設計10篇(擴展6)

——《三角形的內(nèi)角和》教學反思10篇

《三角形的內(nèi)角和》教學反思1

  “合作探究,實驗論證”生動地詮釋了新教育的基本理念,本課新知識傳授很好的把握三個環(huán)節(jié)。

  一是學生**思考,教師引導學生討論驗證方法,掌握要領。上課開始,我通過**三角板中每個角的度數(shù)以及每塊三角板的內(nèi)角的和是多少?初步讓學生感知直角三角形的內(nèi)角和是180,然后質(zhì)疑:,這僅僅是一副三角板的內(nèi)角和,而且也是直角三角形,那是不是所有的三角形中的三個內(nèi)角的都是180°呢?這個問題一提出去就激發(fā)學生的探究學習的熱情。因此接著就讓學生討論:有什么辦法可以驗證得出這樣的結論。學生提出度量、折一折、拼一拼等方法。

  二是動手操作驗證猜想。讓學生拿出課前準備的銳角三角形、直角三角形、鈍角三角形以小組為單位有選擇的用度量的方法或者用折一折的方法或者拼一拼的方法等等,通過小組合作交流,印證猜想,得出任意三角形的內(nèi)角和是180°的結論。

  三是進行總結強化了學生對結論的理解與記憶,激發(fā)學生探索知識的熱情?茖W驗證了結果,讓學生用簡潔的語言總結結論:三角形的內(nèi)角和是180°。

  《三角形的內(nèi)角和》是九年制義務教育人教版四年級下冊第五章《三角形》的第二節(jié)內(nèi)容,本節(jié)課是在學生學習了與三角形有關的概念、邊、角之間的關系的基礎上,讓學生動手操作,通過一些活動得出“三角形的內(nèi)角和等于180°”成立的理由,由淺入深,循序漸進,引導學生觀察、猜測、實驗,總結。逐步培養(yǎng)學生的邏輯推理能力.

  “問題的提出往往比解答問題更重要”,其實三角形內(nèi)角和是多少?大部分的學生已經(jīng)知道了這一知識,所以很輕松地就可以答出。但是只是“知其然而不知其所以然”,所以我特別重視問題的提出,再讓學生各抒已見,暢所欲言,鼓勵學生傾聽他人的方法。

  本課的重點就是要讓學生知道“知其然還要知其所以然”,所以在第二環(huán)節(jié)里。鼓勵學生親自動手操作驗證猜想。為此,我設計了大量的操作活動:畫一畫、量一量、剪一剪、折一折、拼一拼、撕一撕等,我沒有限定了具體的操作環(huán)節(jié),但為了節(jié)省時間,讓學生分組活動,感覺更利于我的目標落實。但在分組活動中,我更注意解決學生活動中遇到了問題的解決,比如說畫,老師走入學生中指導要領,因此學生交上來畫的作品也非常的漂亮。學生觀察能力得到了培養(yǎng)。再比如說折,有的學生就是折不好,因為那第一折有一定的難度,它不僅要頂點和邊的重合,其實還要折痕和邊的*行,這個認識并不是每個學生都能達到的。教師也要走上前去點撥一下。再比如撕,如果事先沒有標好具體的角,撕后就找不到要拼的角了……所以在限定的操作活動中,既體現(xiàn)了老師的“扶”又體現(xiàn)了老師的“放”。做到了“扶”而不死,“伴”而有度,“放”而不亂。我還制作了動畫課件,更直觀的`展示了活動過程,生動又形象,吸引學生的***。使學生感受到每種活動的特點,這對他認識能力的提高是有幫助的。在此環(huán)節(jié)增加了學生的合作探究精神培養(yǎng)。

  在歸納總結環(huán)節(jié),有意識地培養(yǎng)學生的說理能力,邏輯推理能力,增強了語言表達能力。

  最后通過習題鞏固三角形內(nèi)角和知識,培養(yǎng)學生思維的廣闊性,為了強化學生對這節(jié)課的掌握,我除了設計了一些基本的已知三角形二個內(nèi)角求第三個角的練習題外,還設計了幾道習題,第一道是已知一個三角形有二個銳角,你能判斷出是什么三角形嗎?通過這一問題的思考,使學生明白,任意三角形都有二個銳角,因此直角三角形的定義是有一個角是直角的三角形叫直角三角形;鈍角三角形的定義是有一個鈍角的三角形叫鈍角三角形;而銳角三角形則必須是三個角都是銳角的三角形才是銳角三角形的道理。這道題有助于幫助學生解決三角形按角分的定義的理解。第二道題是一個三角形最大角是60°,它是什么三角形?通過對此題的研究,使學生發(fā)現(xiàn)判斷是什么三角形主要看最大角的大小,如果最大角是銳角,也可以判斷是銳角三角形。同時加深了學生對等邊三角形的特點的認識和理解。第三題我拓展延伸到三角形外角,第四題我設計了多邊形的內(nèi)角和的探究。

《三角形的內(nèi)角和》教學反思2

  這節(jié)課我讓學生經(jīng)歷觀察、猜想、實驗、證明等數(shù)學活動過程,發(fā)展合情推理能力和初步的演繹推理能力,能有條理地、清晰地闡述自己的觀點。在學生猜測三角形的內(nèi)角和是多少度的基礎上,引導學生通過探究活動來驗證自己的觀點是否正確,激發(fā)求知的渴望和學習的熱情,最后達成共識。

  新課程將探究式學習作為學生學習的主要方式之一,著重點放在讓學生在主動參與的過程中進行學習,在探究問題的活動中獲取知識并主動建構新的認知結構,了解獲取知識的途徑和技巧。我在實施探究學習時采用了以下的教學策略:

 。1)創(chuàng)設問題情境,引導學生發(fā)現(xiàn)問題,思考問題。

  本節(jié)課我在教學上先通過大小三角形爭論故事引入,讓學生產(chǎn)生疑問,繼而借助特殊三角形(三角尺)初步感知這些三角形的內(nèi)角和是180度,讓學生猜測是否所有的三角形的內(nèi)角和都一樣呢?學生初步建立一個表象,學生運用已有的知識經(jīng)驗能否解決這樣的問題呢?這個問題為后面的猜測和驗證做了鋪墊,引發(fā)思考,激發(fā)學習興趣。引導學生從特殊三角形過渡到一般三角形的驗證規(guī)律。

 。2)創(chuàng)造解決問題的環(huán)境,給充分的機會和時間讓學生解決問題。 學生在問題面前是退縮還是前進呢?這就看老師如何有效地引導。我預先要求每位學生準備了一些各式各樣、大小各異的三角形,還有剪刀,量角器,白紙,直尺等,讓他們經(jīng)歷觀察、猜想、實驗、證明等數(shù)學活動過程。同時提出兩個問題,第一:你選用什么三角形, 采用什么方法來驗證?第二:經(jīng)過操作得到什么結論?使學生在操作上有更強的目的性和指向性。學生分小組對大小不一的三角形進行驗證,經(jīng)歷量一量、算一算;撕一撕,拼一拼;折一折,量一量等一系列操作活動,從而得出“三角形的內(nèi)角和是180°”這一結論。整個探究過程學生是自主的、積極的。學生通過操作,思考,反饋等過程真正經(jīng)歷了有效的探究活動。

  對于這堂課的困惑,我覺得在有效教學當中,應該如何更好地處理“預設”與“生成”之間的關系,如何巧妙地抓住課堂中的生成,適時調(diào)整教學環(huán)節(jié)。教學設計在準備階段,我已預設了相關的教學環(huán)節(jié)。但真正在課堂實施時,可能會出現(xiàn)一些不可預知的因素。如在這節(jié)課上的練習環(huán)節(jié)中,有這樣一道題目:已知直角三角形的一個角是40度,求第三個角的度數(shù)。在全班交流的時候,有一個學生很快就說出90度-40度=50度。其實在預設教案時,這種方法是最后才提到的,此時我就沒有能好好去把握這個有價值的生成資源,把學生聚焦在如何利用簡算來解決問題。我完全可以讓這些學生說說自己的思考過程,這樣做既讓學生在解題方法上得到擴充,同時又符合學生的認知規(guī)律。要把握在課堂上出現(xiàn)的一些“生成”的資源,如何加以好好的利用。

  不足之處:

  1.驗證猜想環(huán)節(jié)中,學生的方法雖然各有不同,但方法較單一,語言表達能力欠佳,思維比較定勢,不敢大膽嘗試不同的方法去驗證自己的猜想。

  2.評價語言和方法都太單一,激勵性評價沒有層次。發(fā)言的學生面比較窄。

  3.教師語言不簡練,老重復,總怕學生聽不清楚,聽不明白,語言羅嗦是我一直以來的大毛病,以后要克制自己學生會說的自己不代替,盡量不重復。

  4.因為學生在以前的學習活動中,對剪拼和拼折的方法接觸的太少,考慮到課堂教學時間的關系,所以教師引得太多,給學生的自主發(fā)現(xiàn)機會太少。

《三角形的內(nèi)角和》教學反思3

  “三角形內(nèi)角和”是人教版數(shù)學四年級下冊的一節(jié)探索與發(fā)現(xiàn)課,讓學生在學習了三角形的特征、高以及三角形分類的基礎上,進一步研究三角形三個角的關系。本節(jié)課學生對知識點的掌握還不錯,但是,這一節(jié)課還有很多不足之處,需要加以改進:

  一、優(yōu)點:

  1、教學設計不錯,環(huán)節(jié)緊湊,思路清晰。

  2、重視操作過程,時間把握得好。本節(jié)課用了大量的時間來讓學生做小組實驗,從而讓他們自己感知三角形內(nèi)角和是180°,印象深刻。

  3、能注意前后照應,解決了前面的疑問。在講授新課前,設置一個疑問“為什么同一個三角形不能有兩個直角?”以此來吸引學生,找出三角形內(nèi)角和的特性。在掌握了三角形內(nèi)角和是180°后,再次把問題提出來,讓學生解決。

  4、板書巧妙,一步步引入課題。先是讓學生復習“三角形”的定義,接著簡單說明什么是“三角形內(nèi)角”,最后再講授三角形三個內(nèi)角度數(shù)的和叫做“三角形內(nèi)角和”。

  5、課堂紀律好,氣氛活躍,學生踴躍積極。學生在小組活動時,活躍而有序,上課時能認真聽講,積極舉手。同時,實行小組評價更是發(fā)揮了學生的主動性。

  6、求三角形內(nèi)角和的方法,一個比一個直觀、生動。從量一量、算一算,到剪一剪、折一折,讓學生更容易感受到三角形內(nèi)角和是180°。

  7、練習題設計得比較好,特別是判斷題,都是學生*時容易出錯的題目,在課堂上用比較直觀的課件顯示出來,讓學生的印象深刻。組合題也很有靈活性,先是找出能組成三角形的度數(shù),然后根據(jù)度數(shù)判斷出是什么三角形。

  8、能尊重學生的意見,有的小組沒有在算一算的時候,沒有得出180°的結果,老師能夠分析其中的原因。

  二、不足之處:

  1、在老師給出“畫有2個內(nèi)角是直角的三角形”的任務時,學生明顯是畫不出來。但是教師也可以把學生失敗的作品展示出來,照應之后的講解。而不能一帶而過。

  2、如果量一量的方法,不能讓人信服,要在后面打個“?”,等到解決疑問后,再去掉。

  3、在進行剪一剪、折一折的活動時,老師應該先用板書上的三角形來示范一次,告訴學生應該怎么做。因為有些學生折不出來。拼的時候,也有出錯。

  4、把三角形拼成*角后,要用直尺或者是量角器測量一下,看看得出的圖形是不是*角,要用嚴謹?shù)膽B(tài)度對待,不能光用眼睛來判斷。

  5、老師注意提醒學生讀題的時候要規(guī)范,要讀出度數(shù)單位,這很好。但是,在做題練習時,應該請一兩個學生在黑板上做,這樣也便于教師提醒學生,在書寫時,也要注意寫上度數(shù)單位,強調(diào)格式。

《三角形的內(nèi)角和》教學反思4

  《三角形的內(nèi)角和》教材是先讓學生通過計算三角尺得個內(nèi)角的度數(shù)和,激發(fā)學生好奇心,進而引發(fā)學生猜想:其他三角形的內(nèi)角和也是180度嗎?再通過**操作活動驗證猜想,得出結論。根據(jù)這樣的教材安排,本課的重點也就應放在“三角形內(nèi)角和是180度”的探索上,讓學生在探索中深入理解得出過程。針對教材的如此安排,我也設計了如下的開放的課堂預設:

  驗證過程

  1、要知道我們猜測的是否正確,你有什么辦法驗證呢?

  先**思考,有想法了在小組里交流。

  學生交流想法:

  生一:我們組根據(jù)剛才三角板的內(nèi)角和是三個角的度數(shù)加起來得出的,所以,我們就用量角器量出了三個角的度數(shù),再加起來。

  學生說出了測量的度數(shù)相加,雖然不是很精確180度,量的過程中有點誤差,得到了在180度左右。

  生二:我們組是把銳角三角形的三個角跟書上一樣去折,折在一起發(fā)現(xiàn)正好是個*角,所以我們發(fā)現(xiàn)銳角三角形內(nèi)角和也是180度。(及時表揚了能主動預習的好習慣。)

  生三:我們組把鈍角三角形跟剛才一組一樣,折在一起,發(fā)現(xiàn)也能拼成一個*角,所以鈍角三角形的內(nèi)角和也是180度。

  生四:我們組研究的是直角三角形,跟上面兩組的同學一樣折在一起,三個角拼起來也是一個*角,所以直角三角形的內(nèi)角和也是180度。

  生五:我們也是折的,但我們沒有把三個角折在一起,而是把兩個小的角折到直角那里發(fā)現(xiàn)兩個銳角合起來正好與直角三角形的直角重合,圖形也就成了一個長方形,兩個銳角的和是90度再加個直角也就是180度。

  也有同學提出了采用了減下角再拼的方法。

  以上這個小片段,雖然在孩子們表述中沒這么流利,完整,但卻是他們最真實的發(fā)現(xiàn),這堂課上下來,感覺收獲很大。

  自己感覺這節(jié)課的設計上把握了學生學習起點與心理,遵循了教材讓學生先猜想再驗證的思路,從學生已有的知識背景出發(fā),為他們提供了重復粉從事數(shù)學活動的時間和交流機會。學生思考著,討論著,交流著,感悟著,在這一過程中,學生不僅掌握了知識,尋求到了解決問題的方法,更重要的是在交流中,學生的語言表達能力也得到了很大的增強。

《三角形的內(nèi)角和》教學反思5

  《三角形的內(nèi)角和》是青島版數(shù)學四年級下冊第四單元的一節(jié)課,是在學生學習了三角形的特征以及三角形分類的基礎上,進一步研究三角形三個角的關系。課堂上我注意留給學生充分進行自主探究和交流的空間,讓學生探索、實驗、發(fā)現(xiàn)、討論交流、推理歸納出三角形的內(nèi)角和是180°。

  一、創(chuàng)設情境,營造探究氛圍。

  怎樣提供一個良好的探究*臺,使學生有興趣去研究三角形內(nèi)角的和呢?這節(jié)課在復習舊知“三角形的特征”后,我引出了研究問題“三角形的內(nèi)角指的是什么?”“三角形的內(nèi)角和是多少?”。而畫一個有兩個內(nèi)角是直角的三角形卻無法畫出這一問題的出現(xiàn),使學生萌生了想了解其中奧秘的想法,激發(fā)了學生探究新知的欲望。由于學生對三角尺上每個角的度數(shù)比較熟悉,新知的探究就從這里入手。我先讓學生分別算出每塊三角尺三個內(nèi)角的和都是180°,由此引發(fā)學生的猜想:其它三角形的內(nèi)角和也是180°嗎?

  二、小組合作,自主探究。

  “是否任何三角形的內(nèi)角和都是180°呢?”,我趁勢引導學生小組合作,動手驗證。通過小組內(nèi)交流,使學生認識到可以通過多種途徑來驗證,可以量一量、撕一撕、拼一拼、折一折、算一算。在明確驗證方法后,學生在小組內(nèi)通過動手操作、記錄、觀察,驗證三角形的內(nèi)角和是否為180°。之后我**學生在全班匯報交流,有的小組通過量一量、算一算的方法,得出三角形的內(nèi)角和是180°或接近180°(測量誤差);有的小組通過撕一撕、拼一拼的方法發(fā)現(xiàn):各類三角形的三個內(nèi)角可以拼成一個*角。還有的小組通過折一折、拼一拼的方法也發(fā)現(xiàn):各類三角形的三個內(nèi)角都可以拼成一個*角。此時我利用課件進行動態(tài)演示,在演示中進一步驗證,使學生在小組合作、自主探究、全班交流中獲得了三角形的內(nèi)角和的確是180°的結論。這一系列活動潛移默化地向?qū)W生滲透了“轉化”的數(shù)學思想,為后繼學習奠定了必要的基礎。

  三、練習設計,由易到難。

  探究新知是為了應用,這節(jié)課在練習的安排上,我注意把握練習層次,共安排三個層次,由易到難,逐步加深。在應用“三角形的內(nèi)角和是180°”這一結論時,第一層練習是已知三角形兩個內(nèi)角或一個內(nèi)角的度數(shù),求另一個角。練習內(nèi)容的安排從知識的直接應用到間接應用,數(shù)學信息的出現(xiàn)從比較顯現(xiàn)到較為隱藏。第二層練習是判斷題,讓學生應用結論思考分析,檢驗語言的嚴密性。第三層練習是讓學生用學過的知識解決四邊形、六邊形的內(nèi)角和,使學生的思維得到拓展。這些練習顧及到了智力水*不同的學生,形式上具有趣味性,激發(fā)了學生主動解題的積極性。

  這節(jié)課我不斷創(chuàng)設問題情境,讓學生去猜想、去探究、去發(fā)現(xiàn)新知識的奧妙,從而讓學生在動手操作、積極探索的活動中掌握知識,積累數(shù)學活動經(jīng)驗,發(fā)展空間觀念。

《三角形的內(nèi)角和》教學反思6

  在教學《三角形的內(nèi)角和》這一課時,為了達到本節(jié)的教學目標,我在教學中根據(jù)學生的認知特點,放開手讓學生去自己驗證三角形的內(nèi)角和是多少。

  上課前學生就已經(jīng)知道三角形的內(nèi)角和是180°,為了讓學明白為什么是180°,激發(fā)了學生的學習興趣。在講“三角形的內(nèi)角和”時,開始就由大小不同的三個角(銳角、直角、鈍角)爭論誰的角大入手,導出銳角三角形、直角三角形、鈍角三角形爭論誰的內(nèi)角和大。對于這場爭論的結果是什么,會引發(fā)學生的思考,究竟哪個三角形的內(nèi)角和大?這也正是我本節(jié)課要與學生共同研究的問題。處于這種狀態(tài)的學生***特別集中,學習興趣異常高漲,到了一觸即發(fā)的地步。于是我及時揭示課題,提出學習目標,引導學生討論學習方法。當學生通過量一量、拼一拼、折一折之后得出自己的結論時,他們體驗了成功,也學會了學習。在這節(jié)課中師生互動交流,共同找到了幾種驗證三角形內(nèi)角和是180°方法,很好地體現(xiàn)了師生的雙邊活動。試想,如果上課之初,我自己一味的的去告訴他們?nèi)切蔚膬?nèi)角和為什么是180°,并且告訴他們探究方法,我想即便告訴的方法再多,再詳細,他們學到的也只是有限的方法,而且是老師的方法,不是自己發(fā)現(xiàn)的方法。但換一種教學方式,孩子們不但找到了所有我知道的方法,也找到了我意想不到的方法,我們大家在研究中都是受益者。

  為學生營造了探究的情境。學習知識的最佳途徑是由學生自己去發(fā)現(xiàn),因為通過學生自己發(fā)現(xiàn)的知識,學生理解的最深刻,最容易掌握。因此,在數(shù)學教學中,教師應提供給學生一種自我探索、自我思考、自我創(chuàng)造、自我表現(xiàn)和自我實現(xiàn)的實踐機會,使學生最大限度的投入到觀察、思考、操作、探究的活動中。

《三角形的內(nèi)角和》教學反思7

  在課間我有意問了一下學生你們知不知道三角形的內(nèi)角和是幾度,發(fā)現(xiàn)有一些學生已經(jīng)知道三角形三個內(nèi)角的和是180°,因此在導入環(huán)節(jié)中插入了一個猜角游戲中,請量出自己準備的三角形的三個角的度數(shù),只要你們說出其中兩個角的度數(shù),我能猜出第3個角的度數(shù),讓生說我猜,要求用自己準備的三角形進行操作。有一部分學生已經(jīng)能跟著我說出第三個角的度數(shù)。當時我并沒有批評這些學生,而是采用了表揚的方式,學生很開心。

  在接下來的實驗驗證環(huán)節(jié)中,那些知道三角形內(nèi)角和是180°的學生就猜度數(shù),而沒有進行真正的實驗驗證,反倒是剛學到的學生真正做到用實驗去驗證“三角形的內(nèi)角和中180°”。因此我一直在想,是不是能設計一些新的方式讓已經(jīng)知道三角形內(nèi)角和是180°的學生也能真正參與到實驗驗證的環(huán)節(jié)中來。于是讓學生請觀察自己手中的三角板,問它們是什么三角形?你知道三角板三個內(nèi)角的和是多少度嗎?問學生發(fā)現(xiàn)了什么?

  三角尺的三個內(nèi)角和是180°。然后讓學生撕下三角形的三個內(nèi)角并把它們拼在一起和折三角形的三個內(nèi)角,使它們正好折在一起,都能拼成一個*角,最后拿出課前準備好的長方形、正方形,讓學生自己想辦法驗證三角形內(nèi)角和是180°。我個人認為學生通過親自動手操作實驗得出三角形內(nèi)角和是180°,這樣使他們大膽地想,學生課上***比較集中。教師也能在教學活動中從一個知識的傳播者自覺轉變?yōu)榕c學生一起發(fā)現(xiàn)問題、探討問題、解決問題的**者、引導者、合作者。

  在“想想做做”第2題中,學生在還沒有拼的時候先看了書,就猜拼出來的大三角形的內(nèi)角和是360°,經(jīng)過提醒“內(nèi)角”的含義,學生才真正體會到“任何一個三角形的內(nèi)角和都是180°”,不管這個三角形是大還是小。

《三角形的內(nèi)角和》教學反思8

  在課間我有意問了一下學生你們知不知道三角形的內(nèi)角和是幾度,發(fā)現(xiàn)有一些學生已經(jīng)知道三角形三個內(nèi)角的和是180°,因此在導入環(huán)節(jié)中插入了一個猜角游戲中,請量出自己準備的三角形的三個角的度數(shù),只要你們說出其中兩個角的度數(shù),我能猜出第3個角的度數(shù),讓生說我猜,要求用自己準備的三角形進行操作。有一部分學生已經(jīng)能跟著我說出第三個角的度數(shù)。當時我并沒有批評這些學生,而是采用了表揚的方式,學生很開心。

  在接下來的實驗驗證環(huán)節(jié)中,那些知道三角形內(nèi)角和是180°的學生就猜度數(shù),而沒有進行真正的實驗驗證,反倒是剛學到的學生真正做到用實驗去驗證“三角形的內(nèi)角和中180°”。因此我一直在想,是不是能設計一些新的方式讓已經(jīng)知道三角形內(nèi)角和是180°的學生也能真正參與到實驗驗證的環(huán)節(jié)中來。于是讓學生請觀察自己手中的三角板,問它們是什么三角形?你知道三角板三個內(nèi)角的和是多少度嗎?問學生發(fā)現(xiàn)了什么?

  三角尺的三個內(nèi)角和是180°。然后讓學生撕下三角形的三個內(nèi)角并把它們拼在一起和折三角形的三個內(nèi)角,使它們正好折在一起,都能拼成一個*角,

  最后拿出課前準備好的長方形、正方形,讓學生自己想辦法驗證三角形內(nèi)角和是180°。我個人認為學生通過親自動手操作實驗得出三角形內(nèi)角和是180°,這樣使他們大膽地想,學生課上***比較集中。教師也能在教學活動中從一個知識的傳播者自覺轉變?yōu)榕c學生一起發(fā)現(xiàn)問題、探討問題、解決問題的**者、引導者、合作者。

  在“想想做做”第2題中,學生在還沒有拼的時候先看了書,就猜拼出來的大三角形的內(nèi)角和是360°,經(jīng)過提醒“內(nèi)角”的含義,學生才真正體會到“任何一個三角形的內(nèi)角和都是180°”,不管這個三角形是大還是小。

《三角形的內(nèi)角和》教學反思9

  在學校教學示范課上,講了《三角形的內(nèi)角和》一課。整節(jié)課還算比較順利,在課堂是完成了教學目標,并且體現(xiàn)了小組合作學習的探究的過程,F(xiàn)在總結一下課堂上的幾點不足:

  1、學生小組合作學習的能力還有待于進一步培養(yǎng)

  在課堂教學的重點過程中,我設計的是小組合作探究,“先討論有幾種驗證方法,再分別選擇不同的方法驗證,驗證后在小組內(nèi)交流”這樣的目的是為了在盡量短的時間內(nèi)使學生通過不同的驗證方法得出共同的的結論,在交流的過程中學生能夠清晰的觀察到不同的驗證方法,這樣一個人的驗證過程就成了幾個人人學習成果。既節(jié)省了時間,又能讓學生接受到盡量多的信息。但是學生們的表現(xiàn)卻不令人滿意,也許是公開課學生放不開的原因,他們只是各自驗證完了和同桌交流一下,完全沒有以往在班級里那種熱烈討論的氣氛。雖然我在后面的學習匯報過程中使用了投影儀展示,但還是不如學生小組內(nèi)交流更直接。因此,我這一設計的目的效果不理想。

  2、我本身駕馭課堂的能力還有待于提高

  由于在試講的過程中我設計的最后一個練習題沒有完成,而這一道題又是這堂課教學內(nèi)容一個升華,因此我想盡量完成。在課堂教學的過程中我盡量**時間,由于過于注意時間,導致了在學生用投影儀演示完后,為了更清晰的演示折、拼的過程的動畫忘了播放,影響了又一個給學生直觀展示的機會。這一問題的出現(xiàn)我覺得是我自身駕馭課堂的能力還不夠,有待于進一步提高。

《三角形的內(nèi)角和》教學反思10

  在“三角形內(nèi)角和”這一內(nèi)容的教學時,采用的教學方式是教給學生測量或者是撕拼的方法,然后得出結論,進行應用。雖然可以節(jié)省時間,短期內(nèi)收到較好的效果,特別是要求學生把結論給記住,學生應用結論解決相關問題一般是不會有困難的。但把數(shù)學知識的發(fā)生過程輕描淡寫,缺乏探究過程,這樣學數(shù)學,學生感覺學得累,很乏味,在他們的感受中,數(shù)學漸漸地變成枯燥無味的了。本節(jié)課應著眼于學生的能力和學習數(shù)學的興趣,上課一開始,可通過創(chuàng)設動畫的問題情境,以較好地激發(fā)了學生的學習興趣,然后給學生提供一些材料,讓學生以先**思考再合作的方式,為學生留有足夠的空間去探究出結論。學生通過測量、撕拼、折疊等方法,探究出三角形內(nèi)角和的結論。方法不是唯一的,對于學生通過**思考出來的解決問題的多種策略,教師適時給予鼓勵表揚,特別是對學生解決問題的思維方法給予充分的肯定。在這一過程中,學生又出現(xiàn)不同的理解和觀點,產(chǎn)生真實的辯論,從而更深刻地理解了“三角形內(nèi)角和是180度的結論。如此學生收獲的不僅僅是數(shù)學知識,更多的是對學習數(shù)學的興趣和信心,獲得的是解決問題的策略和方法。

  而后,通過拓展應用環(huán)節(jié),再讓學生通過應用練習和發(fā)展性練習,既鞏固了本節(jié)課的知識,又培養(yǎng)了學生思維的.靈活性和深刻性,使學生進一步深入理解了“任何三角形內(nèi)角和都是180度。”這一結論,并大膽猜測推算出長方形和正方形的內(nèi)角和。


《三角形的內(nèi)角和》教學設計10篇(擴展7)

——《三角形的內(nèi)角和》教學設計10篇

《三角形的內(nèi)角和》教學設計1

  教學要求

  1、通過動手操作,使學生理解并掌握三角形的內(nèi)角和是180°的結論。

  2、能運用三角形的內(nèi)角和是180°這一規(guī)律,求三角形中未知角的度數(shù)。

  3、培養(yǎng)學生動手動腦及分析推理能力。

  教學重點

  三角形的內(nèi)角和是180°的規(guī)律。

  教學難點

  使學生理解三角形的內(nèi)角和是180°這一規(guī)律。

  教學用具

  每個學生準備銳角三角形、直角三角形、鈍角三角形紙片各一張,量角器。

  教學過程

  一、復習準備

  1、三角形按角的不同可以分成哪幾類?

  2、一個*角是多少度?1個*角等于幾個直角?

  3、如圖,已知∠1=35°,∠2=75°,求∠3的度數(shù)。

  二、教學新課

  1、投影出示一組三角形:(銳角三角形、鈍角三角形、直角三角形)。三角形有幾個角?老師指出:三角形的這三個角,就叫做三角形的三個內(nèi)角。(板書:內(nèi)角)

  2、三角形三個內(nèi)角的度數(shù)和叫做三角形的內(nèi)角和。(板書課題:三角形的內(nèi)角和)今天我們一起來研究三角形的內(nèi)角和有什么規(guī)律。

  3、以小組為單位先畫4個不同類型的三角形,利用手中的工具分別計算三角形三個內(nèi)角的和各是多少度?

  4、指名學生匯報各組度量和計算的結果。你有什么發(fā)現(xiàn)?

  5、大家算出的三角形的內(nèi)角和都接近180°,那么,三角形的內(nèi)角和與180°究竟是怎樣的關系呢?就讓我們一起來動手實驗研究,我們一定能弄清這個問題的。

  6、剛才我們計算三角形的內(nèi)角和都是先測量每個角的度數(shù)再相加的。在量每個內(nèi)角度數(shù)時只要有一點誤差,內(nèi)角和就有誤差了。我們能不能換一種方法,減少度量的次數(shù)呢?

