狠狠操网,91中文字幕在线观看,精品久久香蕉国产线看观看亚洲,亚洲haose在线观看

高二數(shù)學(xué)知識點總結(jié)(15篇)

高二數(shù)學(xué)知識點總結(jié)(15篇)

  總結(jié)是對取得的成績、存在的問題及得到的經(jīng)驗和教訓(xùn)等方面情況進行評價與描述的一種書面材料,它在我們的學(xué)習(xí)、工作中起到呈上啟下的作用,為此要我們寫一份總結(jié)。那么我們該怎么去寫總結(jié)呢?以下是小編為大家收集的高二數(shù)學(xué)知識點總結(jié),歡迎閱讀與收藏。

高二數(shù)學(xué)知識點總結(jié)1

  1.萬能公式令tan(a/2)=t sina=2t/(1+t^2) cosa=(1-t^2)/(1+t^2) tana=2t/(1-t^2)

  2.輔助角公式 asint+bcost=(a^2+b^2)^(1/2)sin(t+r) cosr=a/[(a^2+b^2)^(1/2)] sinr=b/[(a^2+b^2)^(1/2)] tanr=b/a

  3.三倍角公式 sin(3a)=3sina-4(sina)^3 cos(3a)=4(cosa)^3-3cosa tan(3a)=[3tana-(tana)^3]/[1-3(tana^2)] sina*cosb=[sin(a+b)+sin(a-b)]/2cosa*sinb=[sin(a+b)-sin(a-b)]/2 cosa*cosb=[cos(a+b)+cos(a-b)]/2 sina*sinb=-[cos(a+b)-cos(a-b)]/2 sina+sinb=2sin[(a+b)/2]cos[(a-b)/2]sina-sinb=2sin[(a-b)/2]cos[(a+b)/2] cosa+cosb=2cos[(a+b)/2]cos[(a-b)/2] cosa-cosb=-2sin[(a+b)/2]sin[(a-b)/2] 向量公式: 1.單位向量:單位向量a0=向量a/|向量a| 2.P(x,y) 那么 向量OP=x 向量i+y 向量j |向量OP|=根號(x 平方+y 平方) 3.P1(x1,y1) P2(x2,y2) 那么向量P1P2={x2-x1,y2-y1} |向量P1P2|=根號[(x2-x1)平方+(y2-y1)平方]

  4.向量a={x1,x2}向量b={x2,y2} 向量a*向量b=|向量a|*|向量b|*Cosα=x1x2+y1y2 Cosα=向量a*向量b/|向量a|*|向量b| (x1x2+y1y2) 根號(x1平方+y1 平方)*根號(x2 平方+y2 平方)

  5.空間向量:同上推論 (提示:向量a={x,y,z})

  6.充要條件: 如果向量a向量b 那么向量a*向量b=0 如果向量a//向量b 那么向量a*向量b=|向量a|*|向量b| 或者x1/x2=y1/y2

  7.|向量a向量b|平方 =|向量a|平方+|向量b|平方2 向量a*向量b =(向量a向量b)平方

高二數(shù)學(xué)知識點總結(jié)2

  (1)必然事件:在條件S下,一定會發(fā)生的事件,叫相對于條件S的必然事件;

  (2)不可能事件:在條件S下,一定不會發(fā)生的事件,叫相對于條件S的不可能事件;

  (3)確定事件:必然事件和不可能事件統(tǒng)稱為相對于條件S的確定事件;

  (4)隨機事件:在條件S下可能發(fā)生也可能不發(fā)生的事件,叫相對于條件S的隨機事件;

  (5)頻數(shù)與頻率:在相同的條件S下重復(fù)n次試驗,觀察某一事件A是否出現(xiàn),稱n次試驗中事件A出現(xiàn)的次數(shù)nA為事件A出現(xiàn)的頻數(shù);稱事件A出現(xiàn)的比例fn(A)=nnA為事件A出現(xiàn)的概率:對于給定的隨機事件A,如果隨著試驗次數(shù)的增加,事件A發(fā)生的頻率fn(A)穩(wěn)定在某個常數(shù)上,把這個常數(shù)記作P(A),稱為事件A的概率。

  (6)頻率與概率的區(qū)別與聯(lián)系:隨機事件的頻率,指此事件發(fā)生的次數(shù)nA與試驗總次數(shù)n的比值nnA,它具有一定的穩(wěn)定性,總在某個常數(shù)附近擺動,且隨著試驗次數(shù)的不斷增多,這種擺動幅度越來越小。我們把這個常數(shù)叫做隨機事件的概率,概率從數(shù)量上反映了隨機事件發(fā)生的可能性的大小。頻率在大量重復(fù)試驗的前提下可以近似地作為這個事件的概率。

  然說難度比較大,我建議考生,采取分部得分整個試

高二數(shù)學(xué)知識點總結(jié)3

  一般地,設(shè)一個總體含有N個個體,從中逐個不放回地抽取n個個體作為樣本(n≤N),如果每次抽取時總體內(nèi)的各個個體被抽到的機會都相等,就把這種抽樣方法叫做簡單隨機抽樣。

  簡單隨機抽樣的特點:

  (1)用簡單隨機抽樣從含有N個個體的總體中抽取一個容量為n的樣本時,每次抽取一個個體時任一個體被抽到的概率為;在整個抽樣過程中各個個體被抽到的概率為

  (2)簡單隨機抽樣的特點是,逐個抽取,且各個個體被抽到的概率相等;

  (3)簡單隨機抽樣方法,體現(xiàn)了抽樣的客觀性與公平性,是其他更復(fù)雜抽樣方法的基礎(chǔ).

  (4)簡單隨機抽樣是不放回抽樣;它是逐個地進行抽取;它是一種等概率抽樣

  簡單抽樣常用方法:

  (1)抽簽法:先將總體中的所有個體(共有N個)編號(號碼可從1到N),并把號碼寫在形狀、大小相同的號簽上(號簽可用小球、卡片、紙條等制作),然后將這些號簽放在同一個箱子里,進行均勻攪拌,抽簽時每次從中抽一個號簽,連續(xù)抽取n次,就得到一個容量為n的樣本適用范圍:總體的個體數(shù)不多時優(yōu)點:抽簽法簡便易行,當(dāng)總體的個體數(shù)不太多時適宜采用抽簽法.(2)隨機數(shù)表法:隨機數(shù)表抽樣“三步曲”:第一步,將總體中的個體編號;第二步,選定開始的數(shù)字;第三步,獲取樣本號碼概率:

  相關(guān)高中數(shù)學(xué)知識點:系統(tǒng)抽樣

  系統(tǒng)抽樣的概念:

  當(dāng)整體中個體數(shù)較多時,將整體均分為幾個部分,然后按一定的規(guī)則,從每一個部分抽取1個個體而得到所需要的樣本的方法叫系統(tǒng)抽樣。

  系統(tǒng)抽樣的步驟:

  (1)采用隨機方式將總體中的個體編號;

  (2)將整個編號進行均勻分段在確定相鄰間隔k后,若不能均勻分段,即

  =k不是整數(shù)時,可采用隨機方法從總體中剔除一些個體,使總體中剩余的個體數(shù)N′滿足是整數(shù);

  (3)在第一段中采用簡單隨機抽樣方法確定第一個被抽得的個體編號l;

  (4)依次將l加上ik,i=1,2,…,(n-1),得到其余被抽取的個體的編號,從而得到整個樣本。

  相關(guān)高中數(shù)學(xué)知識點:分層抽樣

  分層抽樣:

  當(dāng)已知總體由差異明顯的幾部分組成時,常將總體分成幾部分,然后按照各部分所占的比例進行抽樣,這種抽樣叫做分層抽樣,其所分成的各個部分叫做層。

  利用分層抽樣抽取樣本,每一層按照它在總體中所占的比例進行抽取。

  不放回抽樣和放回抽樣:

  在抽樣中,如果每次抽出個體后不再將它放回總體,稱這樣的抽樣為不放回抽樣;如果每次抽出個體后再將它放回總體,稱這樣的抽樣為放回抽樣.

