平行四邊形的面積教案
平行四邊形的面積教案
作為一名老師,時常會需要準(zhǔn)備好教案,編寫教案助于積累教學(xué)經(jīng)驗(yàn),不斷提高教學(xué)質(zhì)量。我們該怎么去寫教案呢?下面是小編精心整理的平行四邊形的面積教案,僅供參考,大家一起來看看吧!
平行四邊形的面積教案 篇1
教學(xué)內(nèi)容:
人教版小學(xué)數(shù)學(xué)教材五年級上冊第87~88頁例1及相關(guān)練習(xí)。
教學(xué)目標(biāo):
1、通過操作、觀察、比較等活動,自主探索平行四邊形面積計(jì)算公式,滲透轉(zhuǎn)化思想。
2、能正確地應(yīng)用公式計(jì)算平行四邊形的面積。
教學(xué)重點(diǎn):
探索并掌握平行四邊形面積計(jì)算公式。
教學(xué)難點(diǎn):
理解平行四邊形面積計(jì)算公式的推導(dǎo)過程,體會轉(zhuǎn)化思想。
教學(xué)準(zhǔn)備:
課件,一個框架式可以活動的平行四邊形教具,為學(xué)生準(zhǔn)備一張底為6cm、高為4cm的平行四邊形紙張。
教學(xué)過程:
一、激趣引入
1、游戲。面積比大。耗隳芎芸毂容^出下面每組圖中陰影部分面積的大小嗎?
你怎么知道它們的面積一樣大的?(反饋重點(diǎn):①數(shù)方格;②轉(zhuǎn)化成長方形。)
2、(出示平行四邊形)這個圖形是?(平行四邊形)。關(guān)于平行四邊形,大家已經(jīng)知道了哪些知識?
3、揭示課題:今天,這節(jié)課我們要來研究平行四邊形的面積,誰能說說平行四邊形的面積指的是哪部分呢?
轉(zhuǎn)化的思想是推導(dǎo)平面圖形面積計(jì)算方法的指導(dǎo)思想,作為本單元的起始課,通過面積比大小的游戲,讓學(xué)生意識到不僅可以通過數(shù)方格來比較圖形的大小,還可以通過剪拼轉(zhuǎn)化成熟悉的圖形進(jìn)行大小比較,既富有趣味性,又能為新知的探究做好鋪墊。
二、新知探究
。ㄒ唬┖侠聿孪
1、確實(shí),由四條邊圍成的封閉圖形的大小就是平行四邊形的面積。那么同學(xué)們猜想一下,這個平行四邊形的面積可能會怎么計(jì)算?并說說你的理由。
預(yù)設(shè)1:鄰邊相乘;
預(yù)設(shè)2:底邊乘高。
2、同桌互相說一說,你同意哪一種猜想?理由是什么?
3、反饋想法。
預(yù)設(shè)1:長方形的面積是長乘寬,所以平行四邊形的面積是底乘鄰邊。把平行四邊形拉一拉就可以變成長方形。
預(yù)設(shè)2:用底邊乘高來計(jì)算。可以通過剪一剪、拼一拼,把平行四邊形轉(zhuǎn)化為長方形,再計(jì)算面積。
。ǘ(yàn)證猜想
同學(xué)們都想到將平行四邊形的面積轉(zhuǎn)化成長方形的面積來計(jì)算,那么這兩種方法有什么不同?哪種方法更合理呢?
1、鄰邊相乘的想法
教師:就讓我們先來研究一下拉的方法。(出示教具)請看,我們再次慢慢地把原來的平行四邊形拉成長方形,仔細(xì)觀察拉動前后什么沒有變,什么發(fā)生了變化?
學(xué)生:邊的長短沒變,高和面積變了。
教師追問:周長變了嗎?面積變大了還是變小了?能在圖上更直觀地表示出來嗎?
教師:現(xiàn)在誰能說說這種拉的方法合理嗎?為什么?
教師小結(jié):是的,在拉動前后平行四邊形的面積與長方形的面積不相等。用底乘鄰邊算出的不是平行四邊形的面積,而是拉動后的長方形的面積。所以用拉的方法計(jì)算平行四邊形的面積是不正確的。
利用教具進(jìn)行操作對比,讓學(xué)生通過觀察自覺修正自己的想法。
2、底邊乘高的想法
。1)數(shù)格子驗(yàn)證
教師:這里的一些不是整格的怎么數(shù)?