  提示學生,可以把三個內(nèi)角拼成一個角,就只需測量一次了。

  7、請拿出桌上的直角三角形紙片,想一想,怎樣折可以把三個角拼在一起,試一試。

  8、三個角拼在一起組成了一個什么角?我們可以得出什么結論?(直角三角形的內(nèi)角和是180°)

  9、拿一個銳角三角形紙片試試看,折的方法一樣。再拿鈍角三角形折折看,你發(fā)現(xiàn)了什么?(直角三角形和鈍角三角形的內(nèi)角和也是180°)

  10、那么,我們能不能說所有三角形的內(nèi)角和都是180°呢?為什么?(能,因為這三種三角形就包括了所有三角形)11、老師板書結論:三角形的內(nèi)角和是180°。

  12、一個三角形中如果知道了兩個內(nèi)角的度數(shù),你能求出另一個角是多少度嗎?怎樣求?

  13、出示教材85頁做一做。讓學生試做。

  14、指名匯報怎樣列式計算的。兩種方法均可。

  ∠2=180°—140°—25°=15°

  ∠2=180°(140°+25°)=15°

  三、鞏固練習

  1、88頁第9題

  這一題是不是只知道一個角的度數(shù)?另一個角是多少度,從哪看出來的?**完成,集體訂正。

  直角三角形中的一個銳角還可以怎樣算?

  2、88頁第10題

 、俚妊切斡惺裁刺攸c?(兩底角相等)

  ②列式計算180°—70°—70°=40°或

  180°—(70°×2)=40°

  2、88頁第10題

 、龠B接長方形、正方形一組對角頂點,把長方形、正方形分成兩個什么圖形?

 、谝粋三角形的內(nèi)角和是180°,兩個三角形呢?

《三角形的內(nèi)角和》教學設計2

  一、本節(jié)課在新一輪課程**下的設計理念:

  數(shù)學是人與人之間精神層面上進行的交往。課堂教學中的交往主要是教師與學生、學生與學生之間的交往。它需要運用“對話式”的學習方式,采取多種教學策略,使學生在合作、探索、交流中發(fā)展能力。新課程中對學生的情感、體驗、價值觀,以及獲取知識的渠道都有悖于傳統(tǒng)的教學模式,這正是教師在新課程中尋找新的教學方式的著眼點。應該說,新的教學方式將伴隨著教師對新課程的逐漸透視而形成新的路徑。要破除原有教學活動的框架,建立適應師生相互交流的教學活動體系;滿足學生的心理需求,實現(xiàn)教者與學者感情上的融洽和情感上的共鳴;給學生體驗成功的機會,把“要我學”變成“我要學”。我認為教師角色的轉變一定會促進學生的發(fā)展、促進教育的長足發(fā)展,在未來的教學過程里,教師要做的是:幫助學生決定適當?shù)膶W習目標,并確認和協(xié)調(diào)達到目標的途徑;指導學生形成良好的學**慣,掌握學習策略;創(chuàng)造豐富的教學情境,培養(yǎng)學生的學習興趣,充分調(diào)動學生的學習積極性;為學生提供各種便利,為學生的學習服務;建立一個接納的、**性的、寬容的課堂氣氛;作為學習的參與者,與學生分享自己的感情和想法;和學生一道尋找真理,能夠承認自己的過失和錯誤。教學情境的營造是教師走進新課程中所面臨的挑戰(zhàn),適應新一輪基礎教育課程**的教學情境不是文本中的約定,也不是現(xiàn)成的拿來就能用的,需要我們在教學活動的全過程中去探索、研究、發(fā)現(xiàn)、形成。

  二、教材分析與處理:

  三角形的內(nèi)角和定理揭示了組成三角形的三個角的數(shù)量關系,此外,它的證明中引入了輔助線,這些都為后繼學習奠定了基礎,三角形的內(nèi)角和定理也是幾何問題代數(shù)化的體現(xiàn)。

  三、學生分析

  處于這個年齡階段的學生有能力自己動手,在自己的視野范圍內(nèi)因地制宜地收集、編制、改造適合自身使用,貼近生活實際的數(shù)學建模問題,他們樂于嘗試、探索、思考、交流與合作,具有分析、歸納、總結的能力,他們渴望體驗成功感和自豪感。因而老師有必要給學生充分的**和空間,同時注意問題的開放性與可擴展性。

  四、教學目標:

  1.知識目標:在情境教學中,通過探索與交流,逐步發(fā)現(xiàn)“三角形內(nèi)角和定理”,使學生親身經(jīng)歷知識的發(fā)生過程,并能進行簡單應用。能夠探索具體問題中的數(shù)量關系和變化規(guī)律,體會方程的思想。通過開放式命題,嘗試從不同角度尋求解決問題的方法。教學中,通過有效措施讓學生在對解決問題過程的反思中,獲得解決問題的經(jīng)驗,進行富有個性的學習。

  2.能力目標:通過拼圖實踐、問題思考、合作探索、組內(nèi)及組間交流,培養(yǎng)學生的的邏輯推理、大膽猜想、動手實踐等能力。

  3.德育目標:通過添置輔助線教學,滲透美的思想和方法教育。

  4.情感、態(tài)度、價值觀:在良好的師生關系下,建立輕松的學習氛圍,使學生樂于學數(shù)學,遇到困難不避讓,在數(shù)學活動中獲得成功的體驗,增強自信心,在合作學習中增強集體責任感。

  五、重難點的確立:

  1.重點:三角形的內(nèi)角和定理探究與證明。

  2.難點:三角形的內(nèi)角和定理的證明方法(添加輔助線)的討論

  六、教法、學法和教學**:

  采用“問題情境-建立模型-解釋、應用與拓展”的模式展開教學。

  采用對話式、嘗試教學、問題教學、分層教學等多種教學方法,以達到教學目的。

  教學過程設計:

  一、創(chuàng)設情境,懸念引入

  一堂新課的引入是老師與學生交往活動的開始,是學生學習新知識的心理鋪墊,是拉近師生之間的距離,破除疑難心理、乏味心理的關鍵。一個成功的引入,是讓學生感覺到他熟知的生活,可使學生迅速投入到課堂中來,對知識在最短的時間內(nèi)產(chǎn)生極大的興趣和求知欲,接下來教學活動將成為他們樂此不疲的快事了。

  具體做法:拋出問題:“學校后勤部折疊長梯(電腦顯示圖形)打開時頂端的角是多少度呢?一名學生測出了兩個梯腿與地面的成角后,立即說出了答案,你知道其中的道理嗎?”待學生思考片刻后,我因勢利導,指出學習了本節(jié)課你便能夠回答這個問題了。從而引入新課。

  二、探索新知

  1.動手實踐,嘗試發(fā)現(xiàn):要求學生將事先準備好的三角形紙板按線剪開,然后用剪下的∠A、∠B與完整的三角形紙板中的∠C拼圖,使三者頂點重合,問能發(fā)現(xiàn)怎樣的現(xiàn)象?有的學生會發(fā)現(xiàn),三者拼成一個*角。此時讓學生互相觀察拼圖,驗證結果。從觀察交流中,互學方法,達到生生互動。待交流充分,分小組張貼所拼圖形,教師點評,總結分類,將所拼圖形分為∠A、∠B分別在∠C同側和兩側兩種情況。對有合作精神的小組給與表揚。

  (將拼圖展示在黑板上)

  2.嘗試猜想:教師**,從活動中你有怎樣的發(fā)現(xiàn)?采取組內(nèi)交流的方式,產(chǎn)生思維碰撞。此時我走到學生中去,對有困難的小組給與適當?shù)囊龑。之后由學生匯報組內(nèi)的發(fā)現(xiàn)。即三角形三個內(nèi)角的和等于180度。

  3.證明猜想:先幫助學生回憶命題證明的基本步驟,然后讓學生**完成畫圖、寫出已知、求證的步驟,其他同學補充完善。下面讓學生對照剛才的動手實踐,分小組探求證明方法。此環(huán)節(jié)應留給學生充分的思考、討論、發(fā)現(xiàn)、體驗的時間,讓學生在交流中互取所長,合作探索,找到證明的切入點,體驗成功。對有困難的學生要多加關注和指導,不放棄任何一個學生,借此增進教師與學有困難學生之間的關系,為繼續(xù)學習奠定基礎。合作探究后,匯報證明方法,注意規(guī)范證明格式。此處自然的引入輔助線的概念。但要說明,添加輔助線不是盲目的,而是為了證明某一結論,需要引用某個定義、公理、定理,但原圖形不具備直接使用它們的條件,這時就需要添輔助線創(chuàng)造條件,以達到證明的目的。

  4.學以致用,反饋練習

  (1)在△ABC中,已知∠A=80°,能否知∠B+∠C的度數(shù)?

  解:∵∠A+∠B+∠C=180°(三角形內(nèi)角和定理)

  ∴∠B+∠C=100°在△ABC中,

  (2)已知:∠A=80°,∠B=52°,則∠C=?

  解:∵∠A+∠B+∠C=180°(三角形內(nèi)角和定理)

  又∵∠A=80°∠B=52°(已知)

  ∴∠C=48°

  (3)在△ABC中,已知∠A=80°,∠B-∠C=40°,則∠C=?

  (4)已知∠A+∠B=100°,∠C=2∠A,能否求出∠A、∠B、∠C的度數(shù)?

  (5)在△ABC中,已知∠A:∠B:∠C=1:3:5,能否求出∠A、∠B、∠C的度數(shù)?

  解:設∠A=x°,則∠B=3x°,∠C=5x°

  由三角形內(nèi)角和定理得,x+3x+5x=180

  解得,x=20

  ∴∠A=20°∠B=60°∠C=100°

  (6)已知在△ABC中,∠C=∠ABC=2∠A,求(1)∠B的度數(shù)?(2)若BD是AC邊上的高,∠DBC的度數(shù)?

  第(6)題是書中例題的改用,此題由輔助線輔助課件打出,給學生以圖形由簡單到繁的直觀演示。

  通過這組練習滲透把圖形簡單化的思想,繼續(xù)滲透**思想,用代數(shù)方法解決幾何問題。

  5.鞏固提高,以生為本

  (1)如圖:B、C、D在一條直線上,∠ACD=105°,且∠A=∠ACB,則∠B=——度。

  (2)如圖AD是△ABC的角*分線,且∠B=70°,∠C=25°,則∠ADB=——度,∠ADC=——度。

  本組練習是三角形內(nèi)角和定理與*角定義及角*分線等知識的綜合應用.能較好的培養(yǎng)學生的分析問題、解決問題的能力,有助于獲得一些經(jīng)驗。

  6.思維拓展,開放發(fā)散

  如圖,已知△PAD中,∠APD=120°,B、C為AD上的點,△PBC為等邊三角形。試盡可能多地找出各幾何量之間的相互關系。

  本題旨在激發(fā)學生**思考和創(chuàng)新意識,培養(yǎng)創(chuàng)新精神和實踐能力,發(fā)展個性思維。

  三、歸納總結,同化順應

  1.學生談體會

  2.教師總結,出示本節(jié)知識要點

  3.教師點評,對學生在課堂上的積極合作,大膽思考給與肯定,提出希望。

  四、作業(yè):

  1。必做題:習題3.1第10、11、12題

  2.選做題:習題3.1第13、14題

  五、板書設計

  三角形內(nèi)角和

  學生拼圖展示已知:求證:

  證明:開放題:

《三角形的內(nèi)角和》教學設計3

  教學內(nèi)容:

  義務教育課程標準實驗教科書XX版小學數(shù)學四年級下冊第42~46頁

  教學目標:

  1、通過量、剪、拼、折等數(shù)學活動,讓學生親自實踐操作,發(fā)現(xiàn)規(guī)律,主動推導并得出“三角形內(nèi)角和是180°”的結論,會應用這一規(guī)律進行計算。

  2、在操作、驗證三角形內(nèi)角和的過程中,體驗解決問題方法的多樣性,發(fā)展空間觀念,提高初步的邏輯思維能力。

  教學過程:

  一、創(chuàng)設情境,導入新課

  1、談話:我們已經(jīng)認識了三角形,你知道哪些關于三角形的知識?

  2、我們在討論三角形知識的時候,三角形中的三個好朋友卻吵了起來,想知道是怎么回事嗎?我們一起去看看吧!

  播放課件

  詳細內(nèi)容說明:一個大的直角三角形說:“我的個頭大,我的內(nèi)角和一定比你們大。”一個鈍角三角形說:“我有一個鈍角,我的內(nèi)角和才是的!币粋小的銳角三角形很委屈的樣子說:“是這樣嗎?”(它們在爭論誰的內(nèi)角和大。)

  你知道什么是三角形的內(nèi)角和嗎?

  通過學生討論,得出三角形的內(nèi)角和就是三角形三個內(nèi)角的度數(shù)和。

  3、故事中到底誰說得對呢?今天我們就來研究三角形的內(nèi)角和。

  【設計意圖】從學生的心理、興趣和意愿為出發(fā)點,利用故事的形式提出疑問,激發(fā)學生的學習興趣,提高學生探索的積極性。

  二、自主探究、發(fā)現(xiàn)規(guī)律

  1、探究三角形內(nèi)角和的特點

  (1)量一量

  師:你認為怎樣能知道三角形的內(nèi)角和?

  生:把三角形的三個內(nèi)角分別量出來,再用加法算出三角形的內(nèi)角和。

  學生活動(小組合作---每組準備三種不同的三角形)量角,求和,完成第43頁的表格。

  學生交流匯報測量結果。

  師:從剛才的交流中,你發(fā)現(xiàn)了什么?

  生:不管是銳角三角形、直角三角形還是鈍角三角形,內(nèi)角和都是180°。

  (在量的過程中,由于誤差,有的學生可能算出內(nèi)角和在180°左右,這時教師要相機誘導:在測量的過程中出現(xiàn)一些誤差是正常的,因為同學們畫的角不夠標準,量角器的不同,還有本身測量的原因都可能導致誤差。)

  師:看來量一量會出現(xiàn)誤差,那么你還有其它的更科學的辦法進行驗證嗎?

  (2)拼一拼

  學生分小組活動,教師參與學生的活動,并給予必要的指導。

  學生展示交流,師:從大家的交流中,我們發(fā)現(xiàn)都可以把三角形的三個內(nèi)角拼成一個*角,證明“三角形內(nèi)角和是180°” 。

  (3)折一折

  小組活動,學生交流

  生1:將正方形(或長方形)紙沿對角線對折,這樣,就折成了兩個大小一樣的三角形。因為正方形(或長方形)的四個直角的和是360°,所以三角形的內(nèi)角和就是它的一半,是180°。

  生2:直角三角形的兩個銳角可以折成一個直角,也就是說,在直角三角形中,兩個銳角的和是90°,因此三角形內(nèi)角和就是180°。

  2、歸納

  師:通過剛才的活動,我們得出了什么結論?

  生:三角形的內(nèi)角和等于180°。

  3、師談話:三個三角形爭論的問題現(xiàn)在能解決了嗎?你現(xiàn)在想對這三個三角形說點什么?

  學生暢所欲言,對得出的規(guī)律做系統(tǒng)的整理。

  【設計意圖】動手實踐,自主探索,親身體驗,是學習數(shù)學的重要方式。學生分組合作,量一量、拼一拼、折一折,通過多種感官參與比較、分析從而自主探索得出結論,得到的不僅是三角形內(nèi)角和的知識,也使學生學到了怎樣由已知探索未知的思維方式與方法,培養(yǎng)了他們主動探索的精神。

  三、靈活運用,鞏固練習

  師:好,大家已經(jīng)發(fā)現(xiàn)了“三角形內(nèi)角和是180°”這一規(guī)律,你能應用這個規(guī)律解決一些實際的問題嗎?

  1、判斷

  鈍角三角形比銳角三角形的內(nèi)角和大。 ( )

  銳角三角形的兩個內(nèi)角和小于90°。 ( )

  一個三角形最少有兩個銳角。 ( )

  一個鈍角三角形最少有一個鈍角。 ( )

  學生判斷并說出理由。

  2、自主練習第6題

  練習時,先讓學生**填空,再說說自己是怎么想的,然后用量角器驗證計算的結果。

  小結:以后如果遇到求一個三角形內(nèi)未知角的度數(shù)時,我們可以用計算的方法算一算,簡單又精確。

  3、游戲:選度數(shù),組三角形

  (課件顯示如下)

  請選出三個角的度數(shù)來組成一個三角形

  10° 18° 15° 150° 130° 72°

  20° 50° 70° 35° 75°

  52° 56° 54° 58° 60°

  學生回答的同時,教師操作課件,把學生選擇的度數(shù)拖入方框內(nèi),通過電腦計算相加是否等于180°,來驗證學生的選擇是否正確。驗證學生選的對了以后,再讓學生判斷選擇的度數(shù)所組成的三角形按角的大小分類,并說出理由。

  [設計意圖]用已學到的新知解決實際數(shù)學問題,認識學數(shù)學的價值,再次體驗成功,增強學習數(shù)學的興趣。尤其是第三個練習,依據(jù)學生的年齡特征和認知水*,設計探索性和開放性的問題,注重拓寬學生的思維活動空間。

  四、課堂總結、深化認識

  談話:這節(jié)課你學會了什么?解決了什么問題?是怎樣解決的?

  【設計意圖】不僅從知識方面進行總結,還引導學生回顧發(fā)現(xiàn)問題、提出問題、解決問題的過程,關注學生學習過程中的情感體驗。既讓學生習得一種學習方法,又培養(yǎng)了學習興趣。

  課后反思:

  本節(jié)課學生以小組為單位進行合作學習,從自己的已有經(jīng)驗出發(fā),積極地進行操作、測量、計算,并對自己的結論進行思考、分析。在充分發(fā)揮學生主體作用,放手讓學生開展探究的同時,教師也恰到好處的發(fā)揮了引導作用。整個探究過程學生是自主的、有積極性的,在獲得數(shù)學結論的同時學習了科學探究的方法,為今后的學習打下了堅實的`基礎。

《三角形的內(nèi)角和》教學設計4

  【教學目標】

  1、學生動手操作,通過量、剪、拼、折的方法,探索并發(fā)現(xiàn)“三角形內(nèi)角和等于180度”的規(guī)律。

  2、在探究過程中,經(jīng)歷知識產(chǎn)生、發(fā)展和變化的過程,通過交流、比較,培養(yǎng)策略意識和初步的空間思維能力。

  3、體驗探究的過程和方法,感受思維提升的過程,激發(fā)求知欲和探索興趣。

  【教學重點】探究發(fā)現(xiàn)和驗證“三角形的內(nèi)角和180度”這一規(guī)律的過程,并歸納總結出規(guī)律。

  【教學難點】對不同探究方法的指導和學生對規(guī)律的靈活應用。

  【教具準備】課件、表格、學生準備不同類型的三角形各一個,量角器。

  【教學過程】

  一、激趣引入。

  1、猜謎語

  師:同學們喜歡猜謎語嗎?

  生:喜歡。

  師:那么,下面老師給大家出個謎語。請聽謎面:

  形狀似座山,穩(wěn)定性能堅,三竿首尾連,學問不簡單。(打一圖形)大家一起說是什么?

  生:三角形

  2、介紹三角形按角的分類

  師:真聰明!!板書“三角形”!那么,三角形按角分可以分為鈍角三角形、直角三角形和銳角三角形這幾類

  師分別出示卡片貼于黑板。

  3、激發(fā)學生探知心里

  師:大家會不會畫三角形啊?

  生:會

  師:下面請你拿出筆在本子上畫出一個三角形,但是我有個要求:畫出一個有兩個直角的三角形。試一試吧!

  生:試著畫

  師:畫出來沒有?

  生:沒有

  師:畫不出來了,是嗎?

  生:是

  師:有兩個直角的三角形為什么畫不出來呢?這就是三角形中角的奧秘!這節(jié)課我們就來學習有關三角形角的知識“三角形內(nèi)角和”(板書課題)

  二、探究新知。

  1、認識三角形的內(nèi)角

  看看這三個字,說說看,什么是三角形的內(nèi)角?

  生:就是三角形里面的角。

  師:三角形有幾個內(nèi)角啊?

  生:3個。

  師:那么為了研究的時候比較方便,我們把這三個內(nèi)角標上角1角2角3,請同學們也拿出桌子上三角形標出(教師標出)

  師:你知道什么是三角形“內(nèi)角和”嗎?

  生:三角形里面的角加起來的度數(shù)。

  2、研究特殊三角形的內(nèi)角和

  師:分別拿出一個直角三角板,請同學們看看這屬于什么三角形,說出每個角的度數(shù),那這個三角形的內(nèi)角和是多少度?

  生:算一算:90°+60°+30°=180° 90°+45°+45°=180°

  師:180°也是我們學習過的什么角?

  生:*角

  師:從剛才兩個三角形的內(nèi)角和的計算中,你發(fā)現(xiàn)了什么?

  3、研究一般三角形的內(nèi)角和

  師:猜一猜,其它三角形的內(nèi)角和是多少度呢?

  生:

  4、操作、驗證

  師:同學們猜的結果各不相同,那怎么辦呀?你能想個辦法驗證一下嗎?

  要求:

  (1)每4人為一個小組。

  (2)每個小組都有不同類型的三角形,每種類型都需要驗證,先討論一下,怎樣才能較快的完成任務?

  (3)驗證的方法不只一種,同學們要多動動腦子。

  師:好,開始活動!

  師:巡視指導

  師:好!請一組匯報測量結果。

  生:通過測量我們發(fā)現(xiàn)每個三角形的三個內(nèi)角和都在180度左右。

  師:其實三角形的內(nèi)角和就是180度,只是因為我們在測量時存在了一些誤差,所以測量出的結果不準確。

  生:我是用撕的方法,把直角三角形三個內(nèi)角撕下來,拼在一起,拼成一個*角,是180度。

  師:好!非常好!

  師:有其它同學操作銳角三角形和鈍角三角形的嗎?誰愿意到前面來展示一下?生:展示銳角三角形(撕拼)

  生:展示折一折我是用折的方法把銳角三角形三個角折在一起,組成一個*角,是180°。

  師:老師也做了一個實驗看一看是不是和大家得到結果一樣呢?(多**展示)

  現(xiàn)在老師問同學們,三角形的內(nèi)角和是多少?

  生:180度。

  師:通過驗證:我們知道了無論是銳角三角形,直角三角形還是鈍角三角形,它們的內(nèi)角和都是180°。板書:三角形內(nèi)角和等于180度,F(xiàn)在讓我們用自豪的、肯定的語氣讀出我們的發(fā)現(xiàn):“三角形的內(nèi)角和是180°”。

  三、解決疑問

  師:好!請同學們回憶一下,剛才課前老師讓同學們畫出有兩個直角的三角形畫出來了嗎?

  生:沒有

  師:那你能用這節(jié)課的知識解釋一下為什么畫不出來嗎?

  生:兩個直角是180度,沒有第三個角了。

  師:如果想畫出有兩個角是鈍角的三角形你能畫出來嗎?

  生:大于180度,也畫不出第三個角。師:所以,生活中不存在這樣的三角形。

  師:學會了知識,我們就要懂得去運用。

  四、鞏固提高。

  1、填空。

  (1)三角形的內(nèi)角和是()度。

  (2)一個三角形的兩個內(nèi)角分別是80°和75°,它的另一個角是()。

  2、求下面各角的度數(shù)。

  (1)∠1=27° ∠2=53° ∠3=()這是一個()三角形。

  (2)∠1=70° ∠2=50° ∠3=()這是一個()三角形。

  3、判斷每組中的三個角是不是同一個三角形中的三個內(nèi)角。

  (1)80° 95° 5°( )

  (2)60° 70° 90°( )

  (3)30° 40° 50°( )

  4、紅領巾是一個等腰三角形,求底角的度數(shù)。(多**出示)

  對學生進行思品教育。

  5、思考延伸。

  根據(jù)三角形內(nèi)角和是180度,算一算四邊形和八邊形的內(nèi)角和是多少?

  6、游戲:幫角找朋友每組卡片中,哪三個角可以組成三角形?)每組卡片中,哪三個角可以組成三角形?)60°90°45°30°⑴60°、90°、45°、30°54°46°52°

  五、總結。

《三角形的內(nèi)角和》教學設計5

  教學內(nèi)容:

  本節(jié)課的教學內(nèi)容是義務教育課程標準實驗教科書數(shù)學四年級下冊第五單位的第四課時《三角形的內(nèi)角和》,主要內(nèi)容是:驗證三角形的內(nèi)角和是180°等。

  教學內(nèi)容分析:

  三角形的內(nèi)角和是180是三角形的一個重要性質(zhì),它有助于學生理解三角形的三個內(nèi)角之間的關系,也是進一步學習的基礎。

  教學對象分析:

  作為四年級的學生已有一定的生活經(jīng)驗,在*時的生活中已經(jīng)接觸到三角形,在尊重學生已有的知識的基礎上和利用他們已掌握的學習方法,教師把課堂教學**生動、活潑,突出知識性、趣味性和生活性,使學生能在輕松愉快的氣氛中學習。

  教學目標:

  1、知識目標:學生通過量、剪、拼、擺等操作學具活動,找到新舊知識之間的聯(lián)系,主動掌握三角形內(nèi)角和是180°,并運用所學知識解決簡單的實際問題。

  2、能力目標:培養(yǎng)學生的觀察、歸納、概括能力和初步的空間想象力。

  3、情感目標:培養(yǎng)學生的創(chuàng)新意識、探索精神和實踐能力,在學生親自動手和歸納中,感受到理性的美。

  教學重點:理解并掌握三角形的內(nèi)角和是180°。

  教學難點:驗證所有三角形的內(nèi)角之和都是180°。

  教具準備:多**課件、各種三角形等。

  學具準備:三角形、剪刀、量角器等。

  教學過程:

  一、出示課題,復習舊知

  1、認識三角形的內(nèi)角。

 。ǎ保⿵土暼切蔚母拍睢

 。ǎ玻┙榻B三角形的“內(nèi)角”。

  2、理解三角形的內(nèi)角“和”。

  【設計理念】通過復習三角形的概念的過程,不僅可以鞏固學生的舊知識而且可以為新知識教學提供知識鋪墊。

  二、動手操作,探究新知

  1、通過預習,認識結論,提出疑問

  2、驗證三角形的內(nèi)角和

 。1)用“量一量、算一算”的方法進行驗證

 、賲R報測量結果

  ②產(chǎn)生疑問:為什么結果不**?

 、劢鉀Q疑問:因為存在測量誤差。

 。2)用“剪一剪、拼一拼”的方法進行驗證

 、僦笇Ъ舴。

  ①分別拼:銳角三角形、直角三角形、鈍角三角形。

 、垓炞C得出:三角形的內(nèi)角和是180°。

 。3)用“折一折”的方法進行驗證

 、僦笇д鄯ā

 、俜謩e折:銳角三角形、直角三角形、鈍角三角形。

  ③再次驗證得出:三角形的內(nèi)角和是180°。

  3、看書質(zhì)疑

  【設計理念】此過程采用直觀教學**。通過讓學生動手量、拼等直觀演示操作直接作用于學生的感官,激活學生的思維,有助于學生的認識由具體到抽象的轉化。從而明確三角形的內(nèi)角和是180°。

  三、實踐應用,解決問題:

  1、在一個三角形中,∠1=140°,∠3=25°,求∠2的度數(shù)。

  2、求出三角形各個角的度數(shù)。(圖略)

  3、爸爸給小紅買了一個等腰三角形的風箏。它的一個底角是70°,它的頂角是多少度?

  4、根據(jù)三角形的內(nèi)角和是180°,你能求出下面的四邊形和正六邊形的內(nèi)角和嗎?(圖略)

  5、數(shù)學游戲。

  【設計理念】練習設計的優(yōu)化是優(yōu)化教學過程的一個重要方向,所以在新授后的鞏固練習中注意設計層層遞進,既有坡度、又注意變式,更有一練一得之妙,從而使學生牢固掌握新知。

  四、總結全課、延伸知識:

  1、今天你們學到了哪些知識?是怎樣獲取這些知識的?你感覺學得怎樣?

  2、知識延伸:給學生介紹一種更科學的驗證方法——轉化。

  【設計理念】課堂總結不僅要關注學生學會了什么,更要關注用什么方法學,要有意識的促進學生反思。

  板書設計:

  三角形的內(nèi)角和是180°

  方法:①量一量拼角(略)

 、谄匆黄

  ③折一折

  【設計理念】此板書設計我力求簡明扼要、布局合理、條理分明,體現(xiàn)了簡潔美和形象美,把知識的重點充分地展現(xiàn)在學生的眼前,起了畫龍點睛的作用。

《三角形的內(nèi)角和》教學設計6

  課題

  三角形的內(nèi)角和

  手

  教學目標

  1.讓學生親自動手,通過量、剪、拼等活動發(fā)現(xiàn)、證實三角形內(nèi)角和是180°,并會應用這一知識解決生活中簡單的實際問題。

  2.在學生在動手獲取知識的過程中,培養(yǎng)學生的實踐能力,并通過動手操作把三角形內(nèi)角和轉化為*角的探究活動,向?qū)W生滲透“轉化”數(shù)學思想。

  3.使學生體驗成功的喜悅,激發(fā)學生主動學習數(shù)學的興趣。

  重點難點

  重點:讓學生經(jīng)歷“三角形內(nèi)角和是180°”這一知識的形成、發(fā)展和應用過程。

  難點:探索、驗證三角形內(nèi)角和是180°的過程。

  過程

  資

  體驗目標

  “學”與“教”

  創(chuàng)設問題情境

  課件出示:兩個三角板

  遵循由特殊到一般的規(guī)律進行探究,引發(fā)學生的猜想后,引導學生探討所有的三角形的內(nèi)角和是不是也是180°。

  這是同學們熟悉的三角尺,請同學們說一說這兩個三角尺的三個內(nèi)角分別是多少度?

  生:45°、90°、45°。

  生:30°、90°、60°。

  師:仔細觀察,算一算這兩個三角形的內(nèi)角和是多少度?

  生:90°+45°+45°=180°。

  生:90°+60°+30°=180°。

  師:通過剛才的算一算,我們得到這兩個三角形的內(nèi)角和是180°,由此你想到了什么?