  隨機抽樣、系統(tǒng)抽樣、分層抽樣都是不放回抽樣

  分層抽樣的特點:

  (1)分層抽樣適用于差異明顯的幾部分組成的情況;

  (2)在每一層進行抽樣時,在采用簡單隨機抽樣或系統(tǒng)抽樣;

  (3)分層抽樣充分利用已掌握的信息,使樣具有良好的代表性;

  (4)分層抽樣也是等概率抽樣,而且在每層抽樣時,可以根據(jù)具體情況采用不同的抽樣方法,因此應(yīng)用較為廣泛。

高二數(shù)學(xué)知識點總結(jié)4

  一、直線與方程

  (1)直線的傾斜角

  定義:x軸正向與直線向上方向之間所成的角叫直線的傾斜角。特別地,當(dāng)直線與x軸平行或重合時,我們規(guī)定它的傾斜角為0度。因此,傾斜角的取值范圍是0°≤α<180°

 。2)直線的斜率

 、俣x:傾斜角不是90°的直線,它的傾斜角的正切叫做這條直線的斜率。直線的斜率常用k表示。即 。斜率反映直線與軸的傾斜程度。

  當(dāng) 時, ; 當(dāng) 時, ; 當(dāng) 時, 不存在。

  ②過兩點的直線的斜率公式:

  注意下面四點:(1)當(dāng) 時,公式右邊無意義,直線的斜率不存在,傾斜角為90°;

  (2)k與P1、P2的順序無關(guān);(3)以后求斜率可不通過傾斜角而由直線上兩點的坐標(biāo)直接求得;

  (4)求直線的傾斜角可由直線上兩點的坐標(biāo)先求斜率得到。

  (3)直線方程

 、冱c斜式: 直線斜率k,且過點

  注意:當(dāng)直線的斜率為0°時,k=0,直線的方程是y=y1。

  當(dāng)直線的斜率為90°時,直線的斜率不存在,它的方程不能用點斜式表示.但因l上每一點的橫坐標(biāo)都等于x1,所以它的方程是x=x1。

 、谛苯厥剑 ,直線斜率為k,直線在y軸上的截距為b

  ③兩點式: ( )直線兩點 ,

 、芙鼐厥剑

  其中直線 與 軸交于點 ,與 軸交于點 ,即 與 軸、 軸的截距分別為 。

  ⑤一般式: (A,B不全為0)

  注意:各式的適用范圍 特殊的方程如:

  平行于x軸的直線: (b為常數(shù)); 平行于y軸的直線: (a為常數(shù));

  (5)直線系方程:即具有某一共同性質(zhì)的直線

 。ㄒ唬┢叫兄本系

  平行于已知直線 ( 是不全為0的常數(shù))的直線系: (C為常數(shù))

  (二)垂直直線系

  垂直于已知直線 ( 是不全為0的常數(shù))的直線系: (C為常數(shù))

 。ㄈ┻^定點的直線系

  (。┬甭蕿閗的直線系: ,直線過定點 ;

 。áⅲ┻^兩條直線 , 的交點的直線系方程為

  ( 為參數(shù)),其中直線 不在直線系中。

 。6)兩直線平行與垂直

  當(dāng) , 時,;

  注意:利用斜率判斷直線的平行與垂直時,要注意斜率的存在與否。

  (7)兩條直線的交點

  相交

  交點坐標(biāo)即方程組 的一組解。

  方程組無解 ; 方程組有無數(shù)解 與 重合

 。8)兩點間距離公式:設(shè) 是平面直角坐標(biāo)系中的兩個點,

  則

 。9)點到直線距離公式:一點 到直線 的距離

  (10)兩平行直線距離公式

  在任一直線上任取一點,再轉(zhuǎn)化為點到直線的距離進行求解。

  二、圓的方程

  1、圓的定義:平面內(nèi)到一定點的距離等于定長的點的集合叫圓,定點為圓心,定長為圓的半徑。

  2、圓的方程

 。1)標(biāo)準(zhǔn)方程 ,圓心 ,半徑為r;

  (2)一般方程

  當(dāng) 時,方程表示圓,此時圓心為 ,半徑為

  當(dāng) 時,表示一個點; 當(dāng) 時,方程不表示任何圖形。

 。3)求圓方程的方法:

  一般都采用待定系數(shù)法:先設(shè)后求。確定一個圓需要三個獨立條件,若利用圓的標(biāo)準(zhǔn)方程,

  需求出a,b,r;若利用一般方程,需要求出D,E,F(xiàn);

  另外要注意多利用圓的幾何性質(zhì):如弦的中垂線必經(jīng)過原點,以此來確定圓心的位置。

  3、直線與圓的位置關(guān)系:

  直線與圓的位置關(guān)系有相離,相切,相交三種情況:

 。1)設(shè)直線 ,圓 ,圓心 到l的距離為 ,則有 ; ;

 。2)過圓外一點的切線:①k不存在,驗證是否成立②k存在,設(shè)點斜式方程,用圓心到該直線距離=半徑,求解k,得到方程

  (3)過圓上一點的切線方程:圓(x-a)2+(y-b)2=r2,圓上一點為(x0,y0),則過此點的切線方程為(x0-a)(x-a)+(y0-b)(y-b)= r2

  4、圓與圓的位置關(guān)系:通過兩圓半徑的和(差),與圓心距(d)之間的大小比較來確定。

  設(shè)圓 ,

  兩圓的位置關(guān)系常通過兩圓半徑的和(差),與圓心距(d)之間的大小比較來確定。

  當(dāng) 時兩圓外離,此時有公切線四條;

  當(dāng) 時兩圓外切,連心線過切點,有外公切線兩條,內(nèi)公切線一條;

  當(dāng) 時兩圓相交,連心線垂直平分公共弦,有兩條外公切線;

  當(dāng) 時,兩圓內(nèi)切,連心線經(jīng)過切點,只有一條公切線;

  當(dāng) 時,兩圓內(nèi)含; 當(dāng) 時,為同心圓。

  注意:已知圓上兩點,圓心必在中垂線上;已知兩圓相切,兩圓心與切點共線

  圓的輔助線一般為連圓心與切線或者連圓心與弦中點

  三、立體幾何初步

  1、柱、錐、臺、球的結(jié)構(gòu)特征

  (1)棱柱:

  幾何特征:兩底面是對應(yīng)邊平行的全等多邊形;側(cè)面、對角面都是平行四邊形;側(cè)棱平行且相等;平行于底面的截面是與底面全等的多邊形。

  (2)棱錐

  幾何特征:側(cè)面、對角面都是三角形;平行于底面的截面與底面相似,其相似比等于頂點到截面距離與高的比的平方。

 。3)棱臺:

  幾何特征:①上下底面是相似的平行多邊形 ②側(cè)面是梯形 ③側(cè)棱交于原棱錐的頂點

 。4)圓柱:定義:以矩形的一邊所在的直線為軸旋轉(zhuǎn),其余三邊旋轉(zhuǎn)所成

  幾何特征:①底面是全等的圓;②母線與軸平行;③軸與底面圓的半徑垂直;④側(cè)面展開圖是一個矩形。

  (5)圓錐:定義:以直角三角形的一條直角邊為旋轉(zhuǎn)軸,旋轉(zhuǎn)一周所成

  幾何特征:①底面是一個圓;②母線交于圓錐的頂點;③側(cè)面展開圖是一個扇形。

 。6)圓臺:定義:以直角梯形的垂直與底邊的腰為旋轉(zhuǎn)軸,旋轉(zhuǎn)一周所成

  幾何特征:①上下底面是兩個圓;②側(cè)面母線交于原圓錐的頂點;③側(cè)面展開圖是一個弓形。

 。7)球體:定義:以半圓的直徑所在直線為旋轉(zhuǎn)軸,半圓面旋轉(zhuǎn)一周形成的幾何體

  幾何特征:①球的截面是圓;②球面上任意一點到球心的距離等于半徑。

  2、空間幾何體的三視圖

  定義三視圖:正視圖(光線從幾何體的前面向后面正投影);側(cè)視圖(從左向右)、

  俯視圖(從上向下)

  注:正視圖反映了物體的高度和長度;俯視圖反映了物體的長度和寬度;側(cè)視圖反映了物體的高度和寬度。

  3、空間幾何體的直觀圖——斜二測畫法

  斜二測畫法特點:①原來與x軸平行的線段仍然與x平行且長度不變;

 、谠瓉砼cy軸平行的線段仍然與y平行,長度為原來的一半。

  4、柱體、錐體、臺體的表面積與體積

  (1)幾何體的表面積為幾何體各個面的面積的和。

 。2)特殊幾何體表面積公式(c為底面周長,h為高, 為斜高,l為母線)

 。3)柱體、錐體、臺體的體積公式

 。4)球體的表面積和體積公式:V = ; S =

  4、空間點、直線、平面的位置關(guān)系

  公理1:如果一條直線的兩點在一個平面內(nèi),那么這條直線是所有的點都在這個平面內(nèi)。

  應(yīng)用: 判斷直線是否在平面內(nèi)

  用符號語言表示公理1:

  公理2:如果兩個不重合的平面有一個公共點,那么它們有且只有一條過該點的公共直線

  符號:平面α和β相交,交線是a,記作α∩β=a。

  符號語言:

  公理2的作用:

 、偎桥卸▋蓚平面相交的方法。

 、谒f明兩個平面的交線與兩個平面公共點之間的關(guān)系:交線必過公共點。

  ③它可以判斷點在直線上,即證若干個點共線的重要依據(jù)。

  公理3:經(jīng)過不在同一條直線上的三點,有且只有一個平面。

  推論:一直線和直線外一點確定一平面;兩相交直線確定一平面;兩平行直線確定一平面。

  公理3及其推論作用:

 、偎强臻g內(nèi)確定平面的依據(jù)

 、谒亲C明平面重合的依據(jù)

  公理4:平行于同一條直線的兩條直線互相平行

  空間直線與直線之間的位置關(guān)系

 、 異面直線定義:不同在任何一個平面內(nèi)的兩條直線

 、 異面直線性質(zhì):既不平行,又不相交。

 、 異面直線判定:過平面外一點與平面內(nèi)一點的直線與平面內(nèi)不過該店的直線是異面直線

 、 異面直線所成角:作平行,令兩線相交,所得銳角或直角,即所成角。兩條異面直線所成角的范圍是(0°,90°],若兩條異面直線所成的角是直角,我們就說這兩條異面直線互相垂直。

  求異面直線所成角步驟:

  A、利用定義構(gòu)造角,可固定一條,平移另一條,或兩條同時平移到某個特殊的位置,頂點選在特殊的位置上。

  B、證明作出的角即為所求角

  C、利用三角形來求角

 。7)等角定理:如果一個角的兩邊和另一個角的兩邊分別平行,那么這兩角相等或互補。

 。8)空間直線與平面之間的位置關(guān)系

  直線在平面內(nèi)——有無數(shù)個公共點.

  三種位置關(guān)系的符號表示:a α a∩α=A a‖α

 。9)平面與平面之間的位置關(guān)系:平行——沒有公共點;α‖β

  相交——有一條公共直線。α∩β=b

  5、空間中的平行問題

 。1)直線與平面平行的判定及其性質(zhì)

  線面平行的判定定理:平面外一條直線與此平面內(nèi)一條直線平行,則該直線與此平面平行。

  線線平行 線面平行

  線面平行的性質(zhì)定理:如果一條直線和一個平面平行,經(jīng)過這條直線的平面和這個平面相交,那么這條直線和交線平行。線面平行 線線平行

 。2)平面與平面平行的判定及其性質(zhì)

  兩個平面平行的判定定理

  (1)如果一個平面內(nèi)的兩條相交直線都平行于另一個平面,那么這兩個平面平行

  (線面平行→面面平行),

  (2)如果在兩個平面內(nèi),各有兩組相交直線對應(yīng)平行,那么這兩個平面平行。

 。ň線平行→面面平行),

 。3)垂直于同一條直線的兩個平面平行,

  兩個平面平行的性質(zhì)定理

 。1)如果兩個平面平行,那么某一個平面內(nèi)的直線與另一個平面平行。(面面平行→線面平行)

  (2)如果兩個平行平面都和第三個平面相交,那么它們的交線平行。(面面平行→線線平行)

  7、空間中的垂直問題

 。1)線線、面面、線面垂直的定義

 、賰蓷l異面直線的垂直:如果兩條異面直線所成的角是直角,就說這兩條異面直線互相垂直。

 、诰面垂直:如果一條直線和一個平面內(nèi)的任何一條直線垂直,就說這條直線和這個平面垂直。

 、燮矫婧推矫娲怪保喝绻麅蓚平面相交,所成的二面角(從一條直線出發(fā)的兩個半平面所組成的圖形)是直二面角(平面角是直角),就說這兩個平面垂直。

 。2)垂直關(guān)系的判定和性質(zhì)定理

  ①線面垂直判定定理和性質(zhì)定理

  判定定理:如果一條直線和一個平面內(nèi)的兩條相交直線都垂直,那么這條直線垂直這個平面。

  性質(zhì)定理:如果兩條直線同垂直于一個平面,那么這兩條直線平行。

 、诿婷娲怪钡呐卸ǘɡ砗托再|(zhì)定理

  判定定理:如果一個平面經(jīng)過另一個平面的一條垂線,那么這兩個平面互相垂直。

  性質(zhì)定理:如果兩個平面互相垂直,那么在一個平面內(nèi)垂直于他們的交線的直線垂直于另一個平面。

  9、空間角問題

 。1)直線與直線所成的角

  ①兩平行直線所成的角:規(guī)定為 。

 、趦蓷l相交直線所成的角:兩條直線相交其中不大于直角的角,叫這兩條直線所成的角。

 、蹆蓷l異面直線所成的角:過空間任意一點O,分別作與兩條異面直線a,b平行的直線 ,形成兩條相交直線,這兩條相交直線所成的不大于直角的角叫做兩條異面直線所成的角。

 。2)直線和平面所成的角

 、倨矫娴钠叫芯與平面所成的角:規(guī)定為 。

  ②平面的垂線與平面所成的角:規(guī)定為 。

 、燮矫娴男本與平面所成的角:平面的一條斜線和它在平面內(nèi)的射影所成的銳角,叫做這條直線和這個平面所成的角。

  求斜線與平面所成角的思路類似于求異面直線所成角:“一作,二證,三計算”。

  在“作角”時依定義關(guān)鍵作射影,由射影定義知關(guān)鍵在于斜線上一點到面的垂線,

  在解題時,注意挖掘題設(shè)中兩個主要信息:

 。1)斜線上一點到面的垂線;

 。2)過斜線上的一點或過斜線的平面與已知面垂直,由面面垂直性質(zhì)易得垂線。

 。3)二面角和二面角的平面角

 、俣娼堑亩x:從一條直線出發(fā)的兩個半平面所組成的圖形叫做二面角,這條直線叫做二面角的棱,這兩個半平面叫做二面角的面。

 、诙娼堑钠矫娼牵阂远娼堑睦馍先我庖稽c為頂點,在兩個面內(nèi)分別作垂直于棱的兩條射線,這兩條射線所成的角叫二面角的平面角。

 、壑倍娼牵浩矫娼鞘侵苯堑亩娼墙兄倍娼。

  兩相交平面如果所組成的二面角是直二面角,那么這兩個平面垂直;反過來,如果兩個平面垂直,那么所成的二面角為直二面角

 、芮蠖娼堑姆椒

  定義法:在棱上選擇有關(guān)點,過這個點分別在兩個面內(nèi)作垂直于棱的射線得到平面角

  垂面法:已知二面角內(nèi)一點到兩個面的垂線時,過兩垂線作平面與兩個面的交線所成的角為二面角的平面角

高二數(shù)學(xué)知識點總結(jié)5

  一、導(dǎo)數(shù)的應(yīng)用

  1.用導(dǎo)數(shù)研究函數(shù)的最值

  確定函數(shù)在其確定的定義域內(nèi)可導(dǎo)(通常為開區(qū)間),求出導(dǎo)函數(shù)在定義域內(nèi)的零點,研究在零點左、右的函數(shù)的單調(diào)性,若左增,右減,則在該零點處,函數(shù)去極大值;若左邊減少,右邊增加,則該零點處函數(shù)取極小值。學(xué)習(xí)了如何用導(dǎo)數(shù)研究函數(shù)的最值之后,可以做一個有關(guān)導(dǎo)數(shù)和函數(shù)的綜合題來檢驗下學(xué)習(xí)成果。

  2.生活中常見的函數(shù)優(yōu)化問題

  1)費用、成本最省問題

  2)利潤、收益最大問題

  3)面積、體積最(大)問題

  二、推理與證明

  1.歸納推理:歸納推理是高二數(shù)學(xué)的一個重點內(nèi)容,其難點就是有部分結(jié)論得到一般結(jié)論,破解的方法是充分考慮部分結(jié)論提供的信息,從中發(fā)現(xiàn)一般規(guī)律;類比推理的難點是發(fā)現(xiàn)兩類對象的相似特征,由其中一類對象的特征得出另一類對象的特征,破解的方法是利用已經(jīng)掌握的數(shù)學(xué)知識,分析兩類對象之間的關(guān)系,通過兩類對象已知的相似特征得出所需要的相似特征。

  2.類比推理:由兩類對象具有某些類似特征和其中一類對象的某些已知特征,推出另一類對象也具有這些特征的推理稱為類比推理,簡而言之,類比推理是由特殊到特殊的推理。

  三、不等式

  對于含有參數(shù)的一元二次不等式解的討論

  1)二次項系數(shù):如果二次項系數(shù)含有字母,要分二次項系數(shù)是正數(shù)、零和負(fù)數(shù)三種情況進行討論。

  2)不等式對應(yīng)方程的根:如果一元二次不等式對應(yīng)的方程的根能夠通過因式分解的方法求出來,則根據(jù)這兩個根的大小進行分類討論,這時,兩個根的大小關(guān)系就是分類標(biāo)準(zhǔn),如果一元二次不等式對應(yīng)的方程根不能通過因式分解的方法求出來,則根據(jù)方程的判別式進行分類討論。通過不等式練習(xí)題能夠幫助你更加熟練的運用不等式的知識點,例如用放縮法證明不等式這種技巧以及利用均值不等式求最值的九種技巧這樣的解題思路需要再做題的過程中總結(jié)出來。

  拓展閱讀

  說明:以下內(nèi)容為本文主關(guān)鍵詞的百科內(nèi)容,一詞可能多意,僅作為參考閱讀內(nèi)容,下載的文檔不包含此內(nèi)容。每個關(guān)鍵詞后面會隨機推薦一個搜索引擎工具,方便用戶從多個垂直領(lǐng)域了解更多與本文相似的內(nèi)容。

  1、數(shù)學(xué):數(shù)學(xué),是研究數(shù)量、結(jié)構(gòu)、變化、空間以及信息等概念的一門學(xué)科。數(shù)學(xué)是人類對事物的抽象結(jié)構(gòu)與模式進行嚴(yán)格描述的一種通用手段,可以應(yīng)用于現(xiàn)實世界的任何問題,所有的數(shù)學(xué)對象本質(zhì)上都是人為定義的。從這個意義上,數(shù)學(xué)屬于形式科學(xué),而不是自然科學(xué)。不同的數(shù)學(xué)家和哲學(xué)家對數(shù)學(xué)的確切范圍和定義有一系列的看法。在人類歷史發(fā)展和社會生活中,數(shù)學(xué)發(fā)揮著不可替代的作用,同時也是學(xué)習(xí)和研究現(xiàn)代科學(xué)技術(shù)必不可少的基本工具。數(shù)學(xué)史數(shù)理邏輯與數(shù)學(xué)基礎(chǔ)a:演繹邏輯學(xué)(也稱符號邏輯學(xué)),b:證明論(也稱元數(shù)學(xué)),c:遞歸論,d:模型論,e:公理集合論,f:數(shù)學(xué)基礎(chǔ),g:數(shù)理邏輯與數(shù)學(xué)基礎(chǔ)其他學(xué)科。數(shù)論a:初等數(shù)論,b:解析數(shù)論,c:代數(shù)數(shù)論,d:超越數(shù)論,e:丟番圖逼近,f:數(shù)的幾何,g:概率數(shù)論,h:計算數(shù)論,i:數(shù)論其他學(xué)科。代數(shù)學(xué)a:線性代數(shù),b:群論,c:域論,d:李群,e:李代數(shù),f:Kac-Moody代數(shù),g:環(huán)論(包括交換環(huán)與交換代數(shù),...頭條搜索更多高二數(shù)學(xué)下冊知識點總結(jié)

  2、類比推理:類比推理亦稱“類推”。推理的一種形式。根據(jù)兩個對象在某些屬性上相同或相似,通過比較而推斷出它們在其他屬性上也相同的推理過程。它是從觀察個別現(xiàn)象開始的,因而近似歸納推理。但它又不是由特殊到一般,而是由特殊到特殊,因而又不同于歸納推理。分完全類推和不完全類推兩種形式。完全類推是兩個或兩類事物在進行比較的方面完全相同時的類推;不完全類推是兩個或兩類事物在進行比較的方面不完全相同時的類推。這是科學(xué)研究中常用的方法之一。它是從特殊推向特殊的推理。類比推理是根據(jù)兩個或兩類對象有部分屬性相同,從而推出它們的其他屬性也相同的推理。簡稱類推、類比。以關(guān)于兩個事物某些屬性相同的判斷為前提,推出兩個事物的其他屬性相同的結(jié)論的推理。如聲和光有不少屬性相同--直線傳播,有反射、折射和干擾等現(xiàn)象;由此推出:既然聲有波動性質(zhì),光也有波動性質(zhì)。這就是類比推理。類比推理具有或然性。如果前提中確認(rèn)的共同屬性很少,而且共同屬性和推出來的屬性沒有什么關(guān)系,這樣的類比推...谷歌搜索更多高二數(shù)學(xué)下冊知識點總結(jié)