學(xué)生:可以通過拼一拼,變成整格的再數(shù)。
教師:拼一拼后,就變成了什么形狀?這個長方形的長和寬分別是多少?所以面積是多少?
(2)剪拼驗(yàn)證
教師:誰來展示你是如何進(jìn)行剪接的?
學(xué)生:沿高剪下,補(bǔ)到另一邊,拼成長方形。
教師:拼成的是一個怎樣的長方形?(長6 cm,寬4 cm)
那這個長方形的面積怎么算?(平行四邊形的面積是24 cm2)。
讓學(xué)生大膽提出假設(shè),并讓學(xué)生自主思考通過數(shù)格子、剪拼等實(shí)踐操作進(jìn)行驗(yàn)證。在操作反饋中,讓他們在和同學(xué)、老師的交流過程中,展示自己的想法,完善自己的思考,對于知識的獲取是很有益處的。
(三)公式推導(dǎo)
教師:仔細(xì)觀察, 拼成的長方形的長和寬分別相當(dāng)于原來的平行四邊形中的哪兩部分?
學(xué)生:長方形的長與平行四邊形的底相等,長方形的寬與原來平行四邊形的高相等。
教師:那么根據(jù)長方形的面積計(jì)算公式,平行四邊形的面積該怎么計(jì)算呢?
教師:如果我們用
表示平行四邊形的面積,用
表示平行四邊形的底,用
表示平行四邊形的高,那么平行四邊形的面積計(jì)算公式可以用
來表示。
。ㄋ模┗仡櫩偨Y(jié)
回顧剛才的學(xué)習(xí)過程,誰能說說我們是怎樣學(xué)習(xí)的平行四邊形的面積的計(jì)算方法的?
通過觀察對比,讓學(xué)生發(fā)現(xiàn)轉(zhuǎn)化前后圖形之間的相同點(diǎn)之后,溝通兩個圖形之間的'內(nèi)在聯(lián)系,順利地把新知轉(zhuǎn)化為舊知,從而順利推導(dǎo)出平行四邊形面積的計(jì)算公式。
三、練習(xí)鞏固
(一)基礎(chǔ)練習(xí)
1、完成練習(xí)十九第1題。
。1)請學(xué)生計(jì)算,并進(jìn)行訂正。
。2)反饋小結(jié):在計(jì)算時,可以先寫出面積公式,再進(jìn)行計(jì)算。
2、完成練習(xí)十九第2題。
。1)請學(xué)生計(jì)算,并進(jìn)行反饋。
。2)反饋側(cè)重:最后一小題引導(dǎo)學(xué)生注意找準(zhǔn)相對應(yīng)的底和高。教師還可以根據(jù)學(xué)生的學(xué)習(xí)情況進(jìn)行補(bǔ)充練習(xí)。
教材本身就提供了多層次的練習(xí),教師在這里進(jìn)行合理選擇,通過基礎(chǔ)題、變化題練習(xí),幫助學(xué)生進(jìn)一步明確計(jì)算平行四邊形面積所需要的條件,鞏固所學(xué)的知識。
。ǘ┩卣固嵘
一塊平行四邊形木板,底是4cm ,高是3cm 。它的面積是多少?
1、引導(dǎo)學(xué)生算出它的面積;
2、請學(xué)生在方格紙上畫出這樣的平行四邊形;
3、教師:像這樣的平行四邊形你能畫出多少個?(無數(shù)個)它們的面積相等嗎?說說你的理由。
4、教師小結(jié):是的,像這樣的平行四邊形剪拼之后都可以轉(zhuǎn)化成一個長4 cm,寬3 cm 的長方形,它們的面積都相等。由此,可以得到等底等高的平行四邊形面積一定相等。
5、思考:面積相等的平行四邊形一定等底等高嗎?為什么?