  生:直角三角形內(nèi)角和是180°,銳角三角形、鈍角三角形內(nèi)角和也是180°。

  師:這只是我們的一種猜想,三角形的內(nèi)角和是否真的等于180°,還需要我們?nèi)ヲ炞C。

  構建

  模型

  每個組準備六個三角形(銳角三角形2個、直角三角形2個、鈍角三角形2個)

  課件

  學生自己剪的一個任意三角形

  大膽放手讓學生通過有層次的自主操作活動,幫助學生結合已有的知識經(jīng)驗,探究驗證三角形內(nèi)角和的不同方法。

  讓學生在經(jīng)歷“提出猜想—實驗驗證—得出結論”中感悟、體驗知識的形成過程,將“三角形內(nèi)角和是180°”一點一滴,浸入學生大腦,融入已有認知結構。

  這一系列活動同時還潛移默化地向?qū)W生滲透了“轉化”的數(shù)學思想,為后繼學習奠定了必要的基礎。

  師:之前老師為每個同學準備了①-⑥六個三角形,下面請組長分發(fā)給每個三角形,拿到手后,先別著急,先想一想你準備用什么方法去驗證三角形內(nèi)角和?

  學生動手操作驗證

  師:匯報時,請先說一說是幾號三角形?然后說一說這個三角形是什么三角形?

  學生匯報:

  生1:③號三角形是直角三角形,內(nèi)角和是180°。

  生2:②號三角形是銳角三角形,內(nèi)角和是180°。

  生3:⑤號三角形是鈍角三角形,內(nèi)角和是180°。

  生4:④號三角形是直角三角形,內(nèi)角和是180°。

  生5:①號三角形是鈍角三角形,內(nèi)角和是180°。

  生6:⑥號三角形是銳角三角形,內(nèi)角和是180°。

  師:除了量的方法外,還有其他方法驗證三角形內(nèi)角和嗎?

  生1:分別剪下三角形三個角拼成*角,*角是180°,所以推理得出三角形內(nèi)角和是180°。

  生2:分別撕下三角形三個角拼成*角,*角是180°,所以推理得出三角形內(nèi)角和是180°。

  生3:把三角形的三個角折成*角,*角是180°,所以推理得出三角形內(nèi)角和是180°。

  這些方法都驗證了:三角形的內(nèi)角和是180°。

  師:觀察這些三角形的內(nèi)角和是多少度?這些三角形的內(nèi)角和都是180°,這是不是老師故意安排好的呢?

  師:有沒有**疑,用什么方法驗證?

  生用自己剪的任意三角形再次驗證三角形內(nèi)角和是否180°。

  生:得出內(nèi)角和還是180°。

  師:不管是老師提供的三角形,還是你們自己準備的三角形,通過我們的算一算、拼一拼、折一折,都得出了三角形的內(nèi)角和是180°。

  師:我們已經(jīng)學習了三角形的分類,三角形可以分成銳角三角形、直角三角形、鈍角三角形。這些三角形的內(nèi)角和是180°,我們能把它們概括成一句話嗎?

  生:三角形的內(nèi)角和是180°。

  師:看來我們的猜想是正確的。

  師:早在20xx多年前著名數(shù)學家歐幾里得就已經(jīng)得到這個結論,到了初中以后同學們還會用更加嚴密的方法證明三角形的內(nèi)角和是180°。

  解釋

  運用拓展

  課件

  正方形紙

  讓學生更深的對所學的新知加以鞏固,從而促使學生綜合運用知識,解決問題的能力。同時在練習中發(fā)展學生的觀察、歸納、概括能力和初步的空間想象力。

  1.∠1=40°,∠2=48°,求∠3有多少度?

  2.算出下面三角形∠3的度數(shù)。

 、拧1=42°,∠2=38°,∠3=?

 、啤1=28°,∠2=62°,∠3=?

 、恰1=80°,∠2=56°,∠3=?

  師:你是怎樣算的?這三個三角形各是什么三角形?

  **:在一個三角形中最多有幾個鈍角?

  在一個三角形中最多有幾個直角?

  3.游戲:將準備的正方形紙對折成一個三角形?

  師:這個三角形的內(nèi)角和是多少度?再對折一次,現(xiàn)在內(nèi)角和是多少度?如果繼續(xù)折下去,越折越小,三角形的內(nèi)角和會是多少度?

  說明:三角形大小變了,內(nèi)角和不變。

  4.有兩個完全一樣的三角尺拼成一個三角形,這個三角形的內(nèi)角和是多少度?

  說明:三角形形狀變了,內(nèi)角和不變。

  5.根據(jù)所學知識,你能想辦法求出下面圖形的內(nèi)角和嗎?

  板書

  設計

  三角形內(nèi)角和

 、偬 鈍角三角形 內(nèi)角和180°

 、谔 銳角三角形 內(nèi)角和180°

  三角形內(nèi)角和是180°

 、厶 直角三角形 內(nèi)角和180°

 、芴 直角三角形 內(nèi)角和180°

  ⑤號 鈍角三角形 內(nèi)角和180°

 、尢 銳角三角形 內(nèi)角和180°

  學具教具準備

  課件三角形紙片量角器正方形紙

《三角形的內(nèi)角和》教學設計7

  教學內(nèi)容:

  教材第67頁例6、“做一做”及教材第69頁練習十六第1~3題。

  教學目標:

  1.通過動手操作,使學生理解并掌握三角形的內(nèi)角和是180°的結論。

  2.能運用三角形的內(nèi)角和是180°這一結論,求三角形中未知角的度數(shù)。

  3.培養(yǎng)學生動手動腦及分析推理能力。

  重點難點:

  掌握三角形的內(nèi)角和是180°。

  教學準備:

  三角形卡片、量角器、直尺。

  導學過程

  一、復習

  1、什么是*角?*角是多少度?

  2、計算角的度數(shù)。

  3、回憶三角形的相關知識。(出示直角三角形、銳角三角形、鈍角三角形)

  二、新知

 。ㄔO計意圖:讓學生經(jīng)歷質(zhì)疑驗證結論這樣的思維過程,真正整體感知三角形內(nèi)角和的知識,真正驗證了“實踐出真知” 的道理,這樣的教學,將三角形內(nèi)角和置于*面圖形內(nèi)角和的大背景中,拓展了三角形內(nèi)角和的數(shù)學知識背景,滲透數(shù)學知識之間的聯(lián)系,有效地避免了新知識的“橫空出現(xiàn)”。同時,培養(yǎng)學生的綜合素養(yǎng))

  1、讀學卡的學習目標、任務目標,做到心里有數(shù)。

  2、揭題:課件演示什么是三角形的內(nèi)角和。

  3、猜想:三角形的內(nèi)角和是多少度。

  4、驗證:

 。1)初證:用一副三角板說明直角三角形的內(nèi)角和是180°。

 。2)質(zhì)疑:三角板是特殊的直角三角形,不具有普遍性,不能**所有三角形。

  (3)再證:請按學卡提示,拿出學具,選擇自己喜歡的方式驗證三角形的內(nèi)角和是180°(師巡視)

 。4)匯報結論(清楚明白的給小組加優(yōu)秀10分)

  5、結論:修改板書,把“?”去掉,寫“是”。

  6、追問:把兩塊三角板拼在一起,拼成的大三角形的內(nèi)角和是多少?說明三角形無論大小它的內(nèi)角和都是180°(課件演示)

  7、看微課感知“偉大的發(fā)現(xiàn)”(設計意圖:讓學生感受自己所做的和帕斯卡發(fā)現(xiàn)三角形內(nèi)角和是180°的過程是一樣的,從而培養(yǎng)孩子的自信心和創(chuàng)造力。)

  三、知識運用(課件出示練習題,生解答)

  1、填空

  (1)一個三角形,它的兩個內(nèi)角度數(shù)之和是110,第三個內(nèi)角是( ).

 。2)一個直角三角形的一個銳角是50,則另一個銳角是( )。

 。3)等邊三角形的3個內(nèi)角都是( )。

 。4)一個等腰三角形,它的一個底角是50,那么它的頂角是( )。

 。5)一個等腰三角形的頂角是60,這個三角形也是( )三角形。

  2、判斷

 。1)一個三角形中最多有兩個直角。( )

 。2)銳角三角形任意兩個內(nèi)角的和大于90。( )

 。3)有一個角是60的等腰三角形不一定是等邊三角形。( )

 。4)三角形任意兩個內(nèi)角的和都大于第三個內(nèi)角。( )

 。5)直角三角形中的兩個銳角的和等于90。( )

  四、拓展探究

  根據(jù)所學的知識,你能想辦法求出四邊形、五邊形的內(nèi)角和嗎?

  1、小組討論。

  2、匯報結果。

  3、課件提示幫助理解。

  五、自我評價根據(jù)學卡要求給自己評出“優(yōu)”“良好”“合格”。

  六、談談自己本節(jié)課的收獲。

  教學反思

  今天我講了《三角形內(nèi)角和》這部分內(nèi)容,學生其實通過不同途徑已經(jīng)知道三角形內(nèi)角和是180°,是不是說這節(jié)課的重難點就已經(jīng)突破了,只要學生能應用知識解決問題就算是達到這節(jié)課的教學目標了呢?我想應該好好思考教材背后要傳遞的東西。

  任何規(guī)律的發(fā)現(xiàn)都要經(jīng)過一個猜測、驗證的過程,不經(jīng)歷這個探究的過程,學生對于這一內(nèi)容的認識就不深刻,聰明的孩子還會懷疑三角形內(nèi)角和是180°嗎?。因此這個結論必須由實踐操作得出結論。所以最終我把本課定為一個實踐探究課。

  如何開篇點題,是我這次要解決的第一個問題。怎樣才能讓學生由已知順利轉向?qū)ξ粗奶角,怎樣直接轉向研究三個角的“和”的問題呢?因此我只設計了三個簡單的問題然學生快速進入主題。

  如何驗證內(nèi)角和是180°,是我一直比較糾結的環(huán)節(jié)。由于小學生的知識背景有限,無法利用證明給予嚴格的驗證。只能通過動手操作、空間想象來讓孩子體會,這些都有“實驗”的特點,那么就都會有誤差,其實都無法嚴格的證明。但是這節(jié)課我們除了要尊重知識的嚴謹還應該尊重孩子的認知。如果通過剪拼、折疊、想象后,還有的孩子認為三角形內(nèi)角和是180°值得懷疑的話,這無非也是件好事,說明孩子體會到了這些方法的不嚴謹,同時對知識有一種尊重,對自己的操作結果充滿自信,否則拼個差不多也可以簡單的認同了內(nèi)角和是180°。

  本節(jié)課的練習的設置也是努力做到有梯度、有趣味、有拓展。從開始的搶答內(nèi)角和體會三角形內(nèi)角和跟大小無關、跟形狀無關,到已知兩個角的度數(shù)求第三個角,這些都是鞏固。之后的,求拼接兩個完全一樣的直角三角形后,得到的圖形的內(nèi)角和是多少度,求被剪開的三角形,形成的新圖形的內(nèi)角和是多少度,這些都是對三角形內(nèi)角和的一次拓展。讓學生的認知發(fā)生沖突,提出挑戰(zhàn)。

  給學生一個*臺,她會給你一片精彩。通過動手操作來驗證內(nèi)角和是否是180°,學生最容易出現(xiàn)的就是把3個角剪下來拼一拼,個別人可能會想到折的方法。而這節(jié)課上有個小姑娘研究的是直角三角形,她的折法很巧妙,將兩個銳角折過來,剛好拼成一個直角,這個直角和原來三角形已有的直角就重疊在了一起,兩個直角就180°。雖然我知道這樣的方法,但是通過試講,孩子們沒有這樣的表現(xiàn),我就沒有奢求什么。但是今天的課堂太豐富多元了。這樣的方法都出現(xiàn)了讓我覺得特別值得肯定。為什么會這樣呢?我想還是因為我給了他們足夠的時間去思考。當有了空間,孩子才會施展他們的才華。這是我的一大收獲。

  前邊驗證時間過多,到練習時間就有些少,特別是求四邊形和六邊形內(nèi)角和時,給的時間過短,學生沒有充分思維。

  總而言之,這次的公開課,給了我一次學習和鍛煉的機會。在教案設計時,該怎么樣把每一個環(huán)節(jié)落實到位,怎么樣說好每一句話,預設好每一個環(huán)節(jié),在教研中聽取各位教師的點評,讓我有了茅塞頓開的感覺。在此,我衷心感謝數(shù)學團隊教師對我中肯的評價,感謝他們對我的直言不諱,無私奉獻自己的想法,讓我在教學中,能夠在一個輕松**的教學氛圍中與學生共同去探討,去發(fā)現(xiàn),去學習。

《三角形的內(nèi)角和》教學設計8

  【教學目標】

  1、學生動手操作,通過量、剪、拼、折的方法,探索并發(fā)現(xiàn)“三角形內(nèi)角和等于180度”的規(guī)律。

  2、在探究過程中,經(jīng)歷知識產(chǎn)生、發(fā)展和變化的過程,通過交流、比較,培養(yǎng)策略意識和初步的空間思維能力。

  3、體驗探究的過程和方法,感受思維提升的過程,激發(fā)求知欲和探索興趣。

  【教學重點】探究發(fā)現(xiàn)和驗證“三角形的內(nèi)角和180度”這一規(guī)律的過程,并歸納總結出規(guī)律。

  【教學難點】對不同探究方法的指導和學生對規(guī)律的靈活應用。

  【教具準備】課件、表格、學生準備不同類型的三角形各一個,量角器。

  【教學過程】

  一、激趣引入。

  1、猜謎語

  師:同學們喜歡猜謎語嗎?

  生:喜歡。

  師:那么,下面老師給大家出個謎語。請聽謎面:

  形狀似座山,穩(wěn)定性能堅,三竿首尾連,學問不簡單。(打一圖形)大家一起說是什么?

  生:三角形

  2、介紹三角形按角的分類

  師:真聰明!!板書“三角形”!那么,三角形按角分可以分為鈍角三角形、直角三角形和銳角三角形這幾類

  師分別出示卡片貼于黑板。

  3、激發(fā)學生探知心里

  師:大家會不會畫三角形啊?

  生:會

  師:下面請你拿出筆在本子上畫出一個三角形,但是我有個要求:畫出一個有兩個直角的三角形。試一試吧!

  生:試著畫

  師:畫出來沒有?

  生:沒有

  師:畫不出來了,是嗎?

  生:是

  師:有兩個直角的三角形為什么畫不出來呢?這就是三角形中角的奧秘!這節(jié)課我們就來學習有關三角形角的知識“三角形內(nèi)角和”(板書課題)

  二、探究新知。

  1、認識三角形的內(nèi)角

  看看這三個字,說說看,什么是三角形的內(nèi)角?

  生:就是三角形里面的角。

  師:三角形有幾個內(nèi)角啊?

  生:3個。

  師:那么為了研究的時候比較方便,我們把這三個內(nèi)角標上角1角2角3,請同學們也拿出桌子上三角形標出(教師標出)

  師:你知道什么是三角形“內(nèi)角和”嗎?

  生:三角形里面的角加起來的度數(shù)。

  2、研究特殊三角形的內(nèi)角和

  師:分別拿出一個直角三角板,請同學們看看這屬于什么三角形,說出每個角的度數(shù),那這個三角形的內(nèi)角和是多少度?

  生:算一算:90°+60°+30°=180° 90°+45°+45°=180°

  師:180°也是我們學習過的什么角?

  生:*角

  師:從剛才兩個三角形的內(nèi)角和的計算中,你發(fā)現(xiàn)了什么?

  3、研究一般三角形的內(nèi)角和

  師:猜一猜,其它三角形的內(nèi)角和是多少度呢?

  生:

  4、操作、驗證

  師:同學們猜的結果各不相同,那怎么辦呀?你能想個辦法驗證一下嗎?

  要求:

  (1)每4人為一個小組。

  (2)每個小組都有不同類型的三角形,每種類型都需要驗證,先討論一下,怎樣才能較快的完成任務?

  (3)驗證的方法不只一種,同學們要多動動腦子。

  師:好,開始活動!

  師:巡視指導

  師:好!請一組匯報測量結果。

  生:通過測量我們發(fā)現(xiàn)每個三角形的三個內(nèi)角和都在180度左右。

  師:其實三角形的內(nèi)角和就是180度,只是因為我們在測量時存在了一些誤差,所以測量出的結果不準確。

  生:我是用撕的方法,把直角三角形三個內(nèi)角撕下來,拼在一起,拼成一個*角,是180度。

  師:好!非常好!

  師:有其它同學操作銳角三角形和鈍角三角形的嗎?誰愿意到前面來展示一下?生:展示銳角三角形(撕拼)

  生:展示折一折我是用折的方法把銳角三角形三個角折在一起,組成一個*角,是180°。

  師:老師也做了一個實驗看一看是不是和大家得到結果一樣呢?(多**展示)

  現(xiàn)在老師問同學們,三角形的內(nèi)角和是多少?

  生:180度。

  師:通過驗證:我們知道了無論是銳角三角形,直角三角形還是鈍角三角形,它們的內(nèi)角和都是180°。板書:三角形內(nèi)角和等于180度,F(xiàn)在讓我們用自豪的、肯定的語氣讀出我們的發(fā)現(xiàn):“三角形的內(nèi)角和是180°”。

  三、解決疑問

  師:好!請同學們回憶一下,剛才課前老師讓同學們畫出有兩個直角的三角形畫出來了嗎?

  生:沒有

  師:那你能用這節(jié)課的知識解釋一下為什么畫不出來嗎?

  生:兩個直角是180度,沒有第三個角了。

  師:如果想畫出有兩個角是鈍角的三角形你能畫出來嗎?

  生:大于180度,也畫不出第三個角。師:所以,生活中不存在這樣的三角形。

  師:學會了知識,我們就要懂得去運用。

  四、鞏固提高。

  1、填空。

  (1)三角形的內(nèi)角和是()度。

  (2)一個三角形的兩個內(nèi)角分別是80°和75°,它的另一個角是()。

  2、求下面各角的度數(shù)。

  (1)∠1=27° ∠2=53° ∠3=()這是一個()三角形。

  (2)∠1=70° ∠2=50° ∠3=()這是一個()三角形。

  3、判斷每組中的三個角是不是同一個三角形中的三個內(nèi)角。

  (1)80° 95° 5°( )

  (2)60° 70° 90°( )

  (3)30° 40° 50°( )

  4、紅領巾是一個等腰三角形,求底角的度數(shù)。(多**出示)

  對學生進行思品教育。

  5、思考延伸。

  根據(jù)三角形內(nèi)角和是180度,算一算四邊形和八邊形的內(nèi)角和是多少?

  6、游戲:幫角找朋友每組卡片中,哪三個角可以組成三角形?)每組卡片中,哪三個角可以組成三角形?)60°90°45°30°⑴60°、90°、45°、30°54°46°52°

  五、總結。

《三角形的內(nèi)角和》教學設計9

  教學內(nèi)容:

  義務教育課程標準實驗教科書__版小學數(shù)學四年級下冊第42~46頁

  教學目標:

  1、通過量、剪、拼、折等數(shù)學活動,讓學生親自實踐操作,發(fā)現(xiàn)規(guī)律,主動推導并得出“三角形內(nèi)角和是180°”的結論,會應用這一規(guī)律進行計算。

  2、在操作、驗證三角形內(nèi)角和的過程中,體驗解決問題方法的多樣性,發(fā)展空間觀念,提高初步的邏輯思維能力。

  教學過程:

  一、創(chuàng)設情境,導入新課

  1、談話:我們已經(jīng)認識了三角形,你知道哪些關于三角形的知識?

  2、我們在討論三角形知識的時候,三角形中的三個好朋友卻吵了起來,想知道是怎么回事嗎?我們一起去看看吧!

  播放課件

  詳細內(nèi)容說明:一個大的直角三角形說:“我的個頭大,我的內(nèi)角和一定比你們大!币粋鈍角三角形說:“我有一個鈍角,我的內(nèi)角和才是的!币粋小的銳角三角形很委屈的樣子說:“是這樣嗎?”(它們在爭論誰的內(nèi)角和大。)

  你知道什么是三角形的內(nèi)角和嗎?

  通過學生討論,得出三角形的內(nèi)角和就是三角形三個內(nèi)角的度數(shù)和。

  3、故事中到底誰說得對呢?今天我們就來研究三角形的內(nèi)角和。

  【設計意圖】從學生的心理、興趣和意愿為出發(fā)點,利用故事的形式提出疑問,激發(fā)學生的學習興趣,提高學生探索的積極性。

  二、自主探究、發(fā)現(xiàn)規(guī)律

  1、探究三角形內(nèi)角和的特點

  (1)量一量

  師:你認為怎樣能知道三角形的內(nèi)角和?

  生:把三角形的三個內(nèi)角分別量出來,再用加法算出三角形的內(nèi)角和。

  學生活動(小組合作---每組準備三種不同的三角形)量角,求和,完成第43頁的表格。

  學生交流匯報測量結果。

  師:從剛才的交流中,你發(fā)現(xiàn)了什么?

  生:不管是銳角三角形、直角三角形還是鈍角三角形,內(nèi)角和都是180°。

  (在量的過程中,由于誤差,有的學生可能算出內(nèi)角和在180°左右,這時教師要相機誘導:在測量的過程中出現(xiàn)一些誤差是正常的,因為同學們畫的角不夠標準,量角器的不同,還有本身測量的原因都可能導致誤差。)

  師:看來量一量會出現(xiàn)誤差,那么你還有其它的更科學的辦法進行驗證嗎?

  (2)拼一拼

  學生分小組活動,教師參與學生的活動,并給予必要的指導。

  學生展示交流,師:從大家的交流中,我們發(fā)現(xiàn)都可以把三角形的三個內(nèi)角拼成一個*角,證明“三角形內(nèi)角和是180°” 。

  (3)折一折

  小組活動,學生交流

  生1:將正方形(或長方形)紙沿對角線對折,這樣,就折成了兩個大小一樣的三角形。因為正方形(或長方形)的四個直角的和是360°,所以三角形的內(nèi)角和就是它的一半,是180°。

  生2:直角三角形的兩個銳角可以折成一個直角,也就是說,在直角三角形中,兩個銳角的和是90°,因此三角形內(nèi)角和就是180°。

  2、歸納

  師:通過剛才的活動,我們得出了什么結論?

  生:三角形的內(nèi)角和等于180°。

  3、師談話:三個三角形爭論的問題現(xiàn)在能解決了嗎?你現(xiàn)在想對這三個三角形說點什么?

  學生暢所欲言,對得出的規(guī)律做系統(tǒng)的整理。

  【設計意圖】動手實踐,自主探索,親身體驗,是學習數(shù)學的重要方式。學生分組合作,量一量、拼一拼、折一折,通過多種感官參與比較、分析從而自主探索得出結論,得到的不僅是三角形內(nèi)角和的知識,也使學生學到了怎樣由已知探索未知的思維方式與方法,培養(yǎng)了他們主動探索的精神。

  三、靈活運用,鞏固練習

  師:好,大家已經(jīng)發(fā)現(xiàn)了“三角形內(nèi)角和是180°”這一規(guī)律,你能應用這個規(guī)律解決一些實際的問題嗎?

  1、判斷

  鈍角三角形比銳角三角形的內(nèi)角和大。( )

  銳角三角形的兩個內(nèi)角和小于90°。( )

  一個三角形最少有兩個銳角。( )

  一個鈍角三角形最少有一個鈍角。( )

  學生判斷并說出理由。

  2、自主練習第6題

  練習時,先讓學生**填空,再說說自己是怎么想的,然后用量角器驗證計算的結果。

  小結:以后如果遇到求一個三角形內(nèi)未知角的度數(shù)時,我們可以用計算的方法算一算,簡單又精確。

  3、游戲:選度數(shù),組三角形

  (課件顯示如下)

  請選出三個角的度數(shù)來組成一個三角形

  10° 18° 15° 150° 130° 72°

  20° 50° 70° 35° 75°

  52° 56° 54° 58° 60°

  學生回答的同時,教師操作課件,把學生選擇的度數(shù)拖入方框內(nèi),通過電腦計算相加是否等于180°,來驗證學生的選擇是否正確。驗證學生選的對了以后,再讓學生判斷選擇的度數(shù)所組成的三角形按角的大小分類,并說出理由。

  [設計意圖]用已學到的新知解決實際數(shù)學問題,認識學數(shù)學的價值,再次體驗成功,增強學習數(shù)學的興趣。尤其是第三個練習,依據(jù)學生的年齡特征和認知水*,設計探索性和開放性的問題,注重拓寬學生的思維活動空間。

  四、課堂總結、深化認識

  談話:這節(jié)課你學會了什么?解決了什么問題?是怎樣解決的?

  【設計意圖】不僅從知識方面進行總結,還引導學生回顧發(fā)現(xiàn)問題、提出問題、解決問題的過程,關注學生學習過程中的情感體驗。既讓學生習得一種學習方法,又培養(yǎng)了學習興趣。

  課后反思:

  本節(jié)課學生以小組為單位進行合作學習,從自己的已有經(jīng)驗出發(fā),積極地進行操作、測量、計算,并對自己的結論進行思考、分析。在充分發(fā)揮學生主體作用,放手讓學生開展探究的同時,教師也恰到好處的發(fā)揮了引導作用。整個探究過程學生是自主的、有積極性的,在獲得數(shù)學結論的同時學習了科學探究的方法,為今后的學習打下了堅實的基礎。

《三角形的內(nèi)角和》教學設計10

  本節(jié)微課視頻是蘇教版數(shù)學教科書四年級下冊第78~79頁的教學內(nèi)容。在教學之前,學生已經(jīng)掌握了角的概念、角的分類和角的測量;認識了三角形,知道三角形是由三條線段首尾相接圍成的圖形,有三個頂點、三條邊和三個角。這些已經(jīng)構成學生進一步學習的認知基礎。《三角形的內(nèi)角和》是三角形的一個重要性質(zhì)。學生在學習四年級上冊“角的度量”時,通過測量三角尺三個角的度數(shù),知道三角尺三個角加起來的和是180度,再加上課前的預習,大部分的學生已經(jīng)能得出結論:三角形的內(nèi)角和是180度,只不過他們不清楚其中的道理,只是機械性的記憶。因此,本節(jié)課的重點不是結論,而是驗證結論的過程。教材**學生對不同形狀、不同大小的三角形的內(nèi)角和進行探索,通過轉化、推理、比較、操作和驗證,總結概括出“所有三角形的內(nèi)角和都是180度”的規(guī)律,從而進一步發(fā)展學生的空間觀念,提高學生的自主學習能力和推理能力。

  下面就具體談談微課的教學設計:

  一、教學目標

  1、通過測量、轉化、觀察和比較等活動探索發(fā)現(xiàn)并驗證“三角形的內(nèi)角和是180度”的規(guī)律,并且能利用這一結論解決求三角形中未知角的度數(shù)等實際問題。

  2、通過折一折、拼一拼和剪一剪等一系列的操作活動培養(yǎng)學生的聯(lián)想意識和動手操作能力。體驗驗證結論的過程與方法,提高學生分析和解決問題的能力。

  3、使學生通過操作的過程獲得發(fā)現(xiàn)規(guī)律的喜悅,獲得成就感,從而激發(fā)學生積極主動學習數(shù)學的興趣。

  二、教學重點和難點

  重點:讓學生親自驗證并總結出三角形的內(nèi)角和是180度的結論

  難點:對不同驗證方法的理解和掌握。

  三、教學過程

 。ㄒ唬┵|(zhì)疑——發(fā)現(xiàn)問題,提出問題

  出示學生熟悉的一副三角尺,讓學生說說每塊三角尺中各個內(nèi)角的度數(shù)。試著計算每塊三角尺的三個內(nèi)角的度數(shù)加起來的和是多少度?

  交流:不同三角尺的內(nèi)角和都是一樣的嗎?三角尺的內(nèi)角和有什么特征?

  引導學生得出三角尺的三個內(nèi)角的度數(shù)和是180度。

  **:三角尺的形狀是什么三角形?三角尺的內(nèi)角和是180度,我們還可以說成是什么?(得出結論:直角三角形的內(nèi)角和是180度。)

  你有什么辦法驗證這一結論呢?(動手操作,尋找答案)

  方法一:拿出不同的直角三角形,分別測量三個內(nèi)角的度數(shù),再求和。(提示存在誤差,但三個內(nèi)角的和都在180度左右)

  方法二:用兩個相同的直角三角形拼成一個長方形,由于長方形的四個內(nèi)角和是360度,因此能得出一個直角三角形的三個內(nèi)角和是180度。

  啟發(fā):直角三角形的內(nèi)角和是180度,這一結論讓你聯(lián)想到了什么?你能提出什么新的數(shù)學問題呢?

  引導:從直角三角形的內(nèi)角和聯(lián)想到所有三角形的內(nèi)角和,提出問題:所有三角形的內(nèi)角和都是180度嗎?

  (二)探究——分析問題,解決問題

  出示三個三角形:直角三角形、銳角三角形和鈍角三角形。

  引導:直角三角形的內(nèi)角和是180度了,由此我們聯(lián)想到銳角三角形和鈍角三角形的內(nèi)角和也有可能是180度。

  **:你有什么辦法來驗證這一猜想呢?

  拿出事先從課本第113頁剪下來的3個三角形,動手操作,自主探索,發(fā)現(xiàn)規(guī)律。

  方法一:可以像上面那樣先測量每個三角形的三個內(nèi)角的度數(shù),再計算出它們的和,看看能發(fā)現(xiàn)什么規(guī)律。學生測量計算,教師巡視指導。

  引導:測量時要盡量做到準確,測量是存在誤差的,對于測量的不準的同學要重新測定和確認,計算出它們的和,發(fā)現(xiàn)其中的規(guī)律。

  方法二:既然是求三角形的內(nèi)角和,我們就可以想辦法把三角形的3個內(nèi)角拼在一起,看看拼成了什么角。那怎樣才能把3個內(nèi)角拼在一起呢?我們可以將三角形中的3個內(nèi)角撕下來,再拼在一起,會發(fā)現(xiàn)拼成了一個*角,是180度。

  方法三:把三角形的三個內(nèi)角撕下來,雖然能將他們拼在一起,但是原有的三角形被破壞了。因此,我們還可以通過折一折的方法,把三個內(nèi)角折過來拼在一起,同樣會發(fā)現(xiàn)拼成一個*角,是180度。

  方法四:將銳角三角形和鈍角三角形分別分成兩個直角三角形,利用直角三角形內(nèi)角和是180度進行推理。180+180=360度,360-90-90=180度。

  (三)歸納——獲得結論

  交流:回顧以上3個三角形的內(nèi)角和的探索過程,你發(fā)現(xiàn)了什么規(guī)律?