  3、總結(jié):總結(jié)是事后對某一階段的工作或某項工作的完成情況,包括取得的成績、存在的問題及得到的經(jīng)驗和教訓(xùn)加以回顧和分析,為今后的工作提供幫助和借鑒的一種書面材料。(1)自身性?偨Y(jié)都是以第一人稱,從自身出發(fā)。它是單位或個人自身實踐活動的反映,其內(nèi)容行文來自自身實踐,其結(jié)論也為指導(dǎo)今后自身實踐。(2)指導(dǎo)性?偨Y(jié)以回顧思考的方式對自身以往實踐做理性認(rèn)識,找出事物本質(zhì)和發(fā)展規(guī)律,取得經(jīng)驗,避免失誤,以指導(dǎo)未來工作。(3)理論性。總結(jié)是理論的升華,是對前一階段工作的經(jīng)驗、教訓(xùn)的.分析研究,借此上升到理論的高度,并從中提煉出有規(guī)律性的東西,從而提高認(rèn)識,以正確的認(rèn)識來把握客觀事物,更好地指導(dǎo)今后的實際工作。(4)客觀性?偨Y(jié)是對實際工作再認(rèn)識的過程,是對前一階段工作的回顧。總結(jié)的內(nèi)容必須要完全忠于自身的客觀實踐,其材料必須以客觀事實為依據(jù),不允許東拼西湊,要真實、客觀地分析情況、總結(jié)經(jīng)驗。(1)綜合性總結(jié)。對某一單位、某一部門工作進行全面性總結(jié),既反...頭條搜索更多高二數(shù)學(xué)下冊知識點總結(jié)

  4、因式分解:把一個多項式在一個范圍(如實數(shù)范圍內(nèi)分解,即所有項均為實數(shù))化為幾個整式的積的形式,這種式子變形叫做這個多項式的因式分解,也叫作把這個多項式分解因式。把一個多項式在一個范圍化為幾個整式的積的形式,這種式子變形叫做這個多項式的因式分解,也叫作把這個多項式分解因式。因式分解是中學(xué)數(shù)學(xué)中最重要的恒等變形之一,它被廣泛地應(yīng)用于初等數(shù)學(xué)之中,在數(shù)學(xué)求根作圖、解一元二次方程方面也有很廣泛的應(yīng)用,是解決許多數(shù)學(xué)問題的有力工具。因式分解方法靈活,技巧性強。學(xué)習(xí)這些方法與技巧,不僅是掌握因式分解內(nèi)容所需的,而且對于培養(yǎng)解題技能、發(fā)展思維能力都有著十分獨特的作用。學(xué)習(xí)它,既可以復(fù)習(xí)整式的四則運算,又為學(xué)習(xí)分式打好基礎(chǔ);學(xué)好它,既可以培養(yǎng)學(xué)生的觀察、思維發(fā)展性、運算能力,又可以提高綜合分析和解決問題的能力;窘Y(jié)論:分解因式為整式乘法的逆過程。高級結(jié)論:在高等代數(shù)上,因式分解有一些重要結(jié)論,在初等代數(shù)層面上證明很困難,但是理解很容易。

高二數(shù)學(xué)知識點總結(jié)6

  等差數(shù)列

  對于一個數(shù)列{an},如果任意相鄰兩項之差為一個常數(shù),那么該數(shù)列為等差數(shù)列,且稱這一定值差為公差,記為d;從第一項a1到第n項an的總和,記為Sn。

  那么,通項公式為,其求法很重要,利用了“疊加原理”的思想:

  將以上n—1個式子相加,便會接連消去很多相關(guān)的項,最終等式左邊余下an,而右邊則余下a1和n—1個d,如此便得到上述通項公式。

  此外,數(shù)列前n項的和,其具體推導(dǎo)方式較簡單,可用以上類似的疊加的方法,也可以采取迭代的方法,在此,不再復(fù)述。

  值得說明的是,前n項的和Sn除以n后,便得到一個以a1為首項,以d/2為公差的新數(shù)列,利用這一特點可以使很多涉及Sn的數(shù)列問題迎刃而解。

  等比數(shù)列

  對于一個數(shù)列{an},如果任意相鄰兩項之商(即二者的比)為一個常數(shù),那么該數(shù)列為等比數(shù)列,且稱這一定值商為公比q;從第一項a1到第n項an的總和,記為Tn。

  那么,通項公式為(即a1乘以q的(n—1)次方,其推導(dǎo)為“連乘原理”的思想:

  a2=a1Xq,

  a3=a2Xq,

  a4=a3Xq,

  ````````

  an=an—1Xq,

  將以上(n—1)項相乘,左右消去相應(yīng)項后,左邊余下an,右邊余下a1和(n—1)個q的乘積,也即得到了所述通項公式。

  此外,當(dāng)q=1時該數(shù)列的前n項和Tn=a1Xn

  當(dāng)q≠1時該數(shù)列前n項的和Tn=a1X(1—q^(n))/(1—q)。

高二數(shù)學(xué)知識點總結(jié)7

  用樣本的數(shù)字特征估計總體的數(shù)字特征

  1、本均值:

  2、樣本標(biāo)準(zhǔn)差:

  3.用樣本估計總體時,如果抽樣的方法比較合理,那么樣本可以反映總體的信息,但從樣本得到的信息會有偏差。在隨機抽樣中,這種偏差是不可避免的。

  雖然我們用樣本數(shù)據(jù)得到的分布、均值和標(biāo)準(zhǔn)差并不是總體的真正的分布、均值和標(biāo)準(zhǔn)差,而只是一個估計,但這種估計是合理的,特別是當(dāng)樣本量很大時,它們確實反映了總體的信息。

  4.(1)如果把一組數(shù)據(jù)中的每一個數(shù)據(jù)都加上或減去同一個共同的常數(shù),標(biāo)準(zhǔn)差不變

  (2)如果把一組數(shù)據(jù)中的每一個數(shù)據(jù)乘以一個共同的常數(shù)k,標(biāo)準(zhǔn)差變?yōu)樵瓉淼膋倍

  (3)一組數(shù)據(jù)中的值和最小值對標(biāo)準(zhǔn)差的影響,區(qū)間的應(yīng)用;

  “去掉一個分,去掉一個最低分”中的科學(xué)道理

高二數(shù)學(xué)知識點總結(jié)8

  一、集合、簡易邏輯(14課時,8個)

  1.集合;2.子集;3.補集;4.交集;5.并集;6.邏輯連結(jié)詞;7.四種命題;8.充要條件。

  二、函數(shù)(30課時,12個)

  1.映射;2.函數(shù);3.函數(shù)的單調(diào)性;4.反函數(shù);5.互為反函數(shù)的函數(shù)圖象間的關(guān)系;6.指數(shù)概念的擴充;7.有理指數(shù)冪的運算;8.指數(shù)函數(shù);9.對數(shù);10.對數(shù)的運算性質(zhì);11.對數(shù)函數(shù).12.函數(shù)的應(yīng)用舉例。

  三、數(shù)列(12課時,5個)

  1.數(shù)列;2.等差數(shù)列及其通項公式;3.等差數(shù)列前n項和公式;4.等比數(shù)列及其通頂公式;5.等比數(shù)列前n項和公式。

  四、三角函數(shù)(46課時,17個)

  1.角的概念的推廣;2.弧度制;3.任意角的三角函數(shù);4.單位圓中的三角函數(shù)線;5.同角三角函數(shù)的基本關(guān)系式;6.正弦、余弦的誘導(dǎo)公式;7.兩角和與差的正弦、余弦、正切;8.二倍角的正弦、余弦、正切;9.正弦函數(shù)、余弦函數(shù)的圖象和性質(zhì);10.周期函數(shù);11.函數(shù)的奇偶性;12.函數(shù)的圖象;13.正切函數(shù)的圖象和性質(zhì);14.已知三角函數(shù)值求角;15.正弦定理;16.余弦定理;17.斜三角形解法舉例。

  五、平面向量(12課時,8個)

  1.向量;2.向量的加法與減法;3.實數(shù)與向量的積;4.平面向量的坐標(biāo)表示;5.線段的定比分點;6.平面向量的數(shù)量積;7.平面兩點間的距離;8.平移。

  六、不等式(22課時,5個)

  1.不等式;2.不等式的基本性質(zhì);3.不等式的證明;4.不等式的解法;5.含絕對值的不等式。

  七、直線和圓的方程(22課時,12個)

  1.直線的傾斜角和斜率;2.直線方程的點斜式和兩點式;3.直線方程的一般式;4.兩條直線平行與垂直的條件;5.兩條直線的交角;6.點到直線的距離;7.用二元一次不等式表示平面區(qū)域;8.簡單線性規(guī)劃問題;9.曲線與方程的概念;10.由已知條件列出曲線方程;11.圓的標(biāo)準(zhǔn)方程和一般方程;12.圓的參數(shù)方程。

  八、圓錐曲線(18課時,7個)

  1.橢圓及其標(biāo)準(zhǔn)方程;2.橢圓的簡單幾何性質(zhì);3.橢圓的參數(shù)方程;4.雙曲線及其標(biāo)準(zhǔn)方程;5.雙曲線的簡單幾何性質(zhì);6.拋物線及其標(biāo)準(zhǔn)方程;7.拋物線的簡單幾何性質(zhì)。

  九、直線、平面、簡單何體(36課時,28個)

  1.平面及基本性質(zhì);2.平面圖形直觀圖的畫法;3.平面直線;4.直線和平面平行的判定與性質(zhì);5.直線和平面垂直的判定與性質(zhì);6.三垂線定理及其逆定理;7.兩個平面的位置關(guān)系;8.空間向量及其加法、減法與數(shù)乘;9.空間向量的坐標(biāo)表示;10.空間向量的數(shù)量積;11.直線的方向向量;12.異面直線所成的角;13.異面直線的公垂線;14.異面直線的距離;15.直線和平面垂直的性質(zhì);16.平面的法向量;17.點到平面的距離;18.直線和平面所成的角;19.向量在平面內(nèi)的射影;20.平面與平面平行的性質(zhì);21.平行平面間的距離;22.二面角及其平面角;23.兩個平面垂直的判定和性質(zhì);24.多面體;25.棱柱;26.棱錐;27.正多面體;28.球。

  十、排列、組合、二項式定理(18課時,8個)

  1.分類計數(shù)原理與分步計數(shù)原理;2.排列;3.排列數(shù)公式;4.組合;5.組合數(shù)公式;6.組合數(shù)的兩個性質(zhì);7.二項式定理;8.二項展開式的性質(zhì)。

  十一、概率(12課時,5個)

  1.隨機事件的概率;2.等可能事件的概率;3.互斥事件有一個發(fā)生的概率;4.相互獨立事件同時發(fā)生的概率;5.獨立重復(fù)試驗。

  選修Ⅱ(24個)

  十二、概率與統(tǒng)計(14課時,6個)

  1.離散型隨機變量的分布列;2.離散型隨機變量的期望值和方差;3.抽樣方法;4.總體分布的估計;5.正態(tài)分布;6.線性回歸。

  十三、極限(12課時,6個)

  1.數(shù)學(xué)歸納法;2.數(shù)學(xué)歸納法應(yīng)用舉例;3.數(shù)列的極限;4.函數(shù)的極限;5.極限的四則運算;6.函數(shù)的連續(xù)性。

  十四、導(dǎo)數(shù)(18課時,8個)

  1.導(dǎo)數(shù)的概念;2.導(dǎo)數(shù)的幾何意義;3.幾種常見函數(shù)的導(dǎo)數(shù);4.兩個函數(shù)的和、差、積、商的導(dǎo)數(shù);5.復(fù)合函數(shù)的導(dǎo)數(shù);6.基本導(dǎo)數(shù)公式;7.利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性和極值;8.函數(shù)的最大值和最小值。

  十五、復(fù)數(shù)(4課時,4個)

  1.復(fù)數(shù)的概念;2.復(fù)數(shù)的加法和減法;3.復(fù)數(shù)的乘法和除法;4.復(fù)數(shù)的一元二次方程和二項方程的解法。

高二數(shù)學(xué)知識點總結(jié)9

  ●不等式

  1、不等式你會解么?你會解么?如果是寫解集不要忘記寫成集合形式!

  2、的解集是(1,3),那么的解集是什么?

  3、兩類恒成立問題圖象法——恒成立,則=?

  ★★★★分離變量法——在[1,3]恒成立,則=?(必考題)

  4、線性規(guī)劃問題

 。1)可行域怎么作(一定要用直尺和鉛筆)定界——定域——邊界

 。2)目標(biāo)函數(shù)改寫:(注意分析截距與z的關(guān)系)

