高中導(dǎo)數(shù)公式大全
高中導(dǎo)數(shù)公式大全
導(dǎo)數(shù)是微積分中的重要基礎(chǔ)概念,大家對于高中導(dǎo)數(shù)常用公式了解多少呢?為此小編為大家推薦了一些高中導(dǎo)數(shù)公式,歡迎大家參閱。
導(dǎo)數(shù)的定義
當(dāng)自變量的增量Δx=x-x0,Δx→0時函數(shù)增量Δy=f(x)- f(x0)與自變量增量之比的極限存在且有限,就說函數(shù)f在x0點(diǎn)可導(dǎo),稱之為f在x0點(diǎn)的導(dǎo)數(shù)(或變化率).
函數(shù)y=f(x)在x0點(diǎn)的導(dǎo)數(shù)f'(x0)的幾何意義:表示函數(shù)曲線在P0[x0,f(x0)] 點(diǎn)的切線斜率(導(dǎo)數(shù)的幾何意義是該函數(shù)曲線在這一點(diǎn)上的切線斜率)。
一般地,我們得出用函數(shù)的導(dǎo)數(shù)來判斷函數(shù)的增減性(單調(diào)性)的法則:設(shè)y=f(x )在(a,b)內(nèi)可導(dǎo)。如果在(a,b)內(nèi),f'(x)>0,則f(x)在這個區(qū)間是單調(diào)增加的(該點(diǎn)切線斜率增大,函數(shù)曲線變得“陡峭”,呈上升狀)。如果在(a,b)內(nèi),f'(x)<0,則f(x)在這個區(qū)間是單調(diào)減小的。所以,當(dāng)f'(x)=0時,y=f(x )有極大值或極小值,極大值中最大者是最大值,極小值中最小者是最小值
求導(dǎo)數(shù)的步驟
求函數(shù)y=f(x)在x0處導(dǎo)數(shù)的步驟:
、 求函數(shù)的增量Δy=f(x0+Δx)-f(x0) ② 求平均變化率 ③ 取極限,得導(dǎo)數(shù)。
導(dǎo)數(shù)公式:
、 C'=0(C為常數(shù)函數(shù)); ② (x^n)'= nx^(n-1) (n∈Q*);熟記1/X的導(dǎo)數(shù) ③ (sinx)' = cosx; (cosx)' = - sinx; (tanx)'=1/(cosx)^2=(secx)^2=1+(tanx)^2 -(cotx)'=1/(sinx)^2=(cscx)^2=1+(cotx)^2 (secx)'=tanxsecx (cscx)'=-cotxcscx (arcsinx)'=1/(1-x^2)^1/2 (arccosx)'=-1/(1-x^2)^1/2 (arctanx)'=1/(1+x^2) (arccotx)'=-1/(1+x^2) (arcsecx)'=1/(|x|(x^2-1)^1/2) (arccscx)'=-1/(|x|(x^2-1)^1/2) ④ (sinhx)'=hcoshx (coshx)'=-hsinhx (tanhx)'=1/(coshx)^2=(sechx)^2 (coth)'=-1/(sinhx)^2=-(cschx)^2 (sechx)'=-tanhxsechx (cschx)'=-cothxcschx (arsinhx)'=1/(x^2+1)^1/2 (arcoshx)'=1/(x^2-1)^1/2 (artanhx)'=1/(x^2-1) (|x|<1) (arcothx)'=1/(x^2-1) (|x|>1) (arsechx)'=1/(x(1-x^2)^1/2) (arcschx)'=1/(x(1+x^2)^1/2) ⑤ (e^x)' = e^x; (a^x)' = a^xlna (ln為自然對數(shù)) (Inx)' = 1/x(ln為自然對數(shù)) (logax)' =(xlna)^(-1),(a>0且a不等于1) (x^1/2)'=[2(x^1/2)]^(-1) (1/x)'=-x^(-2)
高中導(dǎo)數(shù)常用公式
1.y=f[g(x)],y'=f'[g(x)]g'(x)『f'[g(x)]中g(shù)(x)看作整個變量,而g'(x)中把x看作變量』
2.y=u/v,y'=u'v-uv'/v^2
3.y=f(x)的'反函數(shù)是x=g(y),則有y'=1/x'
證:1.顯而易見,y=c是一條平行于x軸的直線,所以處處的切線都是平行于x的,故斜率為0。用導(dǎo)數(shù)的定義做也是一樣的:y=c,⊿y=c-c=0,lim⊿x→0⊿y/⊿x=0。
2.這個的推導(dǎo)暫且不證,因?yàn)槿绻鶕?jù)導(dǎo)數(shù)的定義來推導(dǎo)的話就不能推廣到n為任意實(shí)數(shù)的一般情況。在得到 y=e^x y'=e^x和y=lnx y'=1/x這兩個結(jié)果后能用復(fù)合函數(shù)的求導(dǎo)給予證明。
版權(quán)聲明:本文內(nèi)容由互聯(lián)網(wǎng)用戶自發(fā)貢獻(xiàn),該文觀點(diǎn)僅代表作者本人。本站僅提供信息存儲空間服務(wù),不擁有所有權(quán),不承擔(dān)相關(guān)法律責(zé)任。如發(fā)現(xiàn)本站有涉嫌抄襲侵權(quán)/違法違規(guī)的內(nèi)容, 請發(fā)送郵件至 yyfangchan@163.com (舉報時請帶上具體的網(wǎng)址) 舉報,一經(jīng)查實(shí),本站將立刻刪除