  總結:通過測量計算、拼一拼和折一折的方法,我們可以消除心中的問號,肯定得說出所有三角形的內(nèi)角和都是180度這一結論。

 。ㄋ模┩卣埂柟叹毩

  1、將一個大三角形剪成兩個小三角形,每個小三角形的內(nèi)角和是多少度?

  2、在一個三角形中,根據(jù)兩個內(nèi)角的度數(shù),求第三個內(nèi)角的度數(shù)?


《三角形的內(nèi)角和》教學設計10篇(擴展8)

——《三角形內(nèi)角和》優(yōu)秀的教學設計3篇

《三角形內(nèi)角和》優(yōu)秀的教學設計1

  【設計理念】

  新課標重視讓學生經(jīng)歷數(shù)學知識的形成過程,要求教師創(chuàng)設有效的問題情境激發(fā)學生的參與欲望,提供足夠的時間和空間讓學生經(jīng)歷觀察、猜測、驗證、交流反思等過程,使學生在動手操作、合作交流等活動中親身經(jīng)歷知識的形成過程。這樣,學生不僅可以掌握知識,而且可以積累探究數(shù)學問題的活動經(jīng)驗,發(fā)展空間觀念和推理能力。

  【教材內(nèi)容】新人教版義務教育課程標準實驗教科書四年級下冊數(shù)學第67頁例6、“做一做”及練習十六的第1、2、3題。

  【教材分析】

  三角形的內(nèi)角和是三角形的一個重要特征。本課是安排在三角形的概念及分類之后教學的,它是學生以后學習多邊形的內(nèi)角和及解決其它實際問題的基礎。教材很重視知識的探索與發(fā)現(xiàn),安排兩次實驗操作活動。教材呈現(xiàn)教學內(nèi)容時,不但重視體現(xiàn)知識的形成過程,而且注意留給學生充分進行自主探索和交流的空間和時間,為教師靈活**教學提供了清晰的思路。概念的形成沒有直接給出結論,而是通過量、拼等活動,讓學生探索、實驗、交流、推理歸納出三角形的內(nèi)角和是180°。

  【學情分析】

  1、在學習本課時,學生已經(jīng)有了探索三角形內(nèi)角和的知識基礎:知道直角和*角的度數(shù),會用量角器度量角的度數(shù);認識長方形、正方形,知道他們的四個角都是直角;認識了三角形,知道了三角形按角分有銳角三角形、直角三角形和鈍角三角形;已經(jīng)知道了等腰三角形和正三角形。

 。、已經(jīng)有一部分學生知道了三角形內(nèi)角和是180°,只是知其然而不知所以然。

  【教學目標】

  1、通過“量、剪、拼”等活動發(fā)現(xiàn)、驗證三角形的內(nèi)角和是180°,并能運用這個知識解決一些簡單的問題。

  2、在觀察、猜想、操作、合作、分析交流等具體活動中,提高動手操作能力,積累基本的數(shù)學活動經(jīng)驗,發(fā)展空間觀念和推理能力。

  3、在參與數(shù)學學習活動的過程中,獲得成功的體驗,感受數(shù)學探究的嚴謹與樂趣。

  【教學重點】

  探索發(fā)現(xiàn)、驗證“三角形內(nèi)角和是180°”,并運用這個知識解決實際問題。

  【教學難點】驗證“三角形的內(nèi)角和是180°”。

  【教(學)具準備】

  多**課件; 銳角三角形、直角三角形、鈍角三角形紙片若干個各類三角形(也包括等邊、等腰)、長方形、正方形若干個;每人一個量角器;一把剪刀;每人一副三角尺。

  【教學步驟】

  一、復習舊知 引出課題

  1、你已經(jīng)知道有關三角形的哪些知識?

  2、出示課題:三角形的內(nèi)角和

  設計意圖:也自然導入新課。

  二、提出問題 引發(fā)猜想

  1、提出問題:看到這個課題,你有什么問題想問的?

  預設:

 。1)三角形的內(nèi)角指的是哪些角?

 。2)三角形的內(nèi)角和是什么意思?

  (3)三角形的內(nèi)角一共是多少度?

  2、引發(fā)猜想

  猜一猜:三角形的內(nèi)角和是多少度?你是怎么猜的?

  設計意圖:提出一個問題比解決一個問題更重要。課始在復習三角形已學知識后,引導學生提出有關三角形的新問題,讓學生學習自己想研究的內(nèi)容,無疑激發(fā)了學生的學習興趣,培養(yǎng)了學生的問題意識。由于學生在*時使用三角板時已經(jīng)若隱若現(xiàn)地有了特殊的直角三角形的內(nèi)角和是180度這一感覺,因此本環(huán)節(jié),要求學生猜一猜三角形的內(nèi)角和是多少,并說說是怎么猜的,以激發(fā)學生已有知識經(jīng)驗,并體會到猜想要合理且有根據(jù),同時也為推理驗證的引出作必要的鋪墊。

  三、操作驗證 形成結論

  1、交流驗證方法:

  (1)用什么方法證明三角形的內(nèi)角和是180度呢?

  預設: ①量算法 ②剪拼法 ③折拼法等

 。2)三角形的個數(shù)有無數(shù)個,驗證哪些三角形可以**所有的三角形?我們的操作過程怎么分工才會做到省時又高效?

  2、動手驗證

  3、全班匯報交流

  4、小結:剛才通過大家的動手操作驗證了三角形的內(nèi)角和是180°度。但動手操作會存在一定的誤差,我們的結論也可能存在偏差。

  5、方法拓展

  推理驗證:用直角三角形的內(nèi)角和來證明其他三角形內(nèi)角和是180°的`方法。

  6、形成結論:任意三角形的內(nèi)角和是180°。

  設計意圖:《標準》指出:“教師應激發(fā)學生的積極性,向?qū)W生提供充分從事數(shù)學活動的`機會,幫助他們在自主探索和合作交流的過程中真正理解和掌握基本的數(shù)學知識與技能、數(shù)學思想和方法,獲得廣泛的數(shù)學活動經(jīng)驗!辈聹y后先**思考驗證的方法,再進行全班交流,給學生充分的活動時間和空間,讓學生動手操作,使學生在量、剪、拼、折等一系列操作活動中發(fā)現(xiàn)了三角形內(nèi)角和是180°這個結論。在探索活動前,交流如何使研究樣本具有**性和全面性與如何分工做到操作省時高效這兩個問題,培養(yǎng)學生嚴謹、科學正確的研究態(tài)度,讓學生在活動中積累基本的數(shù)學活動經(jīng)驗,為后續(xù)的學習提供了經(jīng)驗支撐。

  四、應用結論 解決問題

  1、鞏固新知:想一想,算一算。

  2、解決問題:等腰三角形風箏的頂角是多少度?

  3、辨析訓練,完善結論。

  五、課堂總結,歸納研究方法

  今天這節(jié)課你學到了哪些知識?你是怎樣得到這些知識的?

  六、課后延伸:用今天所學的方法繼續(xù)研究四邊形的內(nèi)角和。

  七、板書設計:

  三角形的內(nèi)角和

  猜測: 三角形的內(nèi)角和是180°?

  驗證: 量 拼

  結論: 任意三角形的內(nèi)角和是180°


《三角形的內(nèi)角和》教學設計10篇(擴展9)

——三角形的內(nèi)角和教學反思菁選

三角形的內(nèi)角和教學反思

  身為一名到崗不久的人民教師,我們的工作之一就是教學,通過教學反思可以有效提升自己的課堂經(jīng)驗,教學反思我們應該怎么寫呢?下面是小編幫大家整理的三角形的內(nèi)角和教學反思,希望對大家有所幫助。

三角形的內(nèi)角和教學反思1

  《三角形的內(nèi)角和》是青島版數(shù)學四年級下冊第四單元的一節(jié)課,是在學生學習了三角形的特征以及三角形分類的基礎上,進一步研究三角形三個角的關系。課堂上我注意留給學生充分進行自主探究和交流的空間,讓學生探索、實驗、發(fā)現(xiàn)、討論交流、推理歸納出三角形的內(nèi)角和是180°。

  一、創(chuàng)設情境,營造探究氛圍。

  怎樣提供一個良好的探究*臺,使學生有興趣去研究三角形內(nèi)角的和呢?這節(jié)課在復習舊知“三角形的特征”后,我引出了研究問題“三角形的內(nèi)角指的是什么?”“三角形的內(nèi)角和是多少?”。而畫一個有兩個內(nèi)角是直角的三角形卻無法畫出這一問題的出現(xiàn),使學生萌生了想了解其中奧秘的想法,激發(fā)了學生探究新知的欲望。由于學生對三角尺上每個角的度數(shù)比較熟悉,新知的探究就從這里入手。我先讓學生分別算出每塊三角尺三個內(nèi)角的和都是180°,由此引發(fā)學生的猜想:其它三角形的內(nèi)角和也是180°嗎?

  二、小組合作,自主探究。

  “是否任何三角形的內(nèi)角和都是180°呢?”,我趁勢引導學生小組合作,動手驗證。通過小組內(nèi)交流,使學生認識到可以通過多種途徑來驗證,可以量一量、撕一撕、拼一拼、折一折、算一算。在明確驗證方法后,學生在小組內(nèi)通過動手操作、記錄、觀察,驗證三角形的內(nèi)角和是否為180°。之后我**學生在全班匯報交流,有的小組通過量一量、算一算的方法,得出三角形的內(nèi)角和是180°或接近180°(測量誤差);有的小組通過撕一撕、拼一拼的方法發(fā)現(xiàn):各類三角形的三個內(nèi)角可以拼成一個*角。還有的`小組通過折一折、拼一拼的方法也發(fā)現(xiàn):各類三角形的三個內(nèi)角都可以拼成一個*角。此時我利用課件進行動態(tài)演示,在演示中進一步驗證,使學生在小組合作、自主探究、全班交流中獲得了三角形的內(nèi)角和的確是180°的結論。這一系列活動潛移默化地向?qū)W生滲透了“轉化”的數(shù)學思想,為后繼學習奠定了必要的基礎。

  三、練習設計,由易到難。

  探究新知是為了應用,這節(jié)課在練習的安排上,我注意把握練習層次,共安排三個層次,由易到難,逐步加深。在應用“三角形的內(nèi)角和是180°”這一結論時,第一層練習是已知三角形兩個內(nèi)角或一個內(nèi)角的度數(shù),求另一個角。練習內(nèi)容的安排從知識的直接應用到間接應用,數(shù)學信息的出現(xiàn)從比較顯現(xiàn)到較為隱藏。第二層練習是判斷題,讓學生應用結論思考分析,檢驗語言的嚴密性。第三層練習是讓學生用學過的知識解決四邊形、六邊形的內(nèi)角和,使學生的思維得到拓展。這些練習顧及到了智力水*不同的學生,形式上具有趣味性,激發(fā)了學生主動解題的積極性。

  這節(jié)課我不斷創(chuàng)設問題情境,讓學生去猜想、去探究、去發(fā)現(xiàn)新知識的奧妙,從而讓學生在動手操作、積極探索的活動中掌握知識,積累數(shù)學活動經(jīng)驗,發(fā)展空間觀念。

三角形的內(nèi)角和教學反思2

  三角形內(nèi)角和,是在學生認識了三角形的特點和分類的基礎上進一步對三角形內(nèi)角之間的關系的學習和探究。學生已經(jīng)掌握了三角形的概念、分類,熟悉了鈍角、銳角、*角這些角的知識。對于三角形的內(nèi)角和是多少度,學生是不陌生的,因為學生有以前認識角、三角形分類的基礎,學生也有提前預習的習慣,幾乎孩子們都能回答出三角形的內(nèi)角和是180度,在這個過程中孩子們知道了內(nèi)角的概念,但是他們卻不知道怎樣才能得出三角形的內(nèi)角和是180度。因此本節(jié)課我提出的研究的重點是:驗證三角形的內(nèi)角和是180度。

  本節(jié)課主要是學生在小組中合作探索,可以量一量、剪一剪、折一折。選擇一種或者幾種方法來驗證三角形的內(nèi)角和是180度,并運用所得的結論解決實際生活中的一些問題!讓學生進行實驗、動手操作、自主探索,使學生主動積極的`參加到數(shù)學活動中來!

  創(chuàng)設情境,營造研究氛圍。怎樣提供一個良好的學習*臺,使學生有興趣去研究三角形內(nèi)角的和呢?為此我以生活中與三角形相關的例子引入課題,之后學生由課題引出疑問 “三角形的內(nèi)角指的是什么?”“三角形的內(nèi)角和是多少?”然后讓學生根據(jù)圖形自己解答疑問。然后通過計算三角板上三角形的內(nèi)角和,引發(fā)學生的猜想:其他三角形的內(nèi)角和也是180°嗎?帶著這個疑問,讓學生小組合作探索,驗證。小組合作的時候,學生找到了三種方法,分別是量一量,剪一剪,折一折的方法。通過這三種方法驗證了 “三角形的內(nèi)角和是180°”的結論。然后將利用這一規(guī)律解決了剛開始的疑問。然后我給出三角形。再一次明確:不論三角形的大小如何變化,它的內(nèi)角和是不變的。

  在課堂上,我們要學會放手,輕松自己,發(fā)展學生。放手讓學生自己去思考去做,那怕他想錯了做錯了,只有這樣他們才有機會知道自己錯了錯在哪兒,給他們更**更廣闊的發(fā)展空間,也只有這樣才能喚起他們思考的欲望,也只有這樣才能揚起他們創(chuàng)造的風帆!

三角形的內(nèi)角和教學反思3

  整節(jié)課通過巧妙的設計,讓學生經(jīng)歷了觀察、發(fā)現(xiàn)、猜測、驗證、歸納、概括等數(shù)學活動,切實體現(xiàn)了新課程的核心理念“以學生為本,以學生的發(fā)展為本”。具體體現(xiàn)在以下幾個方面:

  1、精心設計學習活動,讓每一個學生經(jīng)歷知識形成的過程。

  為學生提供了豐富的結構化的學習材料,有各類的三角形、相同的三角形等,促使學生人人動手、人人思考,引導學生在**思考的基礎上進行合作與交流。在這一過程中發(fā)展學生的.動手操作能力、推理歸納能力,實現(xiàn)學生對知識的主動建構。

  2、立足長遠,注重長效,不僅關注知識和能力目標的落實,更注重數(shù)學思想方法的滲透。

  在驗證三角形內(nèi)角和是180度的過程中,有意識地引導學生認識到撕拼的驗證方法其實是把三角形的內(nèi)角和轉化成了*角,使學生對“轉化”的數(shù)學思想有所感悟;在對測量的結果出現(xiàn)不同答案的交流過程中,使學生認識到測量時會出現(xiàn)誤差,從而培養(yǎng)學生嚴謹?shù)、科學的學習態(tài)度和探究精神。

  3、遵循教材,不唯教材。

  本節(jié)課上,延伸了教材,拓寬了學生的知識面,把學生的學習置于更廣闊的數(shù)學文化背景中,激起了學生對數(shù)學的強烈興趣,激發(fā)了學生積極向上的學習情感。

  4、不足之處:

  學生在折紙驗證三角形的內(nèi)角和后匯報時,學生的表達不夠清楚,老師的引導不能及時跟進。再次教學中,要充分發(fā)揮學生的主體作用,適時地引導好學生思考,注重學生的實際操作,同時培養(yǎng)學生的語言表達能力。

三角形的內(nèi)角和教學反思4

  三角形的內(nèi)角和一課,知識與技能目標并不難,但我認為本節(jié)課更重要的,是通過自主探究與合作交流,使學生經(jīng)歷知識的形成過程,領悟轉化思想在解決問題中的應用,以及在探索過程中,培養(yǎng)學生實事求是、敢于質(zhì)疑的科學態(tài)度,同時,在不同方法的交流中,開拓思維、提升能力。基于以上里面,本節(jié)課,我也準備引導學生采用自主探究、動手實踐、猜想驗證、合作交流的學習方法,并在教學過程中談話激疑,引導探究;**討論,適時啟發(fā)幫助。使教法和學法****在“以學生的發(fā)展為本”這一教育目標之中。

  由于是借班上課,學生對于三角形了解的內(nèi)容還不夠多,所以我才用了直接導入的形式來進入新課,讓學生自己探討什么是三角形的內(nèi)角,三角形有幾個內(nèi)角,三角形的內(nèi)角和又是多少呢?來揭示內(nèi)角和內(nèi)角和的概念,學生明確了內(nèi)角與內(nèi)角和的概念,然后讓學生大膽的猜測,三角形的內(nèi)角和是多少,有的同學猜測是100度、90度、200度,但猜測不等于結論,在這里我追問大家猜測的依據(jù)是什么?同學們并沒有說出來,于是我引導大家怎樣才能知道他們的內(nèi)角和是多少呢,同學們想到了測量每個內(nèi)角是多少,然后再求和。我又追問:怎樣才能知道每個內(nèi)角是多少呢?于是同學們想到了量一量,這時讓同學們動手進行測量記錄數(shù)據(jù),但由于學生動手操作前教師沒有對操作步驟進行要求,導致同學們在測量時分不清測量的是哪一個角,我及時引導大家把每個內(nèi)角都標上序號,在進行測量,分別把他們測量的數(shù)據(jù)填寫的報告單當中,因為這樣導致了同學們測量的速度較慢,最終由于時間關系鈍角三角形的內(nèi)角和學生操作完成,在展示成果時沒有進行展示,同學們只得到了鈍銳角、直角三角形的內(nèi)角和是接近180度的。如果我能再給學生一點點時間,學生就可以完成了,以后教學中還是應該多多放手,給學生留有先足的動手空間和時間。

  我認為數(shù)學課不僅是解決數(shù)學問題,更重要的是思維方式的點拔,使數(shù)學思想的`種子播種在學生的頭腦中。由于在量一量、算一算的環(huán)節(jié)中,學生初驗證了三角形的內(nèi)角和接近180度的,于是引導學生由180度想到*角,讓學生探討交流:怎樣才能把一個三角形的三個內(nèi)角轉化*角。撕拼這一環(huán)節(jié)過程主要向?qū)W生展示滲透轉化的數(shù)學思想的教學目標。四年級學生在以往的數(shù)學學習過程中都積累了不少轉化的體驗,但在這種體驗基本上處于無意識狀態(tài),只有合理呈現(xiàn)學習素材,才能使學生對轉換策略形成清晰的認識。操作之初,一部分學生沒有明確操作目的,把三個不同的三角形的角拼在了一起,我在巡視的過程中發(fā)現(xiàn)了這一現(xiàn)象后,讓學生再次談操作要求,明確操作目標,之后引導學生如何把三個角從三角形分離出來,從而部分學生想到了撕拼法,一部分學生想到了折拼法,于是我請撕拼法的你同學**展示后,再讓用折拼法的同學展示他們的方法,并給予肯定和評價,至此教學目標基本完成,學生明確知道了:三角形的內(nèi)角和為180度。為了讓學生更深刻的理解這一結論,我設計了一變二,和二變一的圖形展示,使學生明確了所有三角形的內(nèi)角和都是180度,與形狀大小無關,如果時間充裕的話我想讓學生探一下,增加和減少的度數(shù)源于哪里。

  數(shù)學規(guī)律的形成與深化,不僅靠感知,還要輔以靈活、有趣、有層次的課堂訓練,已達到練習的有效性。對此,我設計了有層次的練習,但由于時間只有了30分鐘,這一部分沒有來得急提供給學生,可以說是這節(jié)課的遺憾之一。

  總之,本節(jié)課力圖學生通過自主探究、合作交流,讓學生充分經(jīng)歷知識的形成過程,讓學生學會數(shù)學、會學數(shù)學、愛學數(shù)學。在教學過程中,隨時會生成一些新的教育資源,課堂的生成大于課前的預設,如何有效的利用生成、有效的進行評價,是我該思考的問題,也是我今后課堂的努力方向。

三角形的內(nèi)角和教學反思5

  新課標把三角形的內(nèi)角和作為四年級下冊中三角形的一個重要組成部分,它是學生學習三角形內(nèi)角關系和其它多邊形內(nèi)角和的基礎。即使在以前沒有這部分內(nèi)容,大部分教師在課后也會告訴學生三角形的內(nèi)角和是180度,學生容易記住。因此讓學生經(jīng)歷研究的過程成了本節(jié)課的重點。既讓學生經(jīng)歷“再創(chuàng)造”----自己去發(fā)現(xiàn)、研究并創(chuàng)造出來。教師的任務不是把現(xiàn)成的東西灌輸給學生,而是引導和幫助學生去進行這種“再創(chuàng)造”的工作,最大限度調(diào)動其積極性并發(fā)揮學生能動作用,從而完成對新知識的構建和創(chuàng)造。

  本節(jié)課我基本達到了要求,具體表現(xiàn)在以下2個方面。

  1、為學生營造了探究的情境。學習知識的最佳途徑是由學生自己去發(fā)現(xiàn),因為通過學生自己發(fā)現(xiàn)的知識,學生理解的最深刻,最容易掌握。因此,在數(shù)學教學中,教師應提供給學生一種自我探索、自我思考、自我創(chuàng)造、自我表現(xiàn)和自我實現(xiàn)的實踐機會,使學生最大限度的投入到觀察、思考、操作、探究的活動中。上述教學中,我在引出課題后,引導學生自己提出問題并理解內(nèi)角與內(nèi)角和的概念。在學生猜測的基礎上,再引導學生通過探究活動來驗證自己的觀點是否正確。當學生有困難時,教師也參與學生的`研究,適當進行點撥。并充分進行交流反饋。給學生創(chuàng)造了一個寬松**的探究氛圍。

  2、充分調(diào)動各種感官動手操作,享受數(shù)學學習的快樂。在驗證三角形的內(nèi)角和是180度的過程當中,大部份同學都是用度量的方法,此時,我引導學生:180度是什么角?我們能否把三個內(nèi)角轉化一下呢?經(jīng)過這么一提示,出現(xiàn)了很多種方法,有的是把三個角剪下來拼成一個*角。有的用兩個大小相等的直角三角形拼成一個正方形,還有的是用折紙的方法,極大地調(diào)動了大腦,就連*時對數(shù)學不感興趣的學生也置身其中。

  總之,充分讓學生進行動手操作,享受數(shù)學學習的樂趣,是我這一節(jié)課的出發(fā)點,也是這一節(jié)課的最終歸宿。

  

三角形的內(nèi)角和教學反思6

  1、課堂教學要有預見性,更重視課堂生成性。

  教師對學生在課堂上可能出現(xiàn)的問題有一定的預見,教師才能設計出最適合本班學生的教案,才能更好地把握課堂動態(tài)。在這節(jié)課上,我讓學生猜三角形的內(nèi)角和,結果學生非常肯定的說是180度。還說不論什么樣的三角形內(nèi)角和都是180度。這時候與老師的預見是不同的。原本以為學生會猜出不同的結論的。但是付老師表現(xiàn)出了教學機智,他問,究竟是不是180度呢?你怎么證明呢?這進一步的**一下子把學生的思考的引向了課堂的中心所在。

  2、找準教師“導”與學生“行”的*衡點,關鍵詞是相信學生是能行的。

  滿堂灌的`課堂教學模式在新的教育理念的一輪輪沖擊下,逐漸被廣大教師在思想上摒棄,但是要真正實現(xiàn)教師變滿堂講為適時導,學生變“聽”為多方面“行”的課堂局面,還需要教師找準“導”與“行”的*衡點。

  本節(jié)課中,三角形的內(nèi)角和是180度這個結論很多同學早就知道了,但是這節(jié)課的目的很顯然不在于只教給學生結論,而是要通過學習活動,培養(yǎng)學生的動手能力,遇到問題努力求證的科學精神,和同學合作交流的能力,歸納推理判斷的能力。我認為這節(jié)課還可以放手更多一些,采取小組合作學習的方式,讓學生去實驗求證結論。在相互的爭辯中明晰概念。

  新的課程標準要求教師要根據(jù)孩子已經(jīng)具有的知識和生活經(jīng)驗,對受教育者進行有目的啟發(fā)和引導,把學生的好奇心轉化為求知欲,逐步形成穩(wěn)定的學習數(shù)學的興趣。教師要在課堂上以與生活密切聯(lián)系的素材來激起學生對數(shù)學本身的濃厚興趣,通過學生自主探索活動,讓學生獲得成功的體驗,增進學生學好數(shù)學會用數(shù)學的信心。通過課堂上學生的表現(xiàn),我們看出,學生有**探索的精神,也有去證明求知的能力,我們要的只是信任他們,設計好實驗方案,做好**,讓學生的操作、討論、練習等活動有條有理。真正讓學生成為學習的主人。

三角形的內(nèi)角和教學反思7

  1.機智,開放地吸納各種信息,善于捕捉教育契機,合理地調(diào)控自己的教學行為。

  2、教師的教學方式要適應學生的學習。新課程明確倡導動手實踐、自主探究、合作交流的學習方式。這就要求教師的角色,應當從過去知識的傳授者轉變?yōu)閷W生自主性、探究性、合作性學習活動的設計者和**者。在教學過程中,我給學生設置了一個開放的、面向?qū)嶋H的、富有挑戰(zhàn)性的問題情境,讓學生**、自主地去探究驗證其他學生已發(fā)現(xiàn)的知識,通過實驗、操作、表達、交流等活動,經(jīng)歷探究過程,獲得知識與能力,掌握解決問題的方法,獲得情感體驗。我想:只要我們堅持“為學習而設計”、“為學生的發(fā)展而教”,那么我們的課堂將會更加生機勃勃、充滿智慧的歡樂和創(chuàng)造的快意。

  3、讓每位學生都有所發(fā)展。這節(jié)課我進行了8次課堂巡視,其中4次參與學生的討論、交流,兩次分別對三名學困生進行重點輔導,巡視時關注面較廣,目的性明確。但在“個別學生課堂行為表現(xiàn)”的重點觀察中,一位學困生在前半節(jié)課**舉了兩次手,未被我關注,之后再沒舉過一次手。課后這位學生找到我問我原因。我與他進行了個別談話,問他為什么后半節(jié)課沒再舉手,回答是:“反正也不會**到我!睂W生的態(tài)度似乎有些不以為然,其實蘊含著不滿。說明我們教師在課堂中不應忽略個體差異、害怕問題暴露,相反應充分重視、關愛學困生,讓每位學生都有所發(fā)展。

  4、對數(shù)學學習的評價要做到既關注學生學習的結果,更要重視他們學習的`過程;要關注學生數(shù)學學習的水*,更要關注他們在數(shù)學活動中所表現(xiàn)出來的情感與態(tài)度,幫助學生認識自我,建立信心。對學生的精彩回答應予以熱情的肯定,促使學生的思維更加活躍。

  5、加強對學生的思維和方法的指導。創(chuàng)造一個好的數(shù)學問題情境,提供孩子們理解數(shù)學的模型和材料是教學設計活動中的第一步,但是要讓學生看到其中所蘊涵的數(shù)學觀念,作為教師不能讓這些數(shù)學活動只停留在表面。因此我鼓勵兒童進

三角形的內(nèi)角和教學反思8

  本節(jié)課的內(nèi)容一般作為講授內(nèi)容,只要告訴學生三角形的內(nèi)角和是180度,學生記住結論教學即可完成。問題是通過這個內(nèi)容的教學,我們要達到什么樣的教學目標?為了達到更高的目標我把本節(jié)課定為活動課,讓學生在玩中學,并從中學會學習知識的科學方法。

  課的一開始我就由兩個大小不同的三角形在爭論誰的內(nèi)角和大入手。在學生的認知結構中,對于這場爭論的結果是什么已經(jīng)沒有懸念了,但這樣的爭論會引發(fā)他們思考,為什么不同的三角形內(nèi)角和會一樣?是不是所有的三角形內(nèi)角和都一樣?這也正是我本節(jié)課要與學生共同研究的問題。這時學生想說為什么又不知怎么說,又因不知道怎么說而感情特別激動。處于這種狀態(tài)的學生***特別集中,學習興趣異常高漲,到了一觸即發(fā)的地步。于是我讓他們將課前準備好的三角形拿出來進行研究,體現(xiàn)學生的主體意識與參與意識。當學生通過折一折、拼一拼、撕一撕、畫一畫之后找到自己的驗證方法時,他們體驗了成功,也學會了學習。在這節(jié)課中我們共同找到了幾種驗證三角形內(nèi)角和是180°方法。學生們拿著他們手中的三角形,在講臺上講述自己的.驗證方法,雖然有的方法很不成熟,但也可以看出這個過程中,滲透了他們發(fā)現(xiàn)的樂趣。有的學生將三角形的三個角都撕下來拼接到一起,有的同學將三角形的三個角沿著三角形的中位線拼在一起。當孩子們正愉悅于自己的發(fā)現(xiàn)時,我適時提出:四邊形的內(nèi)角和是多少呢?五邊形的內(nèi)角和是多少呢?……N邊形的內(nèi)角和是多少呢?孩子們求知的欲望再一次被激發(fā),專注的研究著……當我進行**時,還沒有研究出方法的小組成員是那么用心的傾聽其他同學的發(fā)言。當有的同學說要將多邊形分割成學過的三角形進行研究時,他們發(fā)出贊嘆的聲音。于是我們進一步研究求多邊形內(nèi)角和的方法,他們從中體會到了探索的樂趣與成功的興奮;于是孩子們又發(fā)現(xiàn)多邊形外角和的奇妙之處,真是萬種變化定在其中。

  這節(jié)課下課后我自己都有一點興奮,因為我的孩子給了我意外的驚喜。但試想一下,如果我上課之初,就告訴孩子三角形的內(nèi)角和為180°,并且告訴孩子我的驗證方法,即便告訴的方法再多,再詳細,他們學到的也只是我的有限的方法,而且是老師的方法,不是自己發(fā)現(xiàn)的方法。但換一種教學方式,孩子們不但找到了所有我知道的方法,也找到了我意想不到的方法,我們大家在研究中都是受益者。也許沒有什么比這更讓人興奮的了。