  (3)平行直線系去畫

  5、基本不等式的形式和變形形式

  如a,b為正數(shù),a,b滿足,則ab的范圍是

  6、運用基本不等式求最值要注意:一正二定三相等!

  如的最小值是的最小值(不要忘記交代是什么時候取到=。。

  一個非常重要的函數(shù)——對勾函數(shù)的圖象是什么?

  運用對勾函數(shù)來處理下面問題的最小值是

  7、★★兩種題型:

  和——倒數(shù)和(1的代換),如x,y為正數(shù),且,求的最小值?

  和——積(直接用基本不等式),如x,y為正數(shù),,則的范圍是?

  不要忘記x,xy,x2+y2這三者的關(guān)系!如x,y為正數(shù),,則的范圍是?

高二數(shù)學(xué)知識點總結(jié)10

  (1)總體和樣本:

 、僭诮y(tǒng)計學(xué)中,把研究對象的全體叫做總體.

 、诎衙總研究對象叫做個體.

  ③把總體中個體的總數(shù)叫做總體容量.

 、転榱搜芯靠傮w的有關(guān)性質(zhì),一般從總體中隨機抽取一部分:x1,x2,....,_研究,我們稱它為樣本.其中個體的個數(shù)稱為樣本容量.

 。2)簡單隨機抽樣,也叫純隨機抽樣。

  就是從總體中不加任何分組、劃類、排隊等,完全隨機地抽取調(diào)查單位。特點是:每個樣本單位被抽中的可能性相同(概率相等),樣本的每個單位完全獨立,彼此間無一定的關(guān)聯(lián)性和排斥性。簡單隨機抽樣是其它各種抽樣形式的基礎(chǔ)。通常只是在總體單位之間差異程度較小和數(shù)目較少時,才采用這種方法。

 。3)簡單隨機抽樣常用的方法:

 、俪楹灧

 、陔S機數(shù)表法

 、塾嬎銠C模擬法

  在簡單隨機抽樣的樣本容量設(shè)計中,主要考慮:

  ①總體變異情況;

 、谠试S誤差范圍;

 、鄹怕时WC程度。

 。4)抽簽法:

  ①給調(diào)查對象群體中的每一個對象編號;

 、跍(zhǔn)備抽簽的工具,實施抽簽;

  ③對樣本中的每一個個體進行測量或調(diào)查

高二數(shù)學(xué)知識點總結(jié)11

  在中國古代把數(shù)學(xué)叫算術(shù),又稱算學(xué),最后才改為數(shù)學(xué)。

  1.任意角

 。1)角的分類:

  ①按旋轉(zhuǎn)方向不同分為正角、負(fù)角、零角。

 、诎唇K邊位置不同分為象限角和軸線角。

 。2)終邊相同的角:

  終邊與角相同的角可寫成+k360(kZ)。

  (3)弧度制:

 、1弧度的角:把長度等于半徑長的弧所對的圓心角叫做1弧度的角。

 、谝(guī)定:正角的弧度數(shù)為正數(shù),負(fù)角的弧度數(shù)為負(fù)數(shù),零角的弧度數(shù)為零,||=,l是以角作為圓心角時所對圓弧的長,r為半徑。

  ③用弧度做單位來度量角的制度叫做弧度制。比值與所取的r的大小無關(guān),僅與角的大小有關(guān)。

 、芑《扰c角度的換算:360弧度;180弧度。

 、莼¢L公式:l=||r,扇形面積公式:S扇形=lr=||r2.

  2.任意角的三角函數(shù)

 。1)任意角的三角函數(shù)定義:

  設(shè)是一個任意角,角的終邊與單位圓交于點P(x,y),那么角的正弦、余弦、正切分別是:sin =y,cos =x,tan =,它們都是以角為自變量,以單位圓上點的坐標(biāo)或坐標(biāo)的比值為函數(shù)值的函數(shù)。

 。2)三角函數(shù)在各象限內(nèi)的符號口訣是:一全正、二正弦、三正切、四余弦。

  3.三角函數(shù)線

  設(shè)角的頂點在坐標(biāo)原點,始邊與x軸非負(fù)半軸重合,終邊與單位圓相交于點P,過P作PM垂直于x軸于M。由三角函數(shù)的定義知,點P的坐標(biāo)為(cos_,sin_),即P(cos_,sin_),其中cos =OM,sin =MP,單位圓與x軸的正半軸交于點A,單位圓在A點的切線與的終邊或其反向延長線相交于點T,則tan =AT。我們把有向線段OM、MP、AT叫做的余弦線、正弦線、正切線。

高二數(shù)學(xué)知識點總結(jié)12

  考點一:求導(dǎo)公式。

  例1.f(x)是f(x)13x2x1的導(dǎo)函數(shù),則f(1)的值是3

  考點二:導(dǎo)數(shù)的幾何意義。

  例2.已知函數(shù)yf(x)的圖象在點M(1,f(1))處的切線方程是y

  1x2,則f(1)f(1)2

  ,3)處的切線方程是例3.曲線yx32x24x2在點(1

  點評:以上兩小題均是對導(dǎo)數(shù)的幾何意義的考查。

  考點三:導(dǎo)數(shù)的幾何意義的應(yīng)用。

  例4.已知曲線C:yx33x22x,直線l:ykx,且直線l與曲線C相切于點x0,y0x00,求直線l的方程及切點坐標(biāo)。

  點評:本小題考查導(dǎo)數(shù)幾何意義的應(yīng)用。解決此類問題時應(yīng)注意“切點既在曲線上又在切線上”這個條件的應(yīng)用。函數(shù)在某點可導(dǎo)是相應(yīng)曲線上過該點存在切線的充分條件,而不是必要條件。

  考點四:函數(shù)的單調(diào)性。

  例5.已知fxax3_1在R上是減函數(shù),求a的取值范圍。32

  點評:本題考查導(dǎo)數(shù)在函數(shù)單調(diào)性中的應(yīng)用。對于高次函數(shù)單調(diào)性問題,要有求導(dǎo)意識。

  考點五:函數(shù)的極值。

  例6.設(shè)函數(shù)f(x)2x33ax23bx8c在x1及x2時取得極值。

  (1)求a、b的值;

  (2)若對于任意的x[0,3],都有f(x)c2成立,求c的取值范圍。

  點評:本題考查利用導(dǎo)數(shù)求函數(shù)的極值。求可導(dǎo)函數(shù)fx的極值步驟:

 、偾髮(dǎo)數(shù)f'x;

 、谇骹'x0的根;③將f'x0的根在數(shù)軸上標(biāo)出,得出單調(diào)區(qū)間,由f'x在各區(qū)間上取值的正負(fù)可確定并求出函數(shù)fx的極值。

高二數(shù)學(xué)知識點總結(jié)13

  (一)解三角形:

  1、正弦定理:在中,、、分別為角、、的對邊,,則有

  (為的外接圓的半徑)

  2、正弦定理的變形公式:①,,;

 、,,;③;

  3、三角形面積公式:.

  4、余弦定理:在中,有,推論:

  (二)數(shù)列:

  1.數(shù)列的有關(guān)概念:

  (1)數(shù)列:按照一定次序排列的一列數(shù)。數(shù)列是有序的。數(shù)列是定義在自然數(shù)N_它的有限子集{1,2,3,…,n}上的函數(shù)。

  (2)通項公式:數(shù)列的第n項an與n之間的函數(shù)關(guān)系用一個公式來表示,這個公式即是該數(shù)列的通項公式。如:。

  (3)遞推公式:已知數(shù)列{an}的第1項(或前幾項),且任一項an與他的前一項an-1(或前幾項)可以用一個公式來表示,這個公式即是該數(shù)列的遞推公式。

  如:。

  2.數(shù)列的表示方法:

  (1)列舉法:如1,3,5,7,9,…(2)圖象法:用(n,an)孤立點表示。

  (3)解析法:用通項公式表示。(4)遞推法:用遞推公式表示。

  3.數(shù)列的分類:

  4.數(shù)列{an}及前n項和之間的關(guān)系:

高二數(shù)學(xué)知識點總結(jié)14

  一、理解集合中的有關(guān)概念

  (1)集合中元素的特征: 確定性 , 互異性 , 無序性 。

  (2)集合與元素的關(guān)系用符號=表示。

  (3)常用數(shù)集的符號表示:自然數(shù)集 ;正整數(shù)集 ;整數(shù)集 ;有理數(shù)集 、實數(shù)集 。