三角形的內(nèi)角和教學反思9

  《三角形的內(nèi)角和》在學生學習了三角形的特征以及三角形分類的基礎上,進一步研究三角形三個角的關系。讓學生猜測-質(zhì)疑-驗證得出“三角形的內(nèi)角和等于180°”,引導學生觀察、實驗、猜測,逐步培養(yǎng)學生的邏輯推理能力。

  愛因斯坦說過:“問題的提出往往比解答問題更重要”,上課開始,我通過觀察長方形的內(nèi)角和連接對角線把它分成兩個直角三角形讓學生猜測三角形的內(nèi)角和是180°,然后質(zhì)疑:那是不是所有的三角形的內(nèi)角和都是180°呢?這個問題一拋出去馬上激發(fā)學生的學習

  熱情。接著就讓學生來驗證三角形的內(nèi)角和。驗證過程分兩部分來進行,先通過量一量、算一算的`方法讓學生驗證各類三角形的內(nèi)角和,一是加深對三角形內(nèi)角和的理解就是三個內(nèi)角的度數(shù)之和,二是讓學生在小組內(nèi)通過動手操作、記錄、觀察,驗證三角形的內(nèi)角和是否為180°。之后我**學生在全班匯報交流,沒有以小組的形式展示,給學生交流的空間太小沒有達到小組合作的真正目的。再讓學生通過拼一拼、折一折的方法來發(fā)現(xiàn)各類三角形的三

  個內(nèi)角都可以拼成一個*角,從而得出三角形的內(nèi)角和的確是180°的結論。匯報展示這個環(huán)節(jié)只是口頭敘述的形式描述驗證的結果,若先還原原圖,再展示驗證過程與結果效果更佳。

  探究新知是為了應用,這節(jié)課在練習的安排上,我注意把握練習層次,共安排三個層次,由易到難,逐步加深。第一層練習是已知三角形兩個內(nèi)角度數(shù),求另一個角。練習內(nèi)容的安排從知識的直接應用到間接應用,數(shù)學信息的出現(xiàn)從比較顯現(xiàn)到較為隱藏。第二層練習是判斷題,讓學生應用結論思考分析,檢驗語言的嚴密性。第三層是解決多種類型三角形的內(nèi)角問題,有等邊三角形、等腰三角形、直角三角形,根據(jù)自身特點來解決問題。

  本節(jié)課我采用逐步設置疑問,讓學生動手、動腦、動口,積極參與知識學習的全過程,滲透多觀察、動腦想、大膽猜、勤鉆研的研討式學習方法,培養(yǎng)學生學習數(shù)學的興趣,給學生提供更多的活動機會和空間,使學生在參與的過程中得到充足的體驗和發(fā)展。

三角形的內(nèi)角和教學反思10

  背景

  最近,張店區(qū)教研室舉行了“青年教師優(yōu)質(zhì)課”評選,我們學校有位剛畢業(yè)一年的年輕教師參加。經(jīng)過大家共同選教材、研究商量后,確定參評課題為“三角形的內(nèi)角和”。這是新實驗教材四年級下冊的內(nèi)容,從教材上看,教學內(nèi)容比較簡單,就是讓學生親自動手,通過量、剪、拼、折等方法推導出三角形內(nèi)角和是180°,會應用這一規(guī)律進行計算。很顯然,許多學生肯定有這樣的知識經(jīng)驗,每個班都有部分學生已經(jīng)能說出這一知識點。根據(jù)這樣的現(xiàn)狀我們讓年輕教師根據(jù)自己的理解先備課、設計教學思路,隨后我們進行了跟蹤聽課。

  試講教學片斷:

  創(chuàng)設情境,引入新知:

  教師先出示色彩鮮艷,用卡紙制作的學具:鈍角三角形、銳角三角形、直角三角形等,讓學生分辨,復**節(jié)課的內(nèi)容。學生回答的輕車熟路,感覺非常簡單。繼而教師拿出直角三角形,說道:“請大家畫出一個直角三角形!焙芸欤瑢W生便大功告成,舉起畫完的作品讓老師看。

  老師邊點頭邊露出贊許的微笑。接著提出第二個問題:“聰明的同學們,能不能畫出有‘兩個’直角的三角形呢?畫畫試試!睕]出5秒鐘,反應快的學生便脫口而出:“老師,畫不出來!”老師緊接追問:“為什么呢?”學生:“因為三角形的內(nèi)角和是180°,兩個直角就是180°了,畫不出第三個角了。所以畫不成三角形!睂W生說得太好了,老師趕緊接過了話題:“這位同學說三角形的內(nèi)角和是180°,你們知道嗎?”其他學生似乎還沒明白怎么回事,只好連忙點頭說知道。教師肯定的說:“是的,三角形的內(nèi)角和就是180°,我們怎么想辦法驗證一下呢?請大家想想辦法。”學生經(jīng)過很長時間的合作、探究,得出了三種辦法,全班交流匯報。練習分為基本練習和綜合練習兩個層次。學生計算的沒多大問題。最后一題是思維拓展練習:研究一下四邊形的內(nèi)角和?五邊形、六邊形的內(nèi)角和呢?多邊形呢?因時間的關系,無一人能夠想出策略。

  反思:

  教師創(chuàng)設情境采用的是給學生制造思維障礙的方法,讓學生畫出有“兩個”直角的三角形,欲擒故縱,有其果,學生肯定會究其因,同時,還能讓學生在體驗中,尋找數(shù)學的'真諦,此創(chuàng)設情境的方法真是妙哉。聽課時,我也為他這樣的設計感到高興,心想,一定能產(chǎn)生好的教學效果,但事實卻不是如此,學生一堂課顯得比較沉悶,只有部分好學生在迎合老師,學生并沒有充分的參與到數(shù)學學習中來。課后,我反復的思考,為什么會這樣呢?后來發(fā)現(xiàn)原因有以下幾點:

  一是因為教師在出示問題時,沒有把“兩個”直角三角形的“兩個”強調(diào)清楚,有許多學生沒有聽清要求;

  二是因為教師沒有留給學生充分的思考的時間,好學生反應快,答案脫口而出,其他學生思維還沒產(chǎn)生任何的碰撞,更沒經(jīng)歷實驗的過程。

  三是我們現(xiàn)在教育體制下的學生大都缺少質(zhì)疑權威的意識和習慣,顯得順從,沒有主張和個性。在好學生說出三角形的內(nèi)角和是180°后,其他學生對于這一知識點真正知道的有多少?但正因為是好學生的回答,在其他學生眼中,這是學習的權威啊,他說的肯定是對的,結果大家只有稀里糊涂的點頭附和,是的,三角形的內(nèi)角和是180度。

  在這一環(huán)節(jié)的教學中,很多學生就吃了夾生飯,根本沒有透徹的理解和掌握。看似精彩的情境創(chuàng)設,如果得不到教師適度的調(diào)控和把握,也煥發(fā)不出它應有的光彩。

  新課標指出:數(shù)學教學活動必須建立在學生的認知發(fā)展水*和已有的知識經(jīng)驗基礎之上。教師應激發(fā)學生的學習積極性,向?qū)W生提供充分從事數(shù)學活動的機會,幫助他們在自主探索和合作交流的過程中真正理解和掌握基本的數(shù)學知識與技能、數(shù)學思想和方法,獲得廣泛的數(shù)學活動經(jīng)驗。深刻的思考、仔細的推敲以上情境的創(chuàng)設,也不難發(fā)現(xiàn),它盡管有它的閃光點,但也有不足的地方,就是它的設計引入沒有從大部分學生的知識經(jīng)驗出發(fā),沒有照顧到全體,知道三角形內(nèi)角和是180°的學生畢竟是少數(shù),這也就是它沒能激發(fā)起學生學習欲望的原因所在。因此,在數(shù)學課堂教學中,我們要時刻注意發(fā)掘教材孕伏的智力因素,審時度勢,把握時機,因勢利導地為學生創(chuàng)造良好的教學情境 ,激發(fā)學生的興趣,讓學生在學習數(shù)學中愉快地探索。

  再者,最后一題,是在學習了三角形內(nèi)角和基礎上的拓展,任何多邊形都可以轉化為多個三角形來計算內(nèi)角和,學生無一人能夠想出辦法,仔細想想,是我們的題目出的太難,還是學生太笨呢?都不是,是我們教師的引導作用沒發(fā)揮出來,沒能激發(fā)起學生學習的內(nèi)部活力,也就無談學生的動手實驗、猜想、驗證。當然,學生的實驗、猜想、驗證能力的培養(yǎng)并不是一堂課的問題,而是朝朝夕夕,無聲無息的滲透。作為任何一個站在教學前沿的教師,我們都應有這樣的教學理念,讓自己的學生在數(shù)學學習中通過觀察、實驗、歸納、類比、推斷獲得數(shù)學猜想,體驗數(shù)學活動豐富的探索性和創(chuàng)造性,感受證明的必要性、證明過程的嚴謹性以及結論的確定性。

  再次實踐:

  經(jīng)過大家的共同評課和授課教師自己的反思,我們重新改變了創(chuàng)設情境的方法。

  師出示一正方形紙,問:這是一張(正方形)的紙,它有(4)個角,這4個角在數(shù)學里,我們給它一個名稱,把它叫做正方形的(內(nèi)角),而且每個內(nèi)角都是(直角),那么它的內(nèi)角和是多少度呢?為什么?

  生1:正方形的內(nèi)角和是360°,因為每個內(nèi)角都是90°,有4個內(nèi)角,就是4個90°,也就是360°。

  師:現(xiàn)在,我們把這個正方形紙沿著對角線剪開后會怎樣呢?

 。◣熝菔,并指導生拿出正方形紙折一折、剪一剪)

  生3:通過剛才的觀察與操作,我發(fā)現(xiàn)這樣沿對角線剪開后,得到了2個三角形,都是等腰直角三角形。

  師:誰來猜想一下其中的1個三角形的內(nèi)角和是多少度?

  生:通過剛才的觀察與操作,我發(fā)現(xiàn)三角形的內(nèi)角和是180°。因為正方形的內(nèi)角和是360°,沿對角線剪開后,等于把正方形*均分成了兩份,也就是把360°*均分成兩份,每份是180°,所以這個三角形的內(nèi)角和是180°。

  生:我發(fā)現(xiàn)三角形的內(nèi)角和是180°。因為沿正方形對角線剪開后,等于把正方形原來的直角*均分成了兩份,每份是45°,兩個45°加上90°就得到180°,所以我知道三角形的內(nèi)角和是180°!

  師:同學們猜的對不對呢?用什么辦法可以知道?

  生:驗證。

  師:對,需要經(jīng)過驗證。

 。ǚ中〗M對三角形進行驗證。看它的內(nèi)角和是不是180°)

  **學生匯報 (測量的同學邊匯報邊板書,剪拼的同學利用投影匯報。)

  生1:我們用量角器對3個角進行了測量,再分別把3個角的度數(shù)相加,得出了內(nèi)角和為360°。

  生2:我們將這個直角三角形的兩個銳角用量角器測量,把兩個銳角相加是90°,再加上直角的度數(shù),這樣我們知道直角三角形的內(nèi)角和是180°。

  生3:我們小組將三角形的兩個銳角剪下來,然后拼在一起組成了一個直角,再把另一個直角拿來拼在一起,這樣組成了*角,證實直角三角形的內(nèi)角和是180°。

  生4:我們是先將一個角折過來,使它頂點落在底邊上,再把另外兩個角也折過來,這樣三個角正好拼成一個*角,所以我們知道這個鈍角三角形的內(nèi)角和是180°。

三角形的內(nèi)角和教學反思11

  這節(jié)課以“觀察—猜想—驗證—應用”為主線,讓學生在自主學習中“不知不覺”地學習到新的知識。讓學生經(jīng)歷觀察,實驗,猜想,驗證等教學活動過程,培養(yǎng)他們的合情推理能力和初步的演繹推理能力,能有條理地,清晰地闡述自己的觀點。在學生猜測三角形內(nèi)角和是多少度的基礎上,引導學生通過探究活動來驗證自己的觀點是否正確,激發(fā)求知的渴望和學習的熱情,最后達成共識。

  我在本節(jié)課的教學中,通過猜想,驗證的`方法,引導學生思考,激發(fā)學生的學習興趣。

  學生在問題面前是退縮還是前進,要看教師如何有效德指引。我預先為每位學生準備了一些不同的三角形,讓他們經(jīng)歷觀察,實驗,猜想,驗證等教學活動過程,同時提出倆個問題:第一,你選用什么三角形,采用什么方法來驗證?第二,經(jīng)過操作得到了什么結論?學生分小組對大小不一的三角形進行驗證,經(jīng)歷量,拼,折等方法來操作,從而得到“三角形的內(nèi)角和是180度”這一結論。整個過程學生是自主的,積極的,通過操作,思考,反饋等過程真正經(jīng)歷了有效德探究活動。

三角形的內(nèi)角和教學反思12

  “三角形內(nèi)角和”是北師大版數(shù)學四年級下冊第二單元認識圖形的一節(jié)探索與發(fā)現(xiàn)課,使學生在學習了三角形的特征、高以及三角形分類的基礎上,進一步研究三角形三個角的關系。根據(jù)教學目標和學生掌握知識的情況,課堂上我圍繞以下幾點去完成教學目標:

  一、創(chuàng)設情境,營造研究氛圍。

  怎樣提供一個良好的研究*臺,使學生有興趣去研究三角形內(nèi)角的和呢?為此我拋出大、小兩個三角形爭吵的情境,讓學生評判誰說的對?為什么爭吵?導入課引出研究問題。“三角形的內(nèi)角指的.是什么?”“三角形的內(nèi)角和是多少?”激發(fā)學生求知的欲望,引起探究活動。我在導入“研究三角形內(nèi)角和”時,沒有按課前設計的進行,學生直接說出“三角形的內(nèi)角和是180°”。而我本身卻沒有順勢進行引導,直接拋出“研究三角形內(nèi)角和”這一任務,更巧妙的是借此機會鼓勵學生,以“驗證三角形內(nèi)角和是不是1800”入手。這一處成為本節(jié)課最大的失誤。

  二、小組合作,自主探究。

  “是否任何三角形內(nèi)角和都是180°”,如何驗證,這正是小組合作的契機。通過小組內(nèi)交流,使學生認識到可以通過多種途徑來驗證,可以量一量、拼一拼、折一折,讓學生在小組內(nèi)完成從特殊到一般的研究過程。然后再小組匯報研究結果以及存在問題。例如,有些小組的學生量出內(nèi)角和的度數(shù)要高于180°或低于180°,先讓學生說一下有哪些因素會影響到研究結果的準確性。

  三、練習設計,由易到難。

  研究是為了應用,在應用“三角形內(nèi)角和是180°”這一結論時,第一層練習是已知三角形兩個內(nèi)角的度數(shù),求另一個角。第二層練習是判斷題,讓學生應用結論檢驗語言的嚴密性。第三層練習是讓學生用學過的知識解決四邊形、五邊形、六邊形的內(nèi)角和。練習設計**體現(xiàn)開放性,“你還知道了什么”,讓學生根據(jù)計算結果運用已有經(jīng)驗去判斷思索。

  四、教學中存在不足。

  在教學中,由于我對學生了解的不夠充分,沒有很好的電動學生發(fā)言的積極性,另外的原因是教師本身語言枯燥,過渡語設計的不夠精彩,也影響了學生的學習興趣,以后應引起重視。在設計教案時要了解學生,深入教材,精心設計。

三角形的內(nèi)角和教學反思13

  1、情境的創(chuàng)設

  課伊開始讓學生猜角游戲,這時學生對三角形的三個角的'關系產(chǎn)生好奇。引發(fā)他們探究的欲望。再從他們熟悉的三角板出發(fā),聯(lián)系他們以有的知識說說,感覺一下。從而很快的進入新課。

  2、引導**思考和合作交流

  **思考是合作交流的前提,經(jīng)過**思考的合作才是有效的合作。在想辦法求三角形內(nèi)角和這一核心問題時,先給學生**思考的時間,再通過小組合作,剪一剪,折一折,拼一拼等方法去探求三角形內(nèi)角和的秘密。這樣學生在動手,動腦,動口的過程中全員參與學習過程,經(jīng)歷知識形成的過程。

三角形的內(nèi)角和教學反思14

  我執(zhí)教的《三角形內(nèi)角和》一課是人教版義務教育課程標準實驗教材四年級下冊第五單元的內(nèi)容,是在學生學習了《三角形的特性》以及《三角形三邊關系》,《三角形的分類》之后進行的,在此之后則是《圖形的拼組》,它是三角形的一個重要特征,也是掌握多邊形內(nèi)角和及解決其他實際問題的基礎,因此,學習和掌握三角形的內(nèi)角和是180°這一規(guī)律具有重要意義。

  教學是教師的教和學生的學所組成的一種教育活動。教師是教學活動的主導,教師自身教學素質(zhì)的高低,直接影響主導作用的發(fā)揮程度,制約著教學效果。一個成功的數(shù)學教師,不僅具有較高的教學藝術,更在于他的敬業(yè)精神,善于“取長補短”,遵循教學的科學性。教學實踐中,每一個教師既會有融教學科學與藝術相結合的佳作,也難免出現(xiàn)有失水準的拙課。通過課后教學反思自我總結,檢查教學過程的每一環(huán)節(jié),并加以實事求是的分析,正確對待教學的成功方面和不足之處,成功經(jīng)驗繼承發(fā)揚,欠缺甚至嚴重不足方面,及時查找原因,尋求補救對策,“亡羊補牢猶未為晚”。久而久之,有利于提高教學效率與質(zhì)量。同時,教師的“取長補短”的教風和敬業(yè)精神,還能啟迪學生的心靈,培養(yǎng)學生的良好品質(zhì)要充分認識到反思的重要性,不能為了反思,應付差事,要認識到反思是適應新課程的需要,促進自我發(fā)展的重要**和途徑,如果不對自己的教育教學行為進行思考,不對自己的教學經(jīng)驗進行總結,上完課不去重新審視、分析,很難提高自己教學水*。

  本節(jié)課的教學先通過三角形王國的小矛盾,讓學生角色扮演導入新課,激發(fā)學生學習興趣,進而引出“三角形內(nèi)角和是180度”的猜想,然后**學生自主探究、操作,在實踐中驗證猜想,得出結論。然后利用已學知識,解決相關問題。

  本節(jié)課學生學習積極性比較高,以下一些方面還是做得比較好的:

  教學設計環(huán)節(jié)緊湊,思路清晰。用了大量時間讓學生小組進行實踐操作,進行小組實驗,讓他們自己感知探索出三角形內(nèi)角和,注重了學生操作能力和小組合作探究能力的培養(yǎng)。

  1、用了量、算、拼,折各種不同的方法,讓學生從不同角度探索,發(fā)現(xiàn)思考,都可以得出三角形的內(nèi)角和是180°的結論。感受數(shù)學的嚴謹和魅力,也使得這個知識點的理解更加透徹。

  2、當完全放手讓學生實驗操作調(diào)整為要求明確以后,教師適當進行一些演示,如果學生還不能完成操作,則由教師完成,只要學生能夠拿著一個拼合好的圖形進行觀察,我就把課堂節(jié)奏掌控住,把他們的***引到定理的證明過程上,很好的完成教學目標。

  3、設計了不同層次的練習題,判斷題都是學生*時容易出錯的題目,在課堂用直觀的課件顯示出來,使學生印象深刻。然后逐步加深難度,到最后的思考題,使得不同層次的學生都學有所得。

  本堂課也還有很多問題值得我深思,改進:

  1、傳統(tǒng)的教育模式讓學生和老師都習慣于填鴨式的學習方法,學生總是被動的接受知識。讓學生自己實踐操作找結論,部分學生卻不知從何做起,沒有自己動腦主動學習的習慣。今后應加強學生自主思考能力的培養(yǎng)。

  在拼一拼的活動中,老師應該讓學生先把三個角標號,撕開后再拼。在拼成*角后要用量角器或者直尺測量一下,看拼的圖形是不是*角,要用嚴謹?shù)膽B(tài)度對待,而不能光憑眼睛來判斷。

  2、在進行拼、折活動時,部分學生不知道怎樣折成一個*角,撕開之后就找不到要拼的角的時候,老師就應當馬上去幫助,去指導。當學生體驗認知過程時,一定要讓他們感受學習的愉快,獲得成就感,只有這樣才能激發(fā)學生學習數(shù)的興趣,學好數(shù)學的信心。

  3、時刻要注意自己和學生語言、動作的規(guī)范,體現(xiàn)數(shù)學的嚴謹性。在學生讀題,回答問題的時候,要說出度數(shù)單位。在練習,書寫時也要注意度數(shù)單位,強調(diào)格式。

  由于是借班上課,對學生了解不夠,在課上沒能以學生為主,有的內(nèi)容完全可以交給學生講解,我沒能及時體察到這一點,效果不是很好,課堂氣氛沒能調(diào)動起來,一位老師說的好,公開課就是表演課,但主角應該是學生,老師只能做導演而不能替代學生的角色。上完課后,很多老師給了我許多寶貴的建議,比如:我上課時表情呆板于第三個練習題,講解不夠詳細,大部分學生估計沒聽懂,我沒能做到及時根據(jù)學生的表情、應答人數(shù)等細節(jié)及時調(diào)整講題的速度??,在聆聽諸位老師的點評時,有時讓我有種茅塞頓開的感覺,非常感謝各位老師的精彩點評。

  作為一名青年教師,我覺得教學是教師的教和學生的學所組成的一種教育活動。教師是教學活動的主導,教師自身教學素質(zhì)的高低,直接影響主導作用的發(fā)揮程度,制約著教學效果。一個成功的**教師,不僅具有較高的教學藝術,更在于他的敬業(yè)精神,善于“取長補短”,遵循教學的'科學性。教學實踐中,通過課后教學反思自我總結,檢查教學過程的每一環(huán)節(jié),并加以實事求是的分析,正確對待教學的成功方面和不足之處,成功經(jīng)驗繼承發(fā)揚,欠缺甚至嚴重不足方面,及時查找原因,尋求補救對策,“亡羊補牢猶未為晚”。久而久之,有利于提高教學效率與質(zhì)量。同時,教師的“取長補短”的教風和敬業(yè)精神,還能啟迪學生的心靈,培養(yǎng)學生的良好品質(zhì)要充分認識到反思的重要性,不能為了反思,應付差事,要認識到反思是適應新課程的需要,促進自我發(fā)展的重要**和途徑,如果不對自己的教育教學行為進行思考,不對自己的教學經(jīng)驗進行總結,上完課不去重新審視、分析,很難提高自己教學水*。

  教學過程中達到的預設的教學目的、良好的教學方法、我都會在課后記下來,供以后教學時參考使用,也可在此基礎上不斷改進、完善、推陳出新。同時對課堂教學中存在的疏漏失誤之處,也要對它們進行系統(tǒng)地回顧、梳理,作出深刻的反思、探究和剖析,使之成為今后再教學時的參考物,類式的錯誤不在發(fā)生。 我執(zhí)教的本節(jié)課在小組合作交流討論及評價等方式來**教學活動時,做得還不夠,收放得不夠自如,同學也沒有完全養(yǎng)成良好的行為習慣,不能高質(zhì)量地完成某些教學環(huán)節(jié),但是,我覺得一個成功的好老師就是要在教學上敢于突破和創(chuàng)新,我應該大膽放手讓學生去操作、去探索。

  葉圣陶先生曾經(jīng)說過:“教是為了不需要教,教師不但要教給學生知識,更要交給學生思維科學的學習方法!痹谒刭|(zhì)教育**的今天,在新形勢下,作為一名青年教師,在指導學生如何更好的學**,還任重道遠。但我會堅持以對學生負責為中心,不斷學習先進的教學理念和育人方法,不斷學習反思,在反思中不斷提高,并結合課堂教學實踐,為追求高效課堂而不斷完善自我。相信“雄關漫道真如鐵,而今邁步從頭越”,我會在今后的教學崗位上,“路漫漫其修遠兮,吾將上下而求索”。

  

三角形的內(nèi)角和教學反思15

  一、教材分析

  三角形的內(nèi)角和這堂課的內(nèi)容中心的知識點是一句話:三角形的內(nèi)角和是180度。學生很容易掌握。但是,三角形的內(nèi)角和為什么是180度,教材采用了觀察三角板,引導學生提出疑問:是不是所有的三角形內(nèi)角和都是180度,進而用三種不同類型的三角形折一折,驗證出這個結論。可以說,教材本身的編排就是讓學生在動手操作中自主得出結論,而不是死記硬背。

  一、操作盲點

  在教學中,我按照教材的意圖,引導學生動手操作推導出三角形的內(nèi)角和。讓我感到遺憾的是,許多學生不知道如何去折三角形,以巡視的過程中,發(fā)現(xiàn)了許多錯誤的折法。我想,這一環(huán)節(jié)采用小組合作的形式也許會更好。但是小組合作有時候也會流于形式,不利于一些中下等學生自主思考。在小組合作這一形式的運用上,想達到效果真的是很難以把握的事情。

  三、語言表達

  不過,讓我感到高興的事,這一段時間一直在做的事情終于有了一點頭緒,這一學期來,我一直在注重讓學生用語言表達出自己的思想,昨天在課上,我發(fā)現(xiàn)有一些學生很愿意去說,而且說出來話的還是蠻有一點數(shù)學語言的味道的。譬如想想做做第1題,求一個直角三角形中一個銳角的度數(shù)時,大部分學生是用90度去減的,我問了一個為什么?有學生當即就說:是因為直角三角形另外兩個銳角的和加起來是90度,所以只要用90度去減就可以了。很簡單的一句話,讓我很有成功感,因為出自學生的口中,我班上是這樣一種情況,大多數(shù)學生會做但是卻不愿意用語言去表達,而我一向認為,語言是思維的外殼,不說如何能表達自己的思想,大膽自信地表達自己的語言,對自己的性格也是一種很好的訓練。所以強調(diào)一定要去說。經(jīng)過一段時間的強調(diào),終于初見希望。真是心情很好。

  今天講了三角形的內(nèi)角和,因為有些學生已經(jīng)知道了三角形的內(nèi)角和是180度,而且為了使課上生動我故意沒有讓他們課前預習。當我揭示課題后,學生中有幾位按捺不住激動,小聲嘀咕是180度。我于是順勢**,同意他們的意見的舉手,一半以上的學生不約而同舉起了手。我說到底是不是呢?你們有什么辦法可以去驗證。我讓他們拿出課前準備的.三角形,小組討論后動手驗證。經(jīng)過巡視發(fā)現(xiàn)所有的小組都想到了通過量出各個三角形的內(nèi)角再計算出內(nèi)角和來驗證的。我讓他們再想想有沒有別的方法可以驗證出三角形的內(nèi)角和是180度的?上е挥袃蓚小組通過動手折一折來驗證的,在他們的演示后我在黑板上的三角形上板書出各個角的度數(shù)及三只角的度數(shù)和的算式。同時我讓他們對直角三角形的內(nèi)角和等式進行觀察,他們發(fā)現(xiàn)了其中的兩個銳角和總是90度。我**通過折我們把三角形的三只內(nèi)角拼在一起組成一個*角,還有沒有其他辦法也可以把三只角拼一拼的,可惜沒有一個同學想到把三只角撕下來拼的。以前教的時候好像學生想到的方法比現(xiàn)在的學生多,這讓我很難過和想不通。是不是我*時的教學沒有最大程度地調(diào)動起學生的學習激情?是不是我*時的教學有過于急而沒有給學生足夠的時間思考?是不是我*時總有越俎代庖的現(xiàn)象?……可是我覺得*時我還是就最大程度注意到這些的,看來教學的確是值得我們永久去實踐、探索的。


《三角形的內(nèi)角和》教學設計10篇(擴展10)

——《三角形的內(nèi)角和》教學設計菁選

《三角形的內(nèi)角和》教學設計

  作為一名無私奉獻的老師,就不得不需要編寫教學設計,教學設計把教學各要素看成一個系統(tǒng),分析教學問題和需求,確立解決的程序綱要,使教學效果最優(yōu)化。教學設計要怎么寫呢?以下是小編整理的《三角形的內(nèi)角和》教學設計,歡迎閱讀,希望大家能夠喜歡。

《三角形的內(nèi)角和》教學設計1

  設計思路

  遵循由特殊到一般的規(guī)律進行探究活動是這節(jié)課設計的主要特點之一。學生對三角尺上每個角的度數(shù)比較熟悉,就從這里入手。先讓學生算出每塊三角尺三個內(nèi)角的和是180°,引發(fā)學生的猜想:其它三角形的內(nèi)角和也是180°嗎?接著,引導學生小組合作,任意畫出不同類型的三角形,用通過量一量、算一算,得出三角形的內(nèi)角和是180°或接近180°(測量誤差),再引導學生通過剪拼的方法發(fā)現(xiàn):各類三角形的三個內(nèi)角都可以拼成一個*角。再利用課件演示進一步驗證,由此獲得三角形的內(nèi)角和是180°的結論。這一系列活動潛移默化地向?qū)W生滲透了“轉化”數(shù)學思想,為后繼學習奠定了必要的基礎。

  最后讓學生運用結論解決實際問題,練習的安排上,注意練習層次,共安排三個層次,逐步加深。練習形式具有趣味性,激發(fā)了學生主動解題的積極性。第一個練習從知識的直接應用到間接應用,數(shù)學信息的出現(xiàn)從比較顯現(xiàn)到較為隱藏。這些題檢測不同層次的學生是否掌握所學知識應該達到的基本要求,顧及到智力水*發(fā)展較慢和中等的同學,第3個練習設計了開放性的練習,在小組內(nèi)完成。由一個同學出題,其它三個同學回答。先給出三角形兩個內(nèi)角的度數(shù),說出另外一個內(nèi)角。有唯一的答案。訓練多次后,只給出三角形一個內(nèi)角,說出其它兩個內(nèi)角,答案不唯一,可以得出無數(shù)個答案。讓學生在游戲中消除疲倦激發(fā)興趣,拓展學生思維。兼顧到智力水*發(fā)展較快的同學。在整個教學設計中,本著“學貴在思,思源于疑”的思想,不斷創(chuàng)設問題情境,讓學生去實驗、去發(fā)現(xiàn)新知識的奧妙,從而讓學生在動手操作、積極探索的活動中掌握知識,積累數(shù)學活動經(jīng)驗,發(fā)展空間觀念和推理能力。

  教學目標

  1、讓學生親自動手,通過量、剪、拼等活動發(fā)現(xiàn)、證實三角形內(nèi)角和是180°,并會應用這一知識解決生活中簡單的實際問題。

  2、讓學生在動手獲取知識的過程中,培養(yǎng)學生的創(chuàng)新意識、探索精神和實踐能力。并通過動手操作把三角形內(nèi)角和轉化為*角的探究活動,向?qū)W生滲透“轉化”數(shù)學思想。

  3、使學生體驗成功的喜悅,激發(fā)學生主動學習數(shù)學的興趣。

  教材分析

  三角形的`內(nèi)角和是三角形的一個重要特征。本課是安排在學習三角形的概念及分類之后進行的,它是學生以后學習多邊形的內(nèi)角和及解決其它實際問題的基礎。學生在掌握知識方面:已經(jīng)掌握了三角形的分類,比較熟悉*角等有關知識;能力方面:經(jīng)過三年多的學習,已具備了初步的動手操作能力和主動探究能力以及合作學習的習慣。

  因此,教材很重視知識的探索與發(fā)現(xiàn),安排了一系列的實驗操作活動。教材呈現(xiàn)教學內(nèi)容時,不但重視體現(xiàn)知識的形成過程,而且注意留給學生充分進行自主探索和交流的空間,為教師靈活**教學提供了清晰的思路。概念的形成沒有直接給出結論,而是通過量、算、拼等活動,讓學生探索、實驗、發(fā)現(xiàn)、討論交流、推理歸納出三角形的內(nèi)角和是180°。

  教學重點

  讓學生經(jīng)歷“三角形內(nèi)角和是180°”這一知識的形成、發(fā)展和應用的全過程。

  教學準備

  多**課件、學具。

  教學過程

  一、激趣引入

  (一)認識三角形內(nèi)角

  師:我們已經(jīng)認識了什么是三角形,誰能說出三角形有什么特點?

  生1:三角形是由三條線段圍成的圖形。

  生2:三角形有三個角,……

  師:請看屏幕(課件演示三條線段圍成三角形的過程)。

  師:三條線段圍成三角形后,在三角形內(nèi)形成了三個角,(課件分別閃爍三個角及的弧線),我們把三角形里面的這三個角分別叫做三角形的內(nèi)角。(這里,有必要向?qū)W生直觀介紹“內(nèi)角”。)

 。ǘ┰O疑,激發(fā)學生探究新知的心理

  師:請同學們幫老師畫一個三角形,能做到嗎?(激發(fā)學生主動學習的心理)

  生:能。

  師:請聽要求,畫一個有兩個內(nèi)角是直角的三角形,開始。(設置矛盾,使學生在矛盾中去發(fā)現(xiàn)問題、探究問題。)

  師:有誰畫出來啦?

  生1:不能畫。

  生2:只能畫兩個直角。

  生3:只能畫長方形。

  師(課件演示):是不是畫成這個樣子了?哦,只能畫兩個直角。

  師:問題出現(xiàn)在哪兒呢?這一定有什么奧秘?想不想知道?

  生:想。

  師:那就讓我們一起來研究吧!

 。ń沂久,巧妙引入新知的探究)

  二、動手操作,探究新知

 。ㄒ唬┭芯刻厥馊切蔚膬(nèi)角和

  師:請看屏幕。(播放課件)熟悉這副三角板嗎?請拿出形狀與這塊一樣的三角板,并同桌互相指一指各個角的度數(shù)。(課件閃動其中的一塊三角板)

  生:90°、60°、30°。(課件演示:由三角板抽象出三角形)

  師:也就是這個三角形各角的度數(shù)。它們的和怎樣?

  生:是180°。

  師:你是怎樣知道的?

  生:90°+60°+30°=180°。

  師:對,把三角形三個內(nèi)角的度數(shù)合起來就叫三角形的內(nèi)角和。

  師:(課件演示另一塊三角板的各角的度數(shù)。)這個呢?它的內(nèi)角和是多少度呢?

  生:90°+45°+45°=180°。

  師:從剛才兩個三角形內(nèi)角和的計算中,你發(fā)現(xiàn)什么?

  生1:這兩個三角形的內(nèi)角和都是180°。

  生2:這兩個三角形都是直角三角形,并且是特殊的三角形。

 。ǘ┭芯恳话闳切蝺(nèi)角和

  1、猜一猜。

  師:猜一猜其它三角形的內(nèi)角和是多少度呢?同桌互相說說自己的看法。

  生1:180°。

  生2:不一定。

  ……

  2、操作、驗證一般三角形內(nèi)角和是180°。

 。1)小組合作、進行探究。

  師:所有三角形的內(nèi)角和究竟是不是180°,你能用什么辦法來證明,使別人相信呢?

  生:可以先量出每個內(nèi)角的度數(shù),再加起來。

  師:哦,也就是測量計算,是嗎?那就請四人小組共同研究吧!

  師:每個小組都有不同類型的三角形。每種類型的三角形都需要驗證,先討論一下,怎樣才能很快完成這個任務。(課前每個小組都發(fā)有銳角三角形、直角三角形、鈍角三角形,指導學生選擇解決問題的策略,進行合理分工,提高效率。)

  (2)小組匯報結果。

  師:請各小組匯報探究結果。

  生1:180°。

  生2:175°。

  生3:182°。

  (三)繼續(xù)探究

  師:沒有得到**的結果。這個辦法不能使人很信服,怎么辦?還有其它辦法嗎?

  生1:有。

  生2:用拼合的辦法,就是把三角形的三個內(nèi)角放在一起,可以拼成一個*角。

  師:怎樣才能把三個內(nèi)角放在一起呢?

  生:把它們剪下來放在一起。

  1、用拼合的方法驗證。

  師:很好,請用不同的三角形來驗證。

  師:小組內(nèi)完成,仍然先分工怎樣才能很快完成任務,開始吧。

  2、匯報驗證結果。

  師:先驗證銳角三角形,我們得出什么結論?

  生1:銳角三角形的內(nèi)角拼在一起是一個*角,所以銳角三角形的內(nèi)角和是180°。

  生2:直角三角形的內(nèi)角和也是180°。

  生3:鈍角三角形的內(nèi)角和還是180°。

  3、課件演示驗證結果。

  師:請看屏幕,老師也來驗證一下,是不是跟你們得到的結果一樣?(播放課件)

  師:我們可以得出一個怎樣的結論?

  生:三角形的內(nèi)角和是180°。

 。ń處煱鍟喝切蔚膬(nèi)角和是180°學生齊讀一遍。)

  師:為什么用測量計算的方法不能得到**的結果呢?

  生1:量的不準。

  生2:有的量角器有誤差。

  師:對,這就是測量的誤差。

《三角形的內(nèi)角和》教學設計2

  教學要求

  1、通過動手操作,使學生理解并掌握三角形的內(nèi)角和是180°的結論。

  2、能運用三角形的內(nèi)角和是180°這一規(guī)律,求三角形中未知角的度數(shù)。

  3、培養(yǎng)學生動手動腦及分析推理能力。

  教學重點

  三角形的內(nèi)角和是180°的規(guī)律。

  教學難點

  使學生理解三角形的內(nèi)角和是180°這一規(guī)律。

  教學用具

  每個學生準備銳角三角形、直角三角形、鈍角三角形紙片各一張,量角器。

  教學過程:

  一、出示預習提綱

  1、三角形按角的不同可以分成哪幾類?

  2、一個*角是多少度?1個*角等于幾個直角?

  3、如圖,已知∠1=35°,∠2=75°,求∠3的度數(shù)。

  二、展示匯報交流

  1、投影出示一組三角形:(銳角三角形、鈍角三角形、直角三角形)。三角形有幾個角?老師指出:三角形的這三個角,就叫做三角形的三個內(nèi)角。(板書:內(nèi)角)

  2、三角形三個內(nèi)角的度數(shù)和叫做三角形的內(nèi)角和。(板書課題:三角形的內(nèi)角和)今天我們一起來研究三角形的內(nèi)角和有什么規(guī)律。

  3、以小組為單位先畫4個不同類型的三角形,利用手中的工具分別計算三角形三個內(nèi)角的和各是多少度?

  4、指名學生匯報各組度量和計算的結果。你有什么發(fā)現(xiàn)?

  5、大家算出的三角形的內(nèi)角和都接近180°,那么,三角形的內(nèi)角和與180°究竟是怎樣的關系呢?就讓我們一起來動手實驗研究,我們一定能弄清這個問題的。

  6、剛才我們計算三角形的內(nèi)角和都是先測量每個角的度數(shù)再相加的。在量每個內(nèi)角度數(shù)時只要有一點誤差,內(nèi)角和就有誤差了。我們能不能換一種方法,減少度量的次數(shù)呢?

  提示學生,可以把三個內(nèi)角拼成一個角,就只需測量一次了。

  7、請拿出桌上的直角三角形紙片,想一想,怎樣折可以把三個角拼在一起,試一試。

  8、三個角拼在一起組成了一個什么角?我們可以得出什么結論?(直角三角形的內(nèi)角和是180°)

  9、拿一個銳角三角形紙片試試看,折的方法一樣。再拿鈍角三角形折折看,你發(fā)現(xiàn)了什么?(直角三角形和鈍角三角形的'內(nèi)角和也是180°)

  10、那么,我們能不能說所有三角形的內(nèi)角和都是180°呢?為什么?(能,因為這三種三角形就包括了所有三角形)11。老師板書結論:三角形的內(nèi)角和是180°。

  12、一個三角形中如果知道了兩個內(nèi)角的度數(shù),你能求出另一個角是多少度嗎?怎樣求?

  13、出示教材85頁做一做。讓學生試做。

  14、指名匯報怎樣列式計算的。兩種方法均可。

  ∠2=180°—140°—25°=15°

  ∠2=180°(140°+25°)=15°

  課后反思:

  對于三角形的內(nèi)角和,學生并不陌生,在*時的做題中已經(jīng)涉及到了?墒菍W生并不知道如何去驗證,所以本節(jié)課,重點讓孩子們經(jīng)歷體驗,感悟圖形。從而收獲了經(jīng)驗。特別是動手操作將三角形拼成一個直角時,有的孩子將角剪得非常小,很不好拼,在此進行了重點的提示。

《三角形的內(nèi)角和》教學設計3

  【教材分析】:

  新課標把三角形的內(nèi)角和作為第二學段中三角形的一個重要組成部分。本課是安排在三角形的特性及分類之后進行的,它是學生以后學習多邊形的內(nèi)角和及解決其它實際問題的基礎。教材所呈現(xiàn)的內(nèi)容,不但重視體現(xiàn)知識的形成過程,而且注意留給學生充分進行自主探索和交流的空間,安排了量一量、算一算和剪一剪、拼一拼兩個實驗操作活動,意圖使學生在動手操作、合作交流中發(fā)現(xiàn)并形成結論。

  【教學目標】

  知識與技能

  1.理解和掌握三角形的內(nèi)角和是180度。

  2.運用三角形的內(nèi)角和的知識解決實際問題。

  過程與方法

  經(jīng)歷三角形的內(nèi)角和的探究過程,體驗“發(fā)現(xiàn)——驗證——應用”的學習模式。

  情感態(tài)度與價值觀

  在學習活動中,滲透探究知識的`方法,提高學生學習的能力,培養(yǎng)學生的創(chuàng)新精神和實踐能力。

  【教學重點】

  重點:理解和掌握三角形的內(nèi)角和是180度。

  突破方法:引導學生用測量或剪拼的方法探究三角形的內(nèi)角和。合理猜想,測量驗證。

  【教學難點】

  用三角形的內(nèi)角和解決實際問題。

  突破方法:推理分析計算。運用推理,正確計算。

  教法:質(zhì)疑

  【教學方法】

  引導,演示講解。

  學法:實踐操作,小組合作。

  【教學準備】:

  多**課件,銳角,直角,鈍角三角形的硬紙片,剪刀。

  【教學時間】

  一課時

  【教學過程】

  一.創(chuàng)設情境,引入新課

  師:同學們,我們這倆天學習了三角形的分類,通過對角的分類,我們能夠分成幾類三角形?

  生:三類,分別為銳角三角形,直角三角形,鈍角三角形。

  師:嗯,真好,那么對邊的分類呢?

  生:倆類,分別為等腰三角形,等邊三角形。

  師:老師想讓同學們幫老師畫一個三角形,能做到嗎?

  生:能。

  師:請聽要求,畫一個有一個角是直角的三角形,開始。(學生動手操作)

  師:再來一個可以嗎?請聽要求,畫一個有倆個角是直角的三角形,開始。

  生:不能畫,因為當倆個角是90度的時候,倆個頂點在一條線上,不能組成封閉圖形。

  師:回答的真好,那么為什么會出現(xiàn)這種情況呢?是因為三角形中的角而引起的,那么同學們想不想知道其中的秘密呢?

  生:想。

  師:好,那么我們今天就一起來學習“三角形的內(nèi)角和”(出示板書)

 。ㄔO計意圖:通過學生的動手操作,發(fā)現(xiàn)問題所在,這樣更能調(diào)動學生的學習興趣,為了更好的學習這節(jié)課做鋪墊.)

  二.探究新知

  師:昨天呢,老師讓同學們一人做一個自己喜歡的三角形,請同學們拿出來,看一看你們做的是什么樣子的三角形。

  生1:銳角三角形。

  生2:直角三角形。

  生3:鈍角三角形。

  師:嗯,我們在上個星期學習了三角形的各部分名稱,誰能幫我告訴下同學們,角在哪里呢?

  生:里面的三個角,可以用角1,角2,角3來表示。

  師:嗯,這三個角我們也可以說成是三角形的內(nèi)角,好了,今天我們既然學習三角形的內(nèi)角和,也就是求成這三個角的度數(shù)和,你們猜一猜三角形內(nèi)角和的度數(shù)是多少呢?

  生:三角形的內(nèi)角和是180度。

  師:那么我們能不能一起用一些好的辦法來驗證一下呢?

  生1:我們可以用量角器分別量出這三個內(nèi)角的度數(shù),然后再加在一起就可以求出三角形內(nèi)角的和了。

  師:還有其他的辦法嗎?

  生2:我們可以用剪子剪下三個角,然后把它們拼在一起,看看這三個角拼在一起之后能夠呈現(xiàn)出什么樣子的角。

  生3:我可以用折的方法,把三個角的度數(shù)折在一起。

  師:同學們說的真好,既然有這么多的方法,到底哪個方法好呢?我們一起來研究一下,我把全班分成倆個小組,一隊用量的方法,一隊用拼的方法,看看哪個小組做的又對又快,開始。

  (設計意圖:通過學生的動手操作,合作交流,真正的把課堂還給學生,讓學生成為學習的主體,教師適時引導,突出學生的學習的能力與價值。)

  三.總結任意三角形的內(nèi)角和是180度并做適當練習。

  四.板書設計

  三角形的內(nèi)角和

  量一量銳角三角形:75度+48度+58度=181度

  直角三角形:90度+45度+45度=180度

  鈍角三角形:120度+38度+22度=180度

  拼一拼圖形呈現(xiàn)

  折一折圖形呈現(xiàn)

《三角形的內(nèi)角和》教學設計4

  一、教材分析

  “三角形內(nèi)角和”的度數(shù)推理是三角形中的一個重要環(huán)節(jié),也是“空間與圖形”領域中的重要內(nèi)容之一,為學生進一步理解三角形三個角、三條邊之間的關系打下基礎。本節(jié)課首先讓學生對三角形的特點進行復習,隨后教材中創(chuàng)設了一個有趣的動態(tài)情境,導入了新課,激發(fā)學生的興趣,明確“內(nèi)角和”的含義,然后引導學生探索三角形內(nèi)角和等于多少度,可以采用不同的方法驗證,教學中安排了3個活動,通過這3個活動體驗“三角形內(nèi)角和”的性質(zhì)和性質(zhì)的探索過程。

  二、學情分析

  有的學生可能從各種渠道已經(jīng)對“三角形內(nèi)角和是180°”有所了解,所以本課的重點是通過數(shù)學活動體驗,理解為什么三角形的內(nèi)角和是180°,使學生對這個知識的掌握更深刻。經(jīng)過不斷的課改實驗,孩子們已經(jīng)有了一定的自主探究、合作交流的能力。他們喜歡在實踐中感悟,在實踐中發(fā)表自己的見解,對數(shù)學產(chǎn)生了濃厚的興趣。

  1.知識方面:學生已經(jīng)掌握了三角形的概念、分類,熟悉了鈍角、直角、銳角、*角這些角的知識。

  2.能力方面:已具備了初步的'動手操作能力和探究能力,并且能夠進行簡單的計算機操作。

  三、教學方法

  滲透猜想——驗證——結論——應用——拓展

  教學目標:

  1、通過直觀操作的方法,探索并發(fā)現(xiàn)三角形三個內(nèi)角和等于180度,在實踐活動中,體驗探索的過程和方法

  2、能應用三角形內(nèi)角和的性質(zhì)解決一些簡單的問題。

  教學重點:

  經(jīng)歷三角形的內(nèi)角和是180°這一知識的形成、發(fā)展和應用的全過程,會應用三角形的內(nèi)角和解決實際問題;

  教學難點:

  是探索和驗證性質(zhì)的過程。

  四、教具學具

  三角板、量角器、剪刀、白紙

  五、教學過程

  (一)、激趣導入,揭示課題

  1、師:同學們,猜猜它是誰?

  形狀似座山,穩(wěn)定性能堅,三竿首尾連,學問不簡單 (打一幾何圖形)三角形(板書) 我們已經(jīng)認識了什么是三角形,誰能說出三角形有什么特點?生回答。(互相補充) (課件演示三條線段圍成三角形的過程)

  三條線段圍成三角形后,在三角形內(nèi)形成了三個角,(課件分別閃爍三個角及它的弧線),我們把三角形里面的這三個角分別叫做三角 形的內(nèi)角。

  2、現(xiàn)在,我們來玩一個跟三角形的角有關的游戲。只要大家說出三角形任意兩個角的度數(shù),老師就能猜出第三個角,你們相信嗎?

  要求每個4人小組拿出本組預先準備的學具袋。(內(nèi)含四個不同的三角形,包括直角、銳角和鈍角三角形至少各一個,且要求大小不一。)

  3、活動——量一量:每人任意拿出一個自己帶來的三角形,用量角器量出三角形中三個角的度數(shù),并寫在三角形中。(**完成,非小組合作。)

  然后分別請幾個學生報出不同三角形的兩個角的度數(shù),教師當即說出第三個角的度數(shù)。(事先向?qū)W生說明誤差僅為3、4度左右。)

  你們知道老師是怎么猜出來的嗎?

  到底它們之間有什么樣的秘密呢?我們今天這節(jié)課就要來揭開這個秘密。

  (二)、動手操作,探究新知

  1、探究特殊三角形的內(nèi)角和

  拿出兩個三角板,問:它們是什么三角形?(直角三角形)

  請大家拿出自己的兩個三角尺,在小組內(nèi)說說每一個三角尺上三個角的度數(shù),并求出這兩個直角三角形的內(nèi)角和。從剛才兩個三角形內(nèi)角和的計算中,你們發(fā)現(xiàn)了什么?

  (這兩個三角形的內(nèi)角和都是180°)。這兩個三角形都是直角三角形,并且是特殊的三角形。

  【設計意圖】三角板是學生非常熟悉的學習用具,度數(shù)也是非常清楚,通過計算學生熟悉的三角板內(nèi)角和來驗證這個結論,學生也容易接受。

  2、探究一般三角形內(nèi)角和

  (1)猜一猜。

  猜一猜其它三角形的內(nèi)角和是多少度呢?(可能是180°)

  (2)操作、驗證一般三角形內(nèi)角和是180°。

  所有三角形的內(nèi)角和究竟是不是180°,你能用什么辦法來證明?(可以先量出每個內(nèi)角的度數(shù),再加起來。)

  那就請小組共同計算吧!將學生采用分組的方法分成銳角三角形組、直角三角形組、鈍角三角形組、等腰三角形組,各組在白紙**意畫三角形,并量出每個內(nèi)角的度數(shù),計算三角形內(nèi)角和。由組長統(tǒng)計記錄員記錄各組的內(nèi)角和情況。

  (3)小組匯報結果。

  請各小組匯報探究結果。**:你們發(fā)現(xiàn)了什么?

  小結:通過測量計算我們發(fā)現(xiàn)每個三角形的三個內(nèi)角和都在180°左右。

  【設計意圖】學生任意畫的三角形,有大的、有小的,有各種類型的,不論是什么樣的三角形,學生都親自動手動筆算出內(nèi)角和。這個探索過程簡單學生又容易接受。

  3、操作驗證

  (1)動手操作,驗證猜測。

  沒有得到**的結果。這個辦法不能使人很信服,怎么辦?還有其它辦法嗎?請同學們動腦筋想一想,能通過動手操作來驗證嗎?(先小組討論,再匯報方法)

  (2)學生操作,教師巡視指導。

  (3)全班交流匯報驗證方法、結果。

  學生放在投影儀上展示給大家看。(剪拼、撕拼、折拼)

  我們可以得出一個怎樣的結論?(三角形的內(nèi)角和是180°)

  引導學生通過剪拼、撕拼和折拼的方法發(fā)現(xiàn):各類三角形的三個內(nèi)角都可以拼成一個*角,證實三角形內(nèi)角和確實是180° ,測量計算有誤差。

  【設計意圖】學生通過親自動手操作,將三角形的三個內(nèi)角剪拼成一個*角,形象、直觀地說明了“三角形內(nèi)角和是180度”這個結論。

  5、辨析概念,透徹理解。

  (出示一個大三角形)它的內(nèi)角和是多少度?

  (出示一個很小的三角形)它的內(nèi)角和是多少度?

  一塊三角尺的內(nèi)角和180°,兩塊同樣的三角尺拼成的一個大三角形的內(nèi)角和又是多少呢?(學生有的答360°,有的180°.)

  把大三角形*均分成兩份。每個小三角形的內(nèi)角和是多少度?(生有的答90° ,有的180° )這兩道題都有兩種答案,到底哪個對?為什么?(學生個個臉上露出疑問。)

  大家可以在小組內(nèi)用三角尺拼一拼,也可以畫一畫,互相討論。

  學生發(fā)現(xiàn): 三角形不論位置、大小、形狀如何,它的內(nèi)角和總是180°

  (三)小結

  剛才同學們用很多方法證明了無論是什么樣的三角形內(nèi)角和都是180°,現(xiàn)在讓我們用自豪的、肯定的語氣讀出我們的發(fā)現(xiàn):“三角形的內(nèi)角和是180°”。

  (四)、鞏固練習,拓展應用

  下面,我們就根據(jù)三角形內(nèi)角和的知識來解決一些相關的數(shù)學問題。(課件)

  1、求三角形中一個未知角的度數(shù)。

  在三角形中,已知∠1=85°,∠2=65°,求∠3。

  2、判斷

  (1)一個三角形的三個內(nèi)角度數(shù)是:90°、75°、25°。( )

  (2)一個三角形至少有兩個角是銳角。 ( )

  (3)鈍角三角形的內(nèi)角和比銳角三角形的內(nèi)角和大。 ( )

  (4)直角三角形的兩個銳角和等于90°。 ( )

  3、解決生活實際問題。

  (1)爸爸給小紅買了一個等腰三角形的風箏,它的一個底角是 70°,它的頂角是多少度?

  (2)交通警示牌“讓”為等邊三角形,求其中一個角的度數(shù)。

  4、拓展練習。

  利用三角形內(nèi)角和是180°,求出下面四邊形、六邊形的內(nèi)角和?(課件)

  小組的同學討論一下,看誰能找到方法。

  六、課堂總結

  通過這節(jié)課的學習,你有哪些收獲?

《三角形的內(nèi)角和》教學設計5

  教學內(nèi)容

  人教版小學數(shù)學第八冊第五單元第85頁例5

  任務分析

  教材分析: 《三角形的內(nèi)角和》是義務教育課程標準實驗教科書(數(shù)學)四年級下冊第五單元《三角形》中的一個教學內(nèi)容。這部分內(nèi)容是在學生學習了角的度量,角的分類,三角形的認識,三角形的分類的基上進行教學的。它是三角形的一個重要性質(zhì),有助于學生理解三角形的三個內(nèi)角之間的關系,也是進一步學習的基礎。教材通過實際操作,引導學生用實驗的方法探索并歸納出這一規(guī)律,即任意一個三角形,它的內(nèi)角和都是180度。教材在編寫上也深刻的體現(xiàn)出了讓學生探究的特點,通過動手操作探究發(fā)現(xiàn)三角形內(nèi)角和為180度。教學內(nèi)容的核心思想體現(xiàn)在讓學生經(jīng)歷猜想—驗證—結論的過程,來認識和體驗三角形內(nèi)角和的特點。

  學情分析:通過前面的學習,學生已經(jīng)掌握了三角形的一些基礎知識,會用工具量角、畫角,具備了探索三角形內(nèi)角和的知識與基礎技能。在四年級上冊《角的度量》的學習中,學生有接觸到兩把三角尺的內(nèi)角和是180°;并在相關的補充習題和數(shù)學練習冊的練習中,也有要求測量任意三角形的三個內(nèi)角的度數(shù)并求出它們的和的練習,很多學生已經(jīng)知道了三角形的內(nèi)角和是180°。但是要真正理解和掌握需要進行驗證,因此,學生在這節(jié)課上的主要任務是通過實驗操作驗證三角形的內(nèi)角和是180°。

  教學目標

  1、通過實驗、操作、推理歸納出三角形內(nèi)角和是180°。

  2、能運用三角形的內(nèi)角和是180°這一規(guī)律,求三角形未知角的度數(shù)并運用解決實際生活問題。

  3、通過拼擺,感受數(shù)學的轉化思想。

  教學重點

  探究發(fā)現(xiàn)和驗證“三角形的`內(nèi)角和180度”。

  教學難點

  驗證三角形的內(nèi)角和是180度。

  教學準備

  多**課件,銳角三角形、直角三角形、鈍角三角形,剪刀,量角器等。

  教學過程

  一、復習舊知,學習鋪墊

  1、一個*角是多少度?等于幾個直角?

  2、如下圖,已經(jīng)∠ 1=35°,∠2=78°,求∠3是多少度?

  二、探究新知,理解規(guī)律

  1、說明三角形的三個內(nèi)角和

  說出手中三角形的類型(銳角三角形,直角三角形,鈍角三角形)并說出三角形有幾個角?

  師(指出):三角形的這三個角叫做三角形的三個內(nèi)角,這三個內(nèi)角的度數(shù)和叫做三角形的內(nèi)角和。

  板書課題:“三角形的內(nèi)角和”。

  揭示課題:今天我們一起來探究三角形的內(nèi)角和有什么規(guī)律。

  2、探究三角形的內(nèi)角和規(guī)律

  探究1:量一量,算一算

  以小組為單位,用量角器計算出三種三角形的內(nèi)角和各是多少度?

  生討論匯報,并引導學生發(fā)現(xiàn):三角形的內(nèi)角和接近180°。

  師:三角形的內(nèi)角和接近180°,那它到底與180° 有怎樣的關系呢?

  學生預設:有學生可能會說出三角形的內(nèi)角和就是180°,這時老師可以**,為什么就是180°?我們要進行驗證,你有什么辦法呢?

  探究2:擺一擺,拼一拼

  引導:我們剛剛每個三角形都量了三次角,每一次度量都有誤差,所以量出來的內(nèi)角和有誤差。能不能換一種方法減少度量的次數(shù),減少誤差呢?

  生可能很難想到,可以提示學生:把三個內(nèi)角拼成一個角就只要量一次角。讓我們一起動手做一做

  如圖:

 。1)

  銳角的三個內(nèi)角拼成了一個*角,引導學生說出:銳角三角形的內(nèi)角和是180°.

 。2)

  讓學生小組合作用同樣的方法,發(fā)現(xiàn):直角三角形的內(nèi)角和也是180°.

  (3)

  讓學生**用同樣的方法,發(fā)現(xiàn):鈍角三角形的內(nèi)角和也是180°.

  引導學生歸納:三角形的內(nèi)角和是180°。

  是不是所有的三角形的內(nèi)角和都是180°呢? (是,因為這三類三角形包括了所有三角形。)

  板書:三角形的內(nèi)角和是180°

  三、鞏固練習,應用規(guī)律

  1、在一個三角形中,∠1=140°,∠3=25°,你能求出∠2的度數(shù)嗎?

  學生**完成,并說出原因:因為三角形的內(nèi)角和是180°,也就是∠1+∠2+∠3=180°,借助圖像

  ∠2 =180°-∠1-∠3 或 ∠2 =180°-(∠1+∠3)

  = 180°-140°-25° =180°-(140°+25°)

  =40°-25° =180°-165°

  =15° =15°

  2、一個等腰三角形的頂角是80°,它的兩個底角各是多少度?

  學生分析:因為等腰三角形的兩個底角相等,又因為三角形的內(nèi)角和是180°,所以

  (180°-80°)÷2

  =100°÷2

  =50°

  四、拓展練習,深化規(guī)律

  1、求出下面各角的度數(shù)。

 。1) (2)

  2、判斷

 。1)三角形任意兩個內(nèi)角的和大于第三個角。( )

  (2)銳角三角形任意兩個內(nèi)角的和大于直角。( )

 。3)有一個角是60°的等腰三角形不一定是等邊三角形。( )

  3、下面是兩塊三角形的玻璃打碎后留下的殘片,你知道它們原來各是什么三角形嗎?

  ( ) ( )

  五、課堂小結,分享提升

  1、談談這節(jié)課你有什么收獲?