  (4)集合的表示法: 列舉法 , 描述法 , 韋恩圖 。

  (5)空集是指不含任何元素的集合。

  空集是任何集合的子集,是任何非空集合的真子集。

  二、函數(shù)

  一、映射與函數(shù):

  (1)映射的概念: (2)一一映射:(3)函數(shù)的概念:

  二、函數(shù)的三要素:

  相同函數(shù)的判斷方法:①對應(yīng)法則 ;②定義域 (兩點必須同時具備)

  (1)函數(shù)解析式的求法:

  ①定義法(拼湊):②換元法:③待定系數(shù)法:④賦值法:

  (2)函數(shù)定義域的求法:

 、俸瑓栴}的定義域要分類討論;

  ②對于實際問題,在求出函數(shù)解析式后;必須求出其定義域,此時的定義域要根據(jù)實際意義來確定。

  (3)函數(shù)值域的求法:

 、倥浞椒:轉(zhuǎn)化為二次函數(shù),利用二次函數(shù)的特征來求值;常轉(zhuǎn)化為型如: 的形式;

 、谀媲蠓(反求法):通過反解,用 來表示 ,再由 的取值范圍,通過解不等式,得出 的取值范圍;常用來解,型如: ;

 、軗Q元法:通過變量代換轉(zhuǎn)化為能求值域的函數(shù),化歸思想;

 、萑怯薪绶:轉(zhuǎn)化為只含正弦、余弦的函數(shù),運用三角函數(shù)有界性來求值域;

 、藁静坏仁椒:轉(zhuǎn)化成型如: ,利用平均值不等式公式來求值域;

 、邌握{(diào)性法:函數(shù)為單調(diào)函數(shù),可根據(jù)函數(shù)的單調(diào)性求值域。

 、鄶(shù)形結(jié)合:根據(jù)函數(shù)的幾何圖形,利用數(shù)型結(jié)合的方法來求值域。

  三、函數(shù)的性質(zhì)

  函數(shù)的單調(diào)性、奇偶性、周期性

  單調(diào)性:定義:注意定義是相對與某個具體的區(qū)間而言。

  判定方法有:定義法(作差比較和作商比較)

  導(dǎo)數(shù)法(適用于多項式函數(shù))

  復(fù)合函數(shù)法和圖像法。

  應(yīng)用:比較大小,證明不等式,解不等式。

  奇偶性:定義:注意區(qū)間是否關(guān)于原點對稱,比較f(x) 與f(-x)的關(guān)系。f(x) -f(-x)=0 f(x) =f(-x) f(x)為偶函數(shù);

  f(x)+f(-x)=0 f(x) =-f(-x) f(x)為奇函數(shù)。

  判別方法:定義法, 圖像法 ,復(fù)合函數(shù)法

  應(yīng)用:把函數(shù)值進行轉(zhuǎn)化求解。

  周期性:定義:若函數(shù)f(x)對定義域內(nèi)的任意x滿足:f(x+T)=f(x),則T為函數(shù)f(x)的周期。

  其他:若函數(shù)f(x)對定義域內(nèi)的任意x滿足:f(x+a)=f(x-a),則2a為函數(shù)f(x)的周期.

  應(yīng)用:求函數(shù)值和某個區(qū)間上的函數(shù)解析式。

  四、圖形變換:函數(shù)圖像變換:(重點)要求掌握常見基本函數(shù)的圖像,掌握函數(shù)圖像變換的一般規(guī)律。

  常見圖像變化規(guī)律:(注意平移變化能夠用向量的語言解釋,和按向量平移聯(lián)系起來思考)

  平移變換 y=f(x)→y=f(x+a),y=f(x)+b

  注意:(ⅰ)有系數(shù),要先提取系數(shù)。如:把函數(shù)y=f(2x)經(jīng)過 平移得到函數(shù)y=f(2x+4)的圖象。

  (ⅱ)會結(jié)合向量的平移,理解按照向量 (m,n)平移的意義。

  對稱變換 y=f(x)→y=f(-x),關(guān)于y軸對稱

  y=f(x)→y=-f(x) ,關(guān)于x軸對稱

  y=f(x)→y=f|x|,把x軸上方的圖象保留,x軸下方的圖象關(guān)于x軸對稱

  y=f(x)→y=|f(x)|把y軸右邊的圖象保留,然后將y軸右邊部分關(guān)于y軸對稱。(注意:它是一個偶函數(shù))

  伸縮變換:y=f(x)→y=f(ωx),

  y=f(x)→y=Af(ωx+φ)具體參照三角函數(shù)的圖象變換。

  一個重要結(jié)論:若f(a-x)=f(a+x),則函數(shù)y=f(x)的圖像關(guān)于直線x=a對稱;

高二數(shù)學(xué)知識點總結(jié)15

  考點一:向量的概念、向量的基本定理

  了解向量的實際背景,掌握向量、零向量、平行向量、共線向量、單位向量、相等向量等概念,理解向量的幾何表示,掌握平面向量的基本定理。

  注意對向量概念的理解,向量是可以自由移動的,平移后所得向量與原向量相同;兩個向量無法比較大小,它們的?杀容^大小。

  考點二:向量的運算

  向量的運算要求掌握向量的加減法運算,會用平行四邊形法則、三角形法則進行向量的加減運算;掌握實數(shù)與向量的積運算,理解兩個向量共線的含義,會判斷兩個向量的平行關(guān)系;掌握向量的數(shù)量積的運算,體會平面向量的數(shù)量積與向量投影的關(guān)系,并理解其幾何意義,掌握數(shù)量積的坐標(biāo)表達式,會進行平面向量積的運算,能運用數(shù)量積表示兩個向量的夾角,會用向量積判斷兩個平面向量的垂直關(guān)系。

  命題形式主要以選擇、填空題型出現(xiàn),難度不大,考查重點為模和向量夾角的定義、夾角公式、向量的坐標(biāo)運算,有時也會與其它內(nèi)容相結(jié)合。

  考點三:定比分點

  掌握線段的定比分點和中點坐標(biāo)公式,并能熟練應(yīng)用,求點分有向線段所成比時,可借助圖形來幫助理解。

  重點考查定義和公式,主要以選擇題或填空題型出現(xiàn),難度一般。由于向量應(yīng)用的廣泛性,經(jīng)常也會與三角函數(shù),解析幾何一并考查,若出現(xiàn)在解答題中,難度以中檔題為主,偶爾也以難度略高的題目。

  考點四:向量與三角函數(shù)的綜合問題

  向量與三角函數(shù)的綜合問題是高考經(jīng)常出現(xiàn)的問題,考查了向量的知識,三角函數(shù)的知識,達到了高考中試題的覆蓋面的要求。

  命題以三角函數(shù)作為坐標(biāo),以向量的坐標(biāo)運算或向量與解三角形的內(nèi)容相結(jié)合,也有向量與三角函數(shù)圖象平移結(jié)合的問題,屬中檔偏易題。

  考點五:平面向量與函數(shù)問題的交匯

  平面向量與函數(shù)交匯的問題,主要是向量與二次函數(shù)結(jié)合的問題為主,要注意自變量的取值范圍。

  命題多以解答題為主,屬中檔題。

  考點六:平面向量在平面幾何中的應(yīng)用

  向量的坐標(biāo)表示實際上就是向量的代數(shù)表示.在引入向量的坐標(biāo)表示后,使向量之間的運算代數(shù)化,這樣就可以將“形”和“數(shù)”緊密地結(jié)合在一起.因此,許多平面幾何問題中較難解決的問題,都可以轉(zhuǎn)化為大家熟悉的代數(shù)運算的論證.也就是把平面幾何圖形放到適當(dāng)?shù)淖鴺?biāo)系中,賦予幾何圖形有關(guān)點與平面向量具體的坐標(biāo),這樣將有關(guān)平面幾何問題轉(zhuǎn)化為相應(yīng)的代數(shù)運算和向量運算,從而使問題得到解決.

  命題多以解答題為主,屬中等偏難的試題。

版權(quán)聲明:本文內(nèi)容由互聯(lián)網(wǎng)用戶自發(fā)貢獻,該文觀點僅代表作者本人。本站僅提供信息存儲空間服務(wù),不擁有所有權(quán),不承擔(dān)相關(guān)法律責(zé)任。如發(fā)現(xiàn)本站有涉嫌抄襲侵權(quán)/違法違規(guī)的內(nèi)容, 請發(fā)送郵件至 yyfangchan@163.com (舉報時請帶上具體的網(wǎng)址) 舉報,一經(jīng)查實,本站將立刻刪除