  2、課后思考題

  三角形的內(nèi)角和是180°,那長方形、正方形的內(nèi)角和呢?(根據(jù)三角形的內(nèi)角和是180°求,參考課本88頁第12題,完成89頁16題)

  板書設計

《三角形的內(nèi)角和》教學設計6

  知識與技能

  1、通過小組合作,運用直觀操作的方法,探索并發(fā)現(xiàn)三角形內(nèi)角和等于180。能應用三角形內(nèi)角和的性質(zhì)解決一些簡單問題。

  2、經(jīng)歷親自動手實踐、探索三角形內(nèi)角和的過程,體會運用“量一量”、“算一算”、“拼一拼”、“折一折”進行驗證的數(shù)學思想方法,提高動手操作能力和數(shù)學思考能力。

  情感態(tài)度與價值觀

  3、使學生在數(shù)學活動中獲得成功的體驗,感受探索數(shù)學規(guī)律的樂趣。培養(yǎng)學生的創(chuàng)新意識、探索精神和實踐能力,在學生親自動手實踐和歸納中,感受理性的美。

  教學重點:

  1、探索和發(fā)現(xiàn)三角形三個內(nèi)角和的度數(shù)和等于180o。

  2、已知三角形的兩個角的度數(shù),會求出第三個角的度數(shù)。

  教學難點:

  已知三角形的兩個角的度數(shù),會求出第三個角的度數(shù)。

  方法與過程

  教法:主動探究法、實驗操作法。

  學法:小組合作交流法

  教學準備:小黑板、學生、老師準備幾個形狀不同的三角形、量角器。

  教學課時:1課時

  教學過程

  一、預習檢查

  說一說在預習課中操作的感受,應注意哪些問題,三角形的內(nèi)角和等于多少度? 組內(nèi)交流訂正。

  二、情景導入呈現(xiàn)目標

  故事引入。一天,大三角形對小三角形說:“我的個頭大,所以我的內(nèi)角和一定比你的大!毙∪切魏懿桓市牡卣f:“是這樣的嗎?”揭示課題,出示目標。產(chǎn)生質(zhì)疑,引入新課。

  三、探究新知 

  自主學習

  1、活動一、比一比2、活動二、量一量

 。1)什么是內(nèi)角?

 。2)如何得到一個三角形的內(nèi)角和?

  (3)小組活動,每組同學分別畫出大小,形狀不同的若干個三角形。分別量出三個內(nèi)角的度數(shù),并求出它們的和。

 。4)填寫小組活動記錄表。發(fā)現(xiàn)大小,形狀不同的每個三角形,三個內(nèi)角的度數(shù)和都接近度。

  3、說一說,做一做。

 。1)我們把三個角撕下來,再拼在一起,看一看會是怎樣的。

 。2)把三個角折疊在一起,,三個角在一條直線上。從而得到三角形三個內(nèi)角和等于()度。

  四、當堂訓練(小黑板出示內(nèi)容)

  1、三角形的內(nèi)角和是()°,一個等腰三角形,它的一個底角是26°,它的頂角是()。

  2、長5厘米,8厘米,()厘米的三根小棒不能圍成一個三角形。

  3、三角形具有()性。

  4、一個三角形中有一個角是45°,另一個角是它的2倍,第三個角是(),這是一個()三角形。

  5、按角的大小,三角形可以分為()三角形、()三角形、()三角形。

  6、交流學案第三題!∠**做,最后組內(nèi)交流。

  五、點撥升華

  任意三角形三個角的度數(shù)和等于180度。**思索小組交流總結方法教師點撥。

  六、課堂總結

  通過這節(jié)課的學習,你有什么新的收獲或者還有什么疑問?先小組內(nèi)說一說,最后班上交流。

  七、拓展提高

  媽媽給淘氣買了一個等腰三角形的風箏。它的頂角是40°,它的`一底角是多少? 先**做,最后組內(nèi)交流。

  板書設計:

  三角形的內(nèi)角和

  測量三個角的度數(shù)求和:結論:

  教學反思:三角形內(nèi)角和等于180°,對于大多數(shù)同學來說并不是新知識。因為在此之前學生已經(jīng)運用過這一知識。因此,我覺得這一堂課的重點不是讓學生記住這一結論,也不是怎樣運用它去解結問題。而是讓學生證明這一結論,即要讓學生親歷探索過程并在探索中驗證。在教學中,通過豐富的材料讓學生動手操作,通過量、撕拼、折拼等實驗活動,讓學生得到的不僅僅是三角形內(nèi)角和的知識,更重要的是學到了怎樣由已知知識探索未知的思維方式與方法,激發(fā)了他們主動探索知識的欲望。通過多種實驗進行操作驗證也讓學生明白了只要善于思考,善于動手就能找到解決問題的方法。

  當然,在教學中也還有一些不順利的地方,比如一些動手能力差的學生未能及時跟進,對于方法不對的學生未能及時指導和幫助等。但是本堂課采用這樣的方式展開教學是學生喜歡的也是有成效的。

《三角形的內(nèi)角和》教學設計7

  學情分析:

  學生已經(jīng)掌握了角的概念、角的分類和角的度量等知識。在本課之前,學生又掌握了三角形的穩(wěn)定性研究了三角形的分類。這些都為進一步研究三角形內(nèi)角和作了知識儲備和心理準備,為本課內(nèi)容的教學作了鋪墊。三角形的內(nèi)角和是三角形的一個重要性質(zhì)。它有助于理解三角形的三個內(nèi)角之間的關系,是進一步學習、研究幾何問題的基礎。

  教學目標:

  1、知識與技能:通過操作活動探索發(fā)現(xiàn)和驗證“三角形的內(nèi)角和是180度”的規(guī)律。

  2、過程與方法:通過量一量、剪一剪、拼一拼,培養(yǎng)學生的合作能力、動手實踐能力,并運用新知識解決問題的能力。

  3、情感態(tài)度:使學生體驗數(shù)學學***的喜悅,激發(fā)學生主動學習數(shù)學的興趣。

  教學重點:

  探索發(fā)現(xiàn)和驗證三角形的內(nèi)角和是180度。

  教學難點:

  對不同探究方法的指導和學生對規(guī)律的靈活應用。

  教具準備:

  教師準備:多**課件、不同類形大小不一的三角形若干個、記錄表

  學生準備:量角器、直尺、剪刀

  教學過程:

  一、激趣導入

  多**展示三角形

  出示謎語:形狀似座山,穩(wěn)定性能堅

  三竿首尾連,學問不簡單?????(打一圖形名稱)

  (預設:三角形)

  師:誰能介紹介紹三角形?

 。ㄉ1:三角形有三條邊、三個頂點、三個角。

  生2:三角形按角分類,分為鈍角三角形、銳角三角形、直角三角形。)

  師:你喜歡哪種三角形?(鈍角三角形、銳角三角形、直角三角形)

  師:同學們會畫三角形嗎?請你在練習本上畫一個你喜歡的三角形。

  師:鈍角、直角、銳角三角形三兄弟吵起來了?我們快去看一看。

  師:今天我們就來研究一下三角形的內(nèi)角和。

  二、學習目標

  1、通過動手操作,使學生理解并掌握三角形內(nèi)角和是180度的結論。

  2、能運用三角形的內(nèi)角和是180度這一規(guī)律,求三角形中未知角的度數(shù)。

  3、培養(yǎng)動手動腦及分析推理能力。

  三、自主學習(展示量角法)

  1.理解三角形的內(nèi)角、內(nèi)角和

 。1)板書展示三角形

  師:要想知道什么是三角形的內(nèi)角和,我們得先知道什么是三角形的內(nèi)角?(三角形里面的三個角都是三角形的內(nèi)角。)

  師:你能過來指指嗎?同意嗎?內(nèi)角有幾個?

  師:為了研究方便,我們把三角形的三個內(nèi)角分別標上∠1、∠2、∠3。

  師:你能像老師一樣把你的三角形標上∠1、∠2、∠3嗎?

 。2)三角形的內(nèi)角和

  師:什么是三角形的內(nèi)角和?

  (三角形三個角的度數(shù)的和,就是三角形的內(nèi)角和,即:∠1+∠2+∠3)

  師:就是把∠1+∠2+∠3加起來。

  師:根據(jù)我們以前的經(jīng)驗,我們怎么知道∠1、∠2、∠3的度數(shù)呢?(預設:用量角器量)

  師:請同學們拿出量角器,量一量你畫的三角形的三個內(nèi)角,并算出他們的和。(4分鐘)

  學生測量(1分40)匯報結果(5人)。

  教師填寫測量匯報單。

  師:觀察匯報的結果,你有什么發(fā)現(xiàn)?(所有三角形內(nèi)角和度數(shù)不一樣、三角形內(nèi)角和都在180度左右)

  四、合作探究

  師:這是同學們親自測量發(fā)現(xiàn)的,沒有得到**的結果,這個辦法不能使人信服,有沒有別的方法驗證?老師給每個小組都提供了很多個三角形,現(xiàn)在請你們以小組為單位,拿出三角形來研究研究三角形的內(nèi)角和到底是多少度。?(8分鐘)(剪拼法)

  1、操作驗證探索三角形內(nèi)角和的規(guī)律(6分鐘)

 。1)操作驗證:小組合作

  拿出裝有學具的信封[信封里面有老師為學生事先準備的各種類型的三角形若干個(小組之間的三角形大小都不同)];拿出自備的直尺?剪刀

 。ɡ蠋熞o學生充裕的時間,保證學生能真正地試驗,操作和探索,通過量一量、折一折、拼一拼、畫一畫等方式去探究問題。)

  2、學生匯報

  (1)轉化法:

  生:兩個同樣的直角三角形可以拼成一個長方形,長方形每個直角都是90度,內(nèi)角和就是360度,所以三角形的`內(nèi)角和就是360度的一半180度。

  師:他們用長方形的內(nèi)角和來研究今天所學的知識,得到三角形的內(nèi)角和是180度。

  (2)折拼法

  生:把三角形三個內(nèi)角分別向下邊折疊,拼成了一個*角,*角是180度,所以三角形的內(nèi)角和是180度。

  師:他們是用折拼法驗證三角形的內(nèi)角和是180度(動手能力真強)

 。3)剪拼法

  生:把三角形三個內(nèi)角撕下來,拼成一個*角,*角是180,所以三角形的內(nèi)角和是180度。(師:**怎樣能很快的找到三個角?把他們做上標記。)

  標記上之后再拼一拼,可見標記的方法很科學。(20分鐘)

  3、教師演示

  師:我們再來感受一下怎么驗證三角形的內(nèi)角和的?

  師:這是什么三角形?把他折一折。

  師:這是什么三角形?我們也可以把他折一折。你有什么發(fā)現(xiàn)?(折完以后都有一個*角,*角是180度,所以三角形的內(nèi)角和是180度)

  師分別通過剪拼法驗證直角三角形、鈍角三角形、銳角三角形內(nèi)角和。

  師:注意觀察。

  師:演示完畢有什么發(fā)現(xiàn)?(預設這些三角形剪接后都拼成了*角)*角是180度,所以三角形的內(nèi)角和是180度。

  師:剛剛我們研究了什么三角形。他們的內(nèi)角和都是180度,那我們研究的這些三角形能不能**所有的三角形,能。(因為三角形按角分類只能分成這三種。)(22分鐘)

  4、演示任意一個三角形的內(nèi)角和都是180度。

  出示一些三角形,讓學生指出內(nèi)角和。

  師:你有什么發(fā)現(xiàn)?(無論是什么樣的三角形他的內(nèi)角和都是180度,與三角形的形狀大小沒有關系。)(板書三角形的內(nèi)角和是180度。)

  師:那我們再看看剛剛匯報的結果。為什么之前測量的時候并沒有得到這樣得到結果呢?(測量的不夠精確,存在誤差)

  師:如果測量儀器再精密一些,測量的更準確一些都可以得到三角形內(nèi)角和是180度,F(xiàn)在確定這個結論了嗎?(25分鐘)

  師:除了這節(jié)課大家想到的方法,還有很多方法也能證明三角形的內(nèi)角和是180°到初中我們還有更嚴密的方法證明三角形的內(nèi)角和是180°。早在300多年前就有一位法國著名的科學家帕斯卡,他在12歲時就驗證了任何三角形的內(nèi)角和都是180°

  師:你們能用今天的發(fā)現(xiàn)做一些練習嗎?

  五、測評反饋

  1、判斷。

 。1)直角三角形的兩個銳角的和是90°。

 。2)一個等腰三角形的底角可能是鈍角。

 。3)三角形的內(nèi)角和都是180°,與三角形的大小無關。

  4、剪一剪。

  把一個三角形紙板沿直線剪一刀,剩下的紙板的內(nèi)角和是多少度?

  六、課后作業(yè)

  69頁第1題、第3題。

  七、板書設計

《三角形的內(nèi)角和》教學設計8

  【設計理念】

  新課標重視讓學生經(jīng)歷數(shù)學知識的形成過程,要求教師創(chuàng)設有效的問題情境激發(fā)學生的參與欲望,提供足夠的時間和空間讓學生經(jīng)歷觀察、猜測、驗證、交流反思等過程,使學生在動手操作、合作交流等活動中親身經(jīng)歷知識的形成過程。這樣,學生不僅可以掌握知識,而且可以積累探究數(shù)學問題的活動經(jīng)驗,發(fā)展空間觀念和推理能力。

  【教材內(nèi)容】新人教版義務教育課程標準實驗教科書四年級下冊數(shù)學第67頁例6、“做一做”及練習十六的第1、2、3題。

  【教材分析】

  三角形的內(nèi)角和是三角形的一個重要特征。本課是安排在三角形的概念及分類之后教學的,它是學生以后學習多邊形的內(nèi)角和及解決其它實際問題的基礎。教材很重視知識的探索與發(fā)現(xiàn),安排兩次實驗操作活動。教材呈現(xiàn)教學內(nèi)容時,不但重視體現(xiàn)知識的形成過程,而且注意留給學生充分進行自主探索和交流的空間和時間,為教師靈活**教學提供了清晰的思路。概念的形成沒有直接給出結論,而是通過量、拼等活動,讓學生探索、實驗、交流、推理歸納出三角形的內(nèi)角和是180°。

  【學情分析】

 。、在學習本課時,學生已經(jīng)有了探索三角形內(nèi)角和的知識基礎:知道直角和*角的度數(shù),會用量角器度量角的度數(shù);認識長方形、正方形,知道他們的四個角都是直角;認識了三角形,知道了三角形按角分有銳角三角形、直角三角形和鈍角三角形;已經(jīng)知道了等腰三角形和正三角形。

  2、已經(jīng)有一部分學生知道了三角形內(nèi)角和是180°,只是知其然而不知所以然。

  【教學目標】

  1通過“量、剪、拼”等活動發(fā)現(xiàn)、驗證三角形的內(nèi)角和是180°,并能運用這個知識解決一些簡單的問題。

  2.在觀察、猜想、操作、合作、分析交流等具體活動中,提高動手操作能力,積累基本的數(shù)學活動經(jīng)驗,發(fā)展空間觀念和推理能力。

  3.在參與數(shù)學學習活動的過程中,獲得成功的體驗,感受數(shù)學探究的嚴謹與樂趣。

  【教學重點】

  探索發(fā)現(xiàn)、驗證“三角形內(nèi)角和是180°”,并運用這個知識解決實際問題。

  【教學難點】驗證“三角形的內(nèi)角和是180°”。

  【教(學)具準備】

  多**課件; 銳角三角形、直角三角形、鈍角三角形紙片若干個各類三角形(也包括等邊、等腰)、長方形、正方形若干個;每人一個量角器;一把剪刀;每人一副三角尺。

  【教學步驟】

  一、復習舊知 引出課題

  1、你已經(jīng)知道有關三角形的哪些知識?

  2、出示課題:三角形的內(nèi)角和

  設計意圖:也自然導入新課。

  二、提出問題 引發(fā)猜想

  1、提出問題:看到這個課題,你有什么問題想問的?

  預設:(1)三角形的內(nèi)角指的是哪些角? (2)三角形的內(nèi)角和是什么意思?

 。3)三角形的內(nèi)角一共是多少度?

  2、引發(fā)猜想

  猜一猜:三角形的內(nèi)角和是多少度?你是怎么猜的?

  設計意圖:提出一個問題比解決一個問題更重要。課始在復習三角形已學知識后,引導學生提出有關三角形的新問題,讓學生學習自己想研究的內(nèi)容,無疑激發(fā)了學生的學習興趣,培養(yǎng)了學生的問題意識。由于學生在*時使用三角板時已經(jīng)若隱若現(xiàn)地有了特殊的直角三角形的內(nèi)角和是180度這一感覺,因此本環(huán)節(jié),要求學生猜一猜三角形的內(nèi)角和是多少,并說說是怎么猜的,以激發(fā)學生已有知識經(jīng)驗,并體會到猜想要合理且有根據(jù),同時也為推理驗證的引出作必要的鋪墊。

  三、操作驗證 形成結論

  1、交流驗證方法:

 。1)用什么方法證明三角形的內(nèi)角和是180度呢?

  預設: ①量算法 ②剪拼法 ③折拼法等

  (2)三角形的個數(shù)有無數(shù)個,驗證哪些三角形可以**所有的三角形?我們的操作過程怎么分工才會做到省時又高效?

  2、動手驗證

  3、全班匯報交流

  4、小結:剛才通過大家的動手操作驗證了三角形的內(nèi)角和是180 °度。但動手操作會存在一定的誤差,我們的結論也可能存在偏差。

  5、方法拓展

  推理驗證:用直角三角形的內(nèi)角和來證明其他三角形內(nèi)角和是180 °的方法。

  6、形成結論:任意三角形的內(nèi)角和是180 °。

  設計意圖:《標準》指出:“教師應激發(fā)學生的積極性,向?qū)W生提供充分從事數(shù)學活動的機會,幫助他們在自主探索和合作交流的'過程中真正理解和掌握基本的數(shù)學知識與技能、數(shù)學思想和方法,獲得廣泛的數(shù)學活動經(jīng)驗!辈聹y后先**思考驗證的方法,再進行全班交流,給學生充分的活動時間和空間,讓學生動手操作,使學生在量、剪、拼、折等一系列操作活動中發(fā)現(xiàn)了三角形內(nèi)角和是180°這個結論。在探索活動前,交流如何使研究樣本具有**性和全面性與如何分工做到操作省時高效這兩個問題,培養(yǎng)學生嚴謹、科學正確的研究態(tài)度,讓學生在活動中積累基本的數(shù)學活動經(jīng)驗,為后續(xù)的學習提供了經(jīng)驗支撐。

  四、應用結論 解決問題

  1、鞏固新知:想一想,算一算。

  2、解決問題:等腰三角形風箏的頂角是多少度?

  3、辨析訓練,完善結論。

  五、課堂總結,歸納研究方法

  今天這節(jié)課你學到了哪些知識?你是怎樣得到這些知識的?

  六、課后延伸:用今天所學的方法繼續(xù)研究四邊形的內(nèi)角和。

  七、板書設計:

  三角形的內(nèi)角和

  猜測: 三角形的內(nèi)角和是180°?

  驗證: 量 拼

  結論: 任意三角形的內(nèi)角和是180°

《三角形的內(nèi)角和》教學設計9

  教學目標:

  1、通過量、剪、拼、擺等直觀操作的方法,讓學生探索并發(fā)現(xiàn)三角形內(nèi)角和等于180度。

  2、在活動交流中培養(yǎng)學生合作學習的意識和能力,讓學生經(jīng)歷猜測探索總結的數(shù)學學習過程,在實驗活動中體驗探索的過程和方法。

  3、通過運用三角形內(nèi)角和的性質(zhì)解決一些簡單的問題,使學生體會數(shù)學與現(xiàn)實生活的聯(lián)系,體會到數(shù)學的價值,增加學生學數(shù)學的信心和興趣。

  教學重點:

  探索發(fā)現(xiàn)三角形內(nèi)角和等于180并能應用。

  教學難點:

  三角形內(nèi)角和是180的探索和驗證。

  教學過程:

  一、創(chuàng)設情境,提出問題

  師:大家喜歡猜謎語嗎?

  生:喜歡。

  師:下面請大家猜一個謎語(大屏幕出示形狀似座山,穩(wěn)定性能堅。三竿首尾連,學問不簡單。

 。ù蛞粠缀螆D形))

  生:三角形。

  師:三角形中都有哪些學問?

  生:三角形有三條邊,三個角,具有穩(wěn)定性。

  生:三角形按角分,可以分成銳角三角形、直角三角形、鈍角三角形。

  生:三角形按邊分,可以分成等腰三角形,不等邊三角形,其中等腰三角形又包含了兩條邊相等的三角形和等邊三角形。

  生:一個三角形中最多只能有一個直角,最多只能有一個鈍角,最少有兩個銳角。

  生:三角形的內(nèi)有和是180。

  生:(一臉疑惑)

  師:(板書:三角形的內(nèi)角和是180),你有什么疑惑? 生:什么是內(nèi)角?

  生:每個三角形的內(nèi)角和都是180嗎?

  (根據(jù)學生的問題,在三角形的內(nèi)角和是180后面加上一個?)

  二、自主探索,實踐驗證

  1、理解內(nèi)角 師:什么是內(nèi)角?

  生:我認為三角形的內(nèi)角就是指三角形的三個角。

  師:三角形的每個角都是三角形的內(nèi)角,每個三角形都有三個內(nèi)角。

  2、理解內(nèi)角和。

  師:那三角形的內(nèi)角和又是指什么?

  生:我認為三角形的內(nèi)角和就是把三角形的三個內(nèi)角的度數(shù)加起來的和。

  師:為了方便,我們將三角形的每個內(nèi)角編上序號1、2、3、我們叫它1、2、3,這三個角的度數(shù)和,就是這個三角形的內(nèi)角和。

  3、實踐驗證

  師:每個三角形的內(nèi)角和都是180嗎?用什么方法來驗證呢?

  生:量一量每個角的度數(shù),然后加起來看看是不是180。

  師:請大家拿出課前準備的三角形,親自量一量,算一算。(學生動手量一量)

  師:誰愿意把你的勞動成果和大家分享一下?

  生:我量的這個三角形的三個內(nèi)角的度數(shù)分別是60、60、60,加起來一共是180。

  師:這位同學量的是一個銳角三角形,并且是比較特殊的三角形等邊三角形。

  生:我量這個三角形的三個內(nèi)角的度數(shù)分別是45、45、90,加起來一共是180。

  師:這是我們?nèi)浅咧械囊粋,也比較特殊,是一個等腰直角三角形。

  生:我量的是三角尺中的另一個,三個內(nèi)角的度數(shù)分別是60、30、90,加起來一共是180 生:我量的是鈍角三角形,三個內(nèi)角的度數(shù)分別是85、60、38,加起來一共是183。

  師:你發(fā)現(xiàn)了什么?

  生:有的三角形的內(nèi)角和是180,而有的三角形的內(nèi)角和卻不是180。

  師:看來三角形的內(nèi)角和不一定是180。

  生:老師,測量會有誤差,量出來的不是很精確,那么求出來的結果也不夠精確。雖然不都是三個內(nèi)角加起來不都是180,但都接近180。

  生:都接近180就能說一定是180嗎?

  師:科學來不得半點虛假,看來這個是不能讓大家信服的。那還可以用什么方法來驗證呢?下面請同學們小組合作,發(fā)揮小組成員的智慧,充分利用大家的學具進行驗證,比一比哪些組的方法富有新意,開始!

  (學生在小組內(nèi)進行探索驗證。教師巡視,參與到學生的研究中)

  師:請每個小組選擇一個代言人,和大家分享一下你們的智慧。

  生:(邊展示邊交流)我們小組運用了折一折的方法,把三角形的三個內(nèi)角都向內(nèi)折,三個內(nèi)角就拼成了一個*角,也就是180,所以我們小組得出三角形的內(nèi)角和是180。

  師:你折的只是銳角三角形,只能證明銳角三角形的內(nèi)角和是180,直角三角形,鈍角三角形是不是也是這樣的?

  生:我們小組也有折的直角三角形,鈍角三角形。

 。ㄆ渌某蓡T展示不同的三角形)

  師:看這個小組的同學想問題多全面呀,不僅想到了用什么方法,還想到了用不同的三角形進行驗證,老師實在是佩服你們組的智慧,讓我們把掌聲送給他們!

  師:哪個小組和他們的方法不一樣?

  生:我們小組把三角形的三個內(nèi)角都撕了下來,拼在了一起,正好拼成了一個*角,也就是180。我們也實驗了不同的三角形,三個內(nèi)角都可以拼成*角,所以我們小組得出結論,三角形的內(nèi)角和是180。

  師:這個小組的方法簡便,易操作,很好。

  生:我們小組成員是這樣想的,一個長方形有4個直角,每個直角90,那么長方形的內(nèi)角和就是360,每個長方形都可以*均分成兩個直角三角形,每個直角三角形的'內(nèi)角和就是180。 師:你們小組很聰明,從長方形的內(nèi)角和聯(lián)想到直角三角形的內(nèi)角和是180,從不同的角度去思考問題,謝謝你為我們提供了這么好的方法!

  4、小結

  師:剛才同學們用量、折、剪、拼、計算、推理等這么多巧妙的方法得出了無論是什么樣的三角形的內(nèi)角和都是1800,你還有什么疑問嗎?

  生:沒有。

  師:(去掉問號)那就讓我們大聲地讀出來三角形的內(nèi)角和是1800。

  三、鞏固應用,加深理解

  1、說一說每個三角形的內(nèi)角和是多少度

  師:(出示一個大三角形)這個大三角形的內(nèi)角和是多少度?

  生: 180

  師:(出示一個小三角形)這個小三角形的內(nèi)角和是多少度?

  生:180

  師:(演示)把這兩個三角形拼在一起,拼成的大三角形的內(nèi)角和是多少度?

  生:180

  師:為什么每個三角形的內(nèi)角和是1800,而合起來還是180呢?另外那180去哪兒了?

  生:把兩個三角形拼成一個大三角形,兩個直角不再是大三角形的內(nèi)角,所以少了180

  師:(演示)把一個大三角形分成兩個三角形,每個三角形的內(nèi)角和是多少度?

  生:180

  2、求下面各角的度數(shù)

  師:如果老師告訴你一個三角形的兩個角的度數(shù),你能說出第三個角的度數(shù)嗎?

 。ǔ觯

  生:三角形內(nèi)角和是180,在第一個三角形中,用180-75-28,A=77

  生:用180-90-35,C =55。

  生:第二個三角形是直角三角形,B是直角,也可以直接用90-35=55。

  生:第三個三角形中,用180-20-45,B=115。

  3、一個等腰三角形的風箏,它的一個底角是70,它的頂角是多少度?

  生:等腰三角形的兩個底角相等,所以用180-70-70 4、

  師:三角形的內(nèi)角和在我們的生活中應用很廣泛,老師給大家?guī)硪粋在建筑中應用的例子。

  在設計這座大橋時,如果***將斜拉的鋼索與橋柱形成的夾角設計成了56,建筑師在造橋時怎樣才能確定鋼索與橋柱是否形成了這個角度?

  生:用量角器量一量

  師:量哪個角?量一量斜拉的鋼索與橋柱形成的夾角嗎?

  生:橋面與橋柱形成一個直角,是90,斜拉的鋼索與橋柱形成的夾角是56,那么用180-90-56=34,就是斜拉的鋼索與橋面的夾角,所以只要讓斜拉的鋼索與橋面的夾角是34,那么斜拉的鋼索與橋柱形成的夾角就是56

  師:你真是個善于觀察、善于思考的孩子,努力學習,將來一定會成為一名優(yōu)秀的建筑師。

  四、回顧總結,拓展延伸

  師:40分鐘很快就過去了,你愿意把自己的收獲與大家共同分享嗎?

  生:我知道了三角形的內(nèi)角和是180。

  生:無論是大三角形,還是小三角形,無論是銳角三角形,還是鈍角三角形,還是銳角三角形,內(nèi)角和都是180。

  生:把一個大三角形分成兩個小三角形,每個三角形的內(nèi)角和還是180,把兩個小三角形拼成一個大三角形,大三角形的內(nèi)角和還是180。

  生:我可以用撕、拼、折等方法來驗證三角形的內(nèi)角和是180。

  師:這個同學不僅學會了知識,而且學會了方法,我們只有學會了方法,才能更好地去探究更多的知識。

  師:那你現(xiàn)在知道為什么一個三角形內(nèi)只能有一個直角或一個鈍角嗎?

  生:兩個直角的度數(shù)之和是180,再加上一個角,三個角的度數(shù)之和超過了180,所以一個三角形中最多只能有一個直角。

  生:兩個鈍角的度數(shù)之和就超過了180,再加上一個角,就更大了,所以一個三角形中最多只能有一個鈍角。

  師:我們學習知識,必須知其然并知其所以然。

  師:三角形中還有許許多多的學問,讓我們在以后的學習中繼續(xù)去研究。

《三角形的內(nèi)角和》教學設計10

  微課作品介紹本微課是蘇教版小學數(shù)學四年級下冊《三角形內(nèi)角和》的課前先學指導,學生在家觀看視頻內(nèi)容,同時結合學習任務單,在視頻的指導下通過猜、量、算、剪、拼等方法探索三角形的內(nèi)角和是180度。學生在課前利用視頻完成學習任務單,然后到學校課堂中和老師、同學進行交流,再進一步提升。

  教學需求分析適用對象分析該微課的適用對象是蘇教版四年級下學期的小學生,學生應認識三角形的基本特征,學習過角和角的度量,知道*角是180度。具備了一定的動手操作能力和數(shù)學思維能力。

  學習內(nèi)容分析該微課讓學生發(fā)現(xiàn)、驗證三角形的內(nèi)角和是180度的結論。這部分內(nèi)容是在學生認識了三角形的基本特征和三邊的關系后,三角形分類前學習的。這在蘇教版中和原來的教材不同,放在這里是因為三角形內(nèi)角和是學生進一步學習和探究三角形分類方法的重要前提。學生知道了三角形的內(nèi)角和是180度,對三角形分類及命名的方法,才能知其然,還能知其所以然。

  教學目標分析:

  1、通過學生的實際操作,理解并驗證三角形的內(nèi)角和等于180°,并能夠運用結論解決簡單的實際問題;

  2、使學生通過觀察、實驗,經(jīng)歷猜想與驗證三角形內(nèi)角和的探索過程,在活動中發(fā)展學生的空間觀念和推理能力。

  3、已經(jīng)有不少學生知道了三角形內(nèi)角和是180度,,但卻不知道怎樣才能得出這個結論,因此學生在學習時的主要目標是驗證三角形的內(nèi)角和是180度。

  教學過程設計本微課教學過程:

  一、明確多邊形的內(nèi)角、內(nèi)角和概念。

  首先要明確概念,才好繼續(xù)研究。內(nèi)角、內(nèi)角和以前學生沒有學過,還是有必要給學生明確的。

  二、探索三角尺的內(nèi)角和,猜想三角形的內(nèi)角和。

  從學生熟悉的三角板開始計算三角板的內(nèi)角和,引發(fā)學生猜想,三角形的內(nèi)角和是多少。

  三、驗證三角形內(nèi)角和是否為180°。

  驗證分為三個層次:首先是量教材提供的三角形,算出內(nèi)角和,可能會有誤差。其次把三角形三個內(nèi)角拼在一起,拼成是*角180度。最后自己任意畫一個三角形剪下來,拼一拼,得出結論。讓學生經(jīng)歷由特殊到一般的認知過程。

  四、拓展延伸,探究梯形、*行四邊形和六邊形內(nèi)角和。

  由三角形的內(nèi)角和,學生自然就會想到已學過的梯形、*行四邊形和六邊形內(nèi)角和是多少呢。教師留下問題讓學有余力的學生進一步去探索。

  五、自主學習檢測

  學生觀看完了視頻是否學會了,是需要檢測的。學生通過做完自主檢測后進行校對,檢驗自己所學。

  學習指導本微視頻應配合下面的.學習任務單共同使用,在觀看視頻時,根據(jù)視頻提示隨時暫停視頻依次完成任務單。

  自主學習前準備:

  請在自主學習前閱讀學習任務單的學習指南,并準備好數(shù)學書、一副三角尺、量角器、剪刀、鉛筆等學習用具。

  自主學習任務單:

  通過觀看教學資源自學,完成下列學習任務:

  任務一:明確多邊形的內(nèi)角、內(nèi)角和概念

  1、你認識下面的圖形嗎?他們各有幾個角,請在圖中標出來。

  2、你剛才標出的角,又叫做每個圖形的()。

  3、如果把一個圖形所有的內(nèi)角的度數(shù)加起來,所得的總和就是這個圖形的()。

  4、你知道圖中長方形和正方形的內(nèi)角和是多少度嗎?你是怎么知道的?

  長方形內(nèi)角和正方形內(nèi)角和

  任務二:探索三角尺的內(nèi)角和,猜想三角形的內(nèi)角和。

  1、請拿出一副三角尺,你知道每塊三角尺上各個角的度數(shù)?在圖上標出來。

  2、算一算,每個三角尺3個內(nèi)角的和是多少度。

  3、根據(jù)你剛才的計算結果,你能猜想一下,任意一個三角形它的內(nèi)角和的度數(shù)呢?

  任務三:驗證任意三角形內(nèi)角和是否為180°

  1、請從數(shù)學書本第113頁剪下3個三角形,用量角器量出每個三角形3個內(nèi)角的度數(shù)。

  算一算,每個三角形3個內(nèi)角的和是多少度。

  2還可以用什么辦法來驗證剪下的這3個三角形的內(nèi)角和等于180度?(把你的驗證方法展示在下面。)如果你想不出來請看下面的提示。

  溫馨提示:*角正好是180°,這三個內(nèi)角能正好拼成一個*角嗎?

  3、自己任意畫一個三角形,先剪下來,再拼一拼。

  4、你發(fā)現(xiàn)了什么?寫在下面。

  5、請你回顧一下我們研究三角形形內(nèi)角和是180度的過程?簡單的寫下來。

  任務四:拓展延伸

  任務一中還有梯形、*行四邊形和六邊形,如果你有興趣,你可以研究他們的內(nèi)角和。

  任務五:自主學習檢測

  1、右邊三角形中,∠1=75°,∠2=40°,∠3=()°

  2、第3個三角形還可以怎樣計算,哪種更簡便?

  3、一塊三角尺的內(nèi)角和是180°,用兩塊完全一樣的三角尺拼成一個三角形,拼成的三角形內(nèi)角和是多少度?

  4、用一張長方形紙折一折,填一填

  配套學習資料蘇教版小學數(shù)學四年級下冊教材

  制作技術介紹Camtasia Studio軟件制作、PPT。

《三角形的內(nèi)角和》教學設計11

  教學目標:

  1、掌握三角形內(nèi)角和是180°,并能應用這一規(guī)律解決一些實際問題。

  2、讓學生經(jīng)歷“猜想、動手操作、直觀感知、探索、歸納、應用”等知識形成的過程,掌握“轉化”的數(shù)學思想方法,培養(yǎng)學生動手實踐能力,發(fā)展學生的空間思維能力。

  3、在活動中,讓學生體驗主動探究數(shù)學規(guī)律的樂趣,體驗數(shù)學的價值,激發(fā)學生學習數(shù)學的熱情,同時使學生養(yǎng)成**思考的好習慣。

  教學重點:

  讓學生經(jīng)歷“三角形內(nèi)角和是180度”這一知識的形成、發(fā)展和應用的全過程。

  教學難點:

  三角形內(nèi)角和的探索與驗證。

  教學準備:

  量角器 各種類型的三角形(硬的紙板) 三角板

  教學過程:

  一、設疑激趣,導入新課

  師:今天老師給大家?guī)砹艘晃慌笥?課件)出示三角形,

  師:對于三角形你有哪些認識與了解。

  生:三角形有銳角三角形、直角三角形、鈍角三角形

  生:由三條線段圍成的*面圖形叫三角形。

  師:介紹內(nèi)角、內(nèi)角和

  三角形中每兩條邊組成的角叫做三角形的內(nèi)角。

  師:三角形有幾個內(nèi)角。

  生:三個。

  師:這三個角的和,就叫做三角形的內(nèi)角和。你知道三角形內(nèi)角和是多少度?

  生1:我通過直角三角板知道的

  生2:我通過長方形中四個角都是直角,是360度,三角形是長方形的一半,所以是180度

  生3:我預習了,三角形內(nèi)角和就是180度)

  師:是不是向他們說的一樣,所有的三角形內(nèi)角和都是180度呢?

  二、自主探索,進行驗證

  師:你打算怎樣驗證呢?

  生1用量角器量出每個角的度數(shù),再加一加看看是不是180度

  生2:把三角形撕下來

  師:怎么撕?象這樣撕嗎?(作亂撕狀),能說的詳細些具體些嗎?

  生2:(補充),把三個角撕下來,拼在一起,看能不能拼成一個*角

  生3:把三個角順次畫下來也可以

  生4:拼一拼的方法

  師:好!同學們想出了這么多辦法,下面就用你喜歡的方法驗證

  師:CAI多**課件展示操作要求:

  合作探究:

  1、每四人一組,每組至少選兩個三角形,用你喜歡的方法驗證

  2、看那個小組驗證的方法新、方法多

  師:在巡視,并進行個別操作指導

  三、交流探索的方法和結果

  孩子們探索的.方法可能有三個:

  生1:一是用量角器量各個角,然后再算出三角形中三個角的度數(shù)和,用這種方法求的結果可能是180度也可能比180度小一些,也可能比180度大一些。

  生2:二是用轉化法,把三角形中三個角剪下來,拼在一起成為一個*角,由此得出三角形中三個角的和是180度。

  生3:三是折一折,把三個角折在一起,折在一起成為一個*角,由此得出三角形中三個角的和是180度。

  四、歸納總結,體驗成功

  師:孩子們,三角形中三個角的度數(shù)和到底是多少度呢?

  生:180度。

  五、拓展應用

  1、基礎練習

  2、等邊三角形、等腰三角形、直角三角形

  六、課堂小結

  談一談自己的學習收獲。

《三角形的內(nèi)角和》教學設計12

  教學內(nèi)容:人教版小學數(shù)學第八冊第85頁例5及”做一做”

  教學目標:

  1、讓學生親自動手,通過量、剪、拼等活動發(fā)現(xiàn)、證實三角形內(nèi)角和是180°,并會應用這一知識解決生活中簡單的實際問題。

  2、讓學生在動手獲取知識的過程中,培養(yǎng)學生的創(chuàng)新意識、探索精神和實踐能力。并通過動手操作把三角形內(nèi)角和轉化為*角的探究活動,向?qū)W生滲透“轉化”數(shù)學思想

  3、在探索中體驗發(fā)現(xiàn)的樂趣,增強學好數(shù)學的信心、

  教學重點

  讓學生經(jīng)歷“三角形內(nèi)角和是180°”這一知識的形成、發(fā)展和應用的全過程。

  教學難點 :

  驗證所有三角形的內(nèi)角之和都是180°

  教具準備:多**課件。

  學具準備:量角器、正方形、剪刀、各類三角形(包括直角三角形、銳角三角形、鈍角三角形)

  教學過程:

  一、 設疑引思

  1、 分小組分別量出直角三角形、銳角三角形、鈍角三角形的三個內(nèi)角的度數(shù)、

  2、 每小組請一位同學說出自已量的三角形中兩個角的度數(shù)老師迅速”猜出”第三個角的度數(shù)、

  3、 設問:老師為什么能很快”猜” 出第三個角的度數(shù)呢?

  三角形還有許多奧妙,等待我們?nèi)ヌ剿鳌?導入新課,板書課題>

  二、 探索交流,獲取新知

  1、 量一量:每個學生將自已剛才量出的三角形的內(nèi)角和的度數(shù)相加,初步得出”三角形的內(nèi)角和是180°”的結論、

  2、 折一折:將正方形紙沿對角線對折,使之變成兩個完全重合的三角形,發(fā)現(xiàn):一個三角形的內(nèi)角和就是正方形4個角內(nèi)角和的一半,也就是360的一半,即180度, 初步驗證”三角形的內(nèi)角和是180°”的結論、

  3、 拼一拼:學生先動手剪拼所準備的三角形,進一步驗證得出”三角形的內(nèi)角和是180°”的結論、

  4、 師利用課件演示將一個三角形的三個角拼成一個*角的過程、

  5、 驗證:FLASH演示三種三角形割補過程

  發(fā)現(xiàn)1: 通過把直角三角形割補后,內(nèi)角∠2,∠3 組成了一個()角,等于()度,∠1等于90度。所以直角三角形的內(nèi)角和等于( )度。

  發(fā)現(xiàn)2:通過把鈍角、銳角三角形割補后,三角組成了一個( )角,而( )角等于( )度。所以銳角三角形和鈍角三角形的內(nèi)角和都是180度。

  6、 小結:剛才能過量一量折一折拼一拼,你發(fā)現(xiàn)了什么?

  生說,師板書:三角形的內(nèi)角和———180°

  三、 應用練習,拓展提高

  1、書例5后”做一做”

  思考:為什么不能畫出一個有兩個直角的`三角形?(兩個鈍角、一個直角和一個鈍角的三角形?)

  2、下面哪三個角會在同一個三角形中。

 。1)30、60、45、90

  (2)52、46、54、80

  (3)61、38、44、98

  3、走向生活:

 。1)那天,老師去買了一塊三角形的玻璃,我拿著玻璃,剛到校門,一不小心,碰在門**,摔成這幾塊(撕),哎,只有再去買一塊,但尺寸我記不得了,該怎么辦,你們能不能幫老師想想辦法?我憑哪塊碎片能再去配一塊和原來一樣的三角形玻璃嗎?

 。ńY合學生回答進行演示:延長兩條邊,交于一點,形成原來的三角形。所以:兩個角確定了,三角形玻璃形狀和大小也就確定了。)

  四 作業(yè):作業(yè)本

  五 全課總結

  總結:今天這節(jié)課我們研究了三角形的內(nèi)角和,你們學到了哪些知識,有什么收獲?

  板書設計:三角形的內(nèi)角和

  三角形的內(nèi)角和———180°

《三角形的內(nèi)角和》教學設計13

  一、教學目標:

  1、理解掌握三角形內(nèi)角和是180°,并運用這一性質(zhì)解決一些簡單的問題。

  2、通過直觀操作的方法,引導學生探索并發(fā)現(xiàn)三角形內(nèi)角和等于180°,在實驗活動中,體驗探索的過程和方法。

  3、在探索和發(fā)現(xiàn)三角形內(nèi)角和的過程中獲得成功的體驗。

  二、教學重、難點:

  重點:探索并發(fā)現(xiàn)三角形內(nèi)角和等于180°。

  難點:運用三角形內(nèi)角和等于180°的性質(zhì)解決一些實際問題。

  教具:課件、三角形若干。

  學具:量角器、直角三角形、銳角三角形和鈍角三角形各一個。

  三、教學過程

  (一)創(chuàng)設情境,導入新課

  我們已經(jīng)學過了三角形的知識,我們來復習一下,看看大屏幕,各是什么三角形?誰能說說什么是銳角三角形、直角三角形、鈍角三角形?追問:不管是什么三角形它們都有幾個角呢?這三個角都叫做三角形的內(nèi)角,而這三個內(nèi)角的和就是這個三角形的內(nèi)角和。那么誰來說一說什么是三角形的內(nèi)角和?三角形有大有小,形狀也各不相同,那么它們的內(nèi)角和有沒有什么特點和規(guī)律呢?我們來看一個小片段,仔細聽它們都說了什么?

  教師放課件。

  課件內(nèi)容說明:一個大的直角三角形說:“我的個頭大,我的內(nèi)角和一定比你們大!币粋鈍角三角形說:“我有一個鈍角,我的內(nèi)角和才是最大的)一個小的銳角三角形很委屈的樣子說“是這樣嗎?”

  都聽清它們在爭論什么嗎?(它們在爭論誰的內(nèi)角和大。)誰能說一說你的想法?(學生各抒己見,是不評價)果真是這樣嗎?下面我們就來研究“三角形內(nèi)角和”。

  (板書課題:三角形內(nèi)角和)

 。ǘ┳灾魈骄浚l(fā)現(xiàn)規(guī)律

  1、探究三角形內(nèi)角和的特點。

 。1)檢查作業(yè),并提出要求:

  昨天老師讓每位學生都分別剪出了銳角三角形、直角三角形和鈍角三角形,并量出了每個角的度數(shù),都完成了嗎?拿出來吧,一會我們要算出三角形的內(nèi)角和填在下面的`表格里。我們來看一下表格以及要求。出示小組活動記錄表。

  小組活動記錄表

  小組成員的姓名

  三角形的形狀

  每個內(nèi)角的度數(shù)

  三角形內(nèi)角的和

 。ㄒ螅禾钔瓯砗,請小組成員仔細觀察你發(fā)現(xiàn)了什么?)

 、谛〗M合作。

  會使用表格了嗎?下面我們就以小組為單位,按照要求把結果填在小組長手中的表格內(nèi)。

  各組長進行匯報。發(fā)現(xiàn)了三角形的內(nèi)角和都是180°左右。

  師:實際上,三角形三個內(nèi)角和就是180°,只是因為測量有誤差,所以我們才得到剛才得到的數(shù)據(jù)。

  2、驗證推測。

  那么同學們有沒有什么辦法知道三角形的內(nèi)角和就是180°呢?大家可以討論一下,學生可能會想到用折拼或剪拼的方法來看一看三角形的三個角和起來是不是180°,也就是說三角形的三個角能不能拼成一個*角。師生先演示撕下三個角拼在一起是否是*角,同學們在下面操作進行體驗,再用課件演示把三個內(nèi)角折疊在一起(這時要注意*行折,把一個頂點放在邊上)學生也動手試一試。

  通過我們的驗證我們可以得出三角形的內(nèi)角和是180°。

  板書:(三角形內(nèi)角和等于180°。)

  3、師談話:三個三角形討論的問題現(xiàn)在能解決了嗎?你現(xiàn)在想對這三個三角形說點什么嗎?(讓學生暢所欲言,對得出的三角形內(nèi)角和是180°做系統(tǒng)的整理。)

  4、同學們還有什么疑問嗎?大家想一想我們知道了三角形內(nèi)角和是180°可以干什么呢?(知道三角形中兩個角,可以求出第三個角)

  出示書28頁,試一試第3題,并講解。

  說明:在直角三角形中一個銳角等于30°,求另一個銳角。

  生**做,再訂正格式、以及強調(diào)不要忘記寫度。

  小結:同學們有沒有不明白的地方?如果沒有我們來做練習。

 。ㄈ╈柟叹毩,拓展應用

  1、出示書29頁第一題。說明:第一幅圖是銳角三角形已知一個銳角是75°,另一個銳角是28°,求第三個銳角?第二幅圖是直角三角形已知一個銳角是35°,求另一個銳角?第三幅圖是鈍角三角形已知一個銳角是20°,另一個銳角是45°,求鈍角?

  完成,并填在書上。講一講直角三角形還有什么解法。

  2、出示29頁第2題。

  說明:一個鈍角三角形說:我的兩個銳角之和大于90°。

  一個直角三角形說:我的兩個銳角之和正好等于90°。讓學生判斷。

  3、畫一畫:

  出示四邊形和六邊形。運用三角形內(nèi)角和是180°計算出各自的內(nèi)角和。你能推算出多邊形的內(nèi)角和嗎?

  三角形內(nèi)角和180度是科學家帕斯卡12歲時發(fā)現(xiàn)的。我們同學還沒到12歲,看你能不能通過自己的努力也去探索和發(fā)現(xiàn)。

  (四)課堂總結

  讓學生說說在這節(jié)課上的收獲!

《三角形的內(nèi)角和》教學設計14

  教學內(nèi)容:

  義務教育課程標準實驗教科書xx版小學數(shù)學四年級下冊第42~46頁

  教學目標:

  1、通過量、剪、拼、折等數(shù)學活動,讓學生親自實踐操作,發(fā)現(xiàn)規(guī)律,主動推導并得出“三角形內(nèi)角和是180°”的結論,會應用這一規(guī)律進行計算。

  2、在操作、驗證三角形內(nèi)角和的過程中,體驗解決問題方法的多樣性,發(fā)展空間觀念,提高初步的邏輯思維能力。

  教學過程:

  一、創(chuàng)設情境,導入新課

  1、談話:我們已經(jīng)認識了三角形,你知道哪些關于三角形的知識?

  2、我們在討論三角形知識的時候,三角形中的三個好朋友卻吵了起來,想知道是怎么回事嗎?我們一起去看看吧!

  播放課件

  詳細內(nèi)容說明:一個大的直角三角形說:“我的個頭大,我的內(nèi)角和一定比你們大!币粋鈍角三角形說:“我有一個鈍角,我的內(nèi)角和才是的。”一個小的銳角三角形很委屈的樣子說:“是這樣嗎?”(它們在爭論誰的內(nèi)角和大。)

  你知道什么是三角形的內(nèi)角和嗎?

  通過學生討論,得出三角形的內(nèi)角和就是三角形三個內(nèi)角的度數(shù)和。

  3、故事中到底誰說得對呢?今天我們就來研究三角形的內(nèi)角和。

  【設計意圖】從學生的心理、興趣和意愿為出發(fā)點,利用故事的形式提出疑問,激發(fā)學生的學習興趣,提高學生探索的積極性。

  二、自主探究、發(fā)現(xiàn)規(guī)律

  1、探究三角形內(nèi)角和的特點

  (1)量一量

  師:你認為怎樣能知道三角形的內(nèi)角和?

  生:把三角形的三個內(nèi)角分別量出來,再用加法算出三角形的內(nèi)角和。

  學生活動(小組合作---每組準備三種不同的三角形)量角,求和,完成第43頁的表格。

  學生交流匯報測量結果。

  師:從剛才的交流中,你發(fā)現(xiàn)了什么?

  生:不管是銳角三角形、直角三角形還是鈍角三角形,內(nèi)角和都是180°。

  (在量的過程中,由于誤差,有的學生可能算出內(nèi)角和在180°左右,這時教師要相機誘導:在測量的過程中出現(xiàn)一些誤差是正常的,因為同學們畫的角不夠標準,量角器的不同,還有本身測量的原因都可能導致誤差。)

  師:看來量一量會出現(xiàn)誤差,那么你還有其它的更科學的辦法進行驗證嗎?

  (2)拼一拼

  學生分小組活動,教師參與學生的活動,并給予必要的指導。

  學生展示交流,師:從大家的交流中,我們發(fā)現(xiàn)都可以把三角形的三個內(nèi)角拼成一個*角,證明“三角形內(nèi)角和是180°” 。

  (3)折一折

  小組活動,學生交流

  生1:將正方形(或長方形)紙沿對角線對折,這樣,就折成了兩個大小一樣的三角形。因為正方形(或長方形)的四個直角的和是360°,所以三角形的內(nèi)角和就是它的`一半,是180°。

  生2:直角三角形的兩個銳角可以折成一個直角,也就是說,在直角三角形中,兩個銳角的和是90°,因此三角形內(nèi)角和就是180°。

  2、歸納

  師:通過剛才的活動,我們得出了什么結論?

  生:三角形的內(nèi)角和等于180°。

  3、師談話:三個三角形爭論的問題現(xiàn)在能解決了嗎?你現(xiàn)在想對這三個三角形說點什么?

  學生暢所欲言,對得出的規(guī)律做系統(tǒng)的整理。

  【設計意圖】動手實踐,自主探索,親身體驗,是學習數(shù)學的重要方式。學生分組合作,量一量、拼一拼、折一折,通過多種感官參與比較、分析從而自主探索得出結論,得到的不僅是三角形內(nèi)角和的知識,也使學生學到了怎樣由已知探索未知的思維方式與方法,培養(yǎng)了他們主動探索的精神。

  三、靈活運用,鞏固練習

  師:好,大家已經(jīng)發(fā)現(xiàn)了“三角形內(nèi)角和是180°”這一規(guī)律,你能應用這個規(guī)律解決一些實際的問題嗎?

  1、判斷

  鈍角三角形比銳角三角形的內(nèi)角和大。 ( )

  銳角三角形的兩個內(nèi)角和小于90°。 ( )

  一個三角形最少有兩個銳角。 ( )

  一個鈍角三角形最少有一個鈍角。 ( )

  學生判斷并說出理由。

  2、自主練習第6題

  練習時,先讓學生**填空,再說說自己是怎么想的,然后用量角器驗證計算的結果。

  小結:以后如果遇到求一個三角形內(nèi)未知角的度數(shù)時,我們可以用計算的方法算一算,簡單又精確。

  3、游戲: 選度數(shù),組三角形

  (課件顯示如下)

  請選出三個角的度數(shù)來組成一個三角形

  10° 18° 15° 150° 130° 72°

  20° 50° 70° 35° 75°

  52° 56° 54° 58° 60°

  學生回答的同時,教師操作課件,把學生選擇的度數(shù)拖入方框內(nèi),通過電腦計算相加是否等于180°,來驗證學生的選擇是否正確。驗證學生選的對了以后,再讓學生判斷選擇的度數(shù)所組成的三角形按角的大小分類,并說出理由。

  [設計意圖]用已學到的新知解決實際數(shù)學問題,認識學數(shù)學的價值,再次體驗成功,增強學習數(shù)學的興趣。尤其是第三個練習,依據(jù)學生的年齡特征和認知水*,設計探索性和開放性的問題,注重拓寬學生的思維活動空間。

  四、課堂總結、深化認識

  談話:這節(jié)課你學會了什么?解決了什么問題?是怎樣解決的?

  【設計意圖】不僅從知識方面進行總結,還引導學生回顧發(fā)現(xiàn)問題、提出問題、解決問題的過程,關注學生學習過程中的情感體驗。既讓學生習得一種學習方法,又培養(yǎng)了學習興趣。

  課后反思:

  本節(jié)課學生以小組為單位進行合作學習,從自己的已有經(jīng)驗出發(fā),積極地進行操作、測量、計算,并對自己的結論進行思考、分析。在充分發(fā)揮學生主體作用,放手讓學生開展探究的同時,教師也恰到好處的發(fā)揮了引導作用。整個探究過程學生是自主的、有積極性的,在獲得數(shù)學結論的同時學習了科學探究的方法,為今后的學習打下了堅實的基礎。

《三角形的內(nèi)角和》教學設計15

  【教學目標】

  1、學生動手操作,通過量、剪、拼、折的方法,探索并發(fā)現(xiàn)“三角形內(nèi)角和等于180度”的規(guī)律。

  2、在探究過程中,經(jīng)歷知識產(chǎn)生、發(fā)展和變化的過程,通過交流、比較,培養(yǎng)策略意識和初步的空間思維能力。

  3、體驗探究的過程和方法,感受思維提升的過程,激發(fā)求知欲和探索興趣。

  【教學重點】探究發(fā)現(xiàn)和驗證“三角形的內(nèi)角和180度”這一規(guī)律的過程,并歸納總結出規(guī)律。

  【教學難點】對不同探究方法的指導和學生對規(guī)律的靈活應用。

  【教具準備】課件、表格、學生準備不同類型的三角形各一個,量角器。

  【教學過程】

  一、激趣引入。

  1、猜謎語

  師:同學們喜歡猜謎語嗎?

  生:喜歡。

  師:那么,下面老師給大家出個謎語。請聽謎面:

  形狀似座山,穩(wěn)定性能堅,三竿首尾連,學問不簡單。(打一圖形)大家一起說是什么?

  生:三角形

  2、介紹三角形按角的分類

  師:真聰明!板書“三角形”!那么,三角形按角分可以分為鈍角三角形、直角三角形和銳角三角形這幾類

  師分別出示卡片貼于黑板。

  3、激發(fā)學生探知心里

  師:大家會不會畫三角形啊?

  生:會

  師:下面請你拿出筆在本子上畫出一個三角形,但是我有個要求:畫出一個有兩個直角的三角形。試一試吧!

  生:試著畫

  師:畫出來沒有?

  生:沒有

  師:畫不出來了,是嗎?

  生:是

  師:有兩個直角的三角形為什么畫不出來呢?這就是三角形中角的奧秘!這節(jié)課我們就來學習有關三角形角的知識“三角形內(nèi)角和”(板書課題)

  二、探究新知。

  1、認識三角形的內(nèi)角

  看看這三個字,說說看,什么是三角形的內(nèi)角?

  生:就是三角形里面的角。

  師:三角形有幾個內(nèi)角啊?

  生:3個。

  師:那么為了研究的時候比較方便,我們把這三個內(nèi)角標上角1角2角3,請同學們也拿出桌子上三角形標出(教師標出)

  師:你知道什么是三角形“內(nèi)角和”嗎?

  生:三角形里面的角加起來的度數(shù)。

  2、研究特殊三角形的內(nèi)角和

  師:分別拿出一個直角三角板,請同學們看看這屬于什么三角形,說出每個角的度數(shù),那這個三角形的內(nèi)角和是多少度?

  生:算一算:90°+60°+30°=180° 90°+45°+45°=180°

  師:180°也是我們學習過的什么角?

  生:*角

  師:從剛才兩個三角形的內(nèi)角和的計算中,你發(fā)現(xiàn)了什么?

  3、研究一般三角形的內(nèi)角和

  師:猜一猜,其它三角形的內(nèi)角和是多少度呢?

  生:

  4、操作、驗證

  師:同學們猜的結果各不相同,那怎么辦呀?你能想個辦法驗證一下嗎?

  要求:

  (1)每4人為一個小組。

  (2)每個小組都有不同類型的三角形,每種類型都需要驗證,先討論一下,怎樣才能較快的.完成任務?

  (3)驗證的方法不只一種,同學們要多動動腦子。

  師:好,開始活動!

  師:巡視指導

  師:好!請一組匯報測量結果。

  生:通過測量我們發(fā)現(xiàn)每個三角形的三個內(nèi)角和都在180度左右。

  師:其實三角形的內(nèi)角和就是180度,只是因為我們在測量時存在了一些誤差,所以測量出的結果不準確。

  生:我是用撕的方法,把直角三角形三個內(nèi)角撕下來,拼在一起,拼成一個*角,是180度。

  師:好!非常好!

  師:有其它同學操作銳角三角形和鈍角三角形的嗎?誰愿意到前面來展示一下?生:展示銳角三角形(撕拼)

  生:展示折一折我是用折的方法把銳角三角形三個角折在一起,組成一個*角,是180°。

  師:老師也做了一個實驗看一看是不是和大家得到結果一樣呢?(多**展示)

  現(xiàn)在老師問同學們,三角形的內(nèi)角和是多少?

  生:180度。

  師:通過驗證:我們知道了無論是銳角三角形,直角三角形還是鈍角三角形,它們的內(nèi)角和都是180°。板書:三角形內(nèi)角和等于180度,F(xiàn)在讓我們用自豪的、肯定的語氣讀出我們的發(fā)現(xiàn):“三角形的內(nèi)角和是180°”。

  三、解決疑問

  師:好!請同學們回憶一下,剛才課前老師讓同學們畫出有兩個直角的三角形畫出來了嗎?

  生:沒有

  師:那你能用這節(jié)課的知識解釋一下為什么畫不出來嗎?

  生:兩個直角是180度,沒有第三個角了。

  師:如果想畫出有兩個角是鈍角的三角形你能畫出來嗎?

  生:大于180度,也畫不出第三個角。師:所以,生活中不存在這樣的三角形。

  師:學會了知識,我們就要懂得去運用。

  四、鞏固提高。

  1、填空。

  (1)三角形的內(nèi)角和是()度。

  (2)一個三角形的兩個內(nèi)角分別是80°和75°,它的另一個角是()。

  2、求下面各角的度數(shù)。

  (1)∠1=27° ∠2=53° ∠3=()這是一個()三角形。

  (2)∠1=70° ∠2=50° ∠3=()這是一個()三角形。

  3、判斷每組中的三個角是不是同一個三角形中的三個內(nèi)角。

  (1)80° 95° 5°( )

  (2)60° 70° 90°( )

  (3)30° 40° 50°( )

  4、紅領巾是一個等腰三角形,求底角的度數(shù)。(多**出示)

  對學生進行思品教育。

  5、思考延伸。

  根據(jù)三角形內(nèi)角和是180度,算一算四邊形和八邊形的內(nèi)角和是多少?

  6、游戲:幫角找朋友每組卡片中,哪三個角可以組成三角形?)每組卡片中,哪三個角可以組成三角形?)60°90°45°30°⑴60°、90°、45°、30°54°46°52°

  五、總結。

版權聲明:本文內(nèi)容由互聯(lián)網(wǎng)用戶自發(fā)貢獻,該文觀點僅代表作者本人。本站僅提供信息存儲空間服務,不擁有所有權,不承擔相關法律責任。如發(fā)現(xiàn)本站有涉嫌抄襲侵權/違法違規(guī)的內(nèi)容, 請發(fā)送郵件至 yyfangchan@163.com (舉報時請帶上具體的網(wǎng)址) 舉報,一經(jīng)查實,本站將立刻刪除