從已知條件求面積到根據(jù)條件畫圖形,讓學(xué)生在畫圖反饋的過程中感受到等底等高的平行四邊形面積相等,既提升了所學(xué)知識,又關(guān)注了學(xué)生的思考,培養(yǎng)學(xué)生的分析歸納能力。
四、總結(jié)提示
教師:回憶一下,今天這節(jié)課有什么收獲?
總結(jié):我們用把平行四邊形轉(zhuǎn)化成長方形的方法推導(dǎo)出了平行四邊形的面積計(jì)算方法,這種轉(zhuǎn)化的思想對于我們的數(shù)學(xué)學(xué)習(xí)很重要。
在本節(jié)課的最后,教師通過回憶幫學(xué)生把本節(jié)課得到的數(shù)學(xué)活動經(jīng)驗(yàn)進(jìn)行總結(jié),引導(dǎo)學(xué)生在后續(xù)的學(xué)習(xí)中也利用轉(zhuǎn)化的思想對圖形的面積進(jìn)行自主探索。
平行四邊形的面積教案 篇2
教學(xué)目標(biāo)設(shè)計(jì):
1、激發(fā)主動探索數(shù)學(xué)問題的興趣,經(jīng)歷平行四邊形面積計(jì)算公式的推導(dǎo)過程,會運(yùn)用公式求平行四邊形的面積。
2、體會“等積變形”和“轉(zhuǎn)化”的數(shù)學(xué)思想和方法,發(fā)展空間觀念。
3、培養(yǎng)初步的推理能力和合作意識,以及解決實(shí)際問題的能力。
教學(xué)重點(diǎn):探究平行四邊形的面積公式
教學(xué)難點(diǎn):理解平行四邊形的面積計(jì)算公式的推導(dǎo)過程
教學(xué)過程設(shè)計(jì):
一、創(chuàng)設(shè)情境,激發(fā)矛盾
拿出一個長方形框架,提問:這個框架所圍成圖形的面積你會求嗎?你是怎樣想的?根據(jù)學(xué)生的回答,適時板書:長方形面積=長×寬
教師捏住兩角輕微拉動長方形框架,使它稍微變形成一個平行四邊形。提問:它圍成的圖形面積你會求嗎?你是怎樣想的?根據(jù)學(xué)生的回答,適時板書:平行四邊形面積=底邊長×鄰邊長
學(xué)情預(yù)設(shè):學(xué)生充分發(fā)表自己的看法,大多數(shù)學(xué)生會受以前知識經(jīng)驗(yàn)和教師剛才設(shè)問的影響,認(rèn)為平行四邊形的面積等于底邊長×鄰邊長。
教師繼續(xù)拉動平行四邊形框架,使變形后的平行四邊形越來越扁,到最后拉成一個很扁的平行四邊形,提問:這些平行四邊形的面積也等于底
邊長×鄰邊長嗎?
今天這節(jié)課我們就來研究“平行四邊形的面積”。教師板書課題。
學(xué)情預(yù)設(shè):隨著教師繼續(xù)拉動的平行四邊形越來越扁的變化,學(xué)生的原有知識經(jīng)驗(yàn)體系開始坍塌。這種認(rèn)知平衡一旦被打破,學(xué)生的思維就想開了閘的洪水一樣一發(fā)不可收拾:為什么用底邊長乘鄰邊長不能解決平行四邊形面積是多少問題?問題出在哪里呢?
二、另辟蹊徑,探究新知
1、尋找根源,另辟蹊徑
教師邊演示長方形漸變平行四邊形的過程,邊引導(dǎo)學(xué)生思考:平行四邊形為什么不能用長方形的長與寬演變而來的底邊長與鄰邊長相乘來求面積呢?
引導(dǎo)學(xué)生思考:原來是平行四邊形的面積變得越來越小了,那平行四邊形的面積到底與什么有關(guān)呢?該怎樣來求平行四邊形的面積呢?
學(xué)情預(yù)設(shè):學(xué)生在教師的引導(dǎo)下發(fā)現(xiàn),在教師的操作過程中,底邊與鄰邊的長沒有發(fā)生變化,也就是說,底邊長與鄰邊長相乘的積應(yīng)該也是不變的,但明顯的事實(shí)是學(xué)生看到了平行四邊形在越拉越扁,平行四邊形的面積在越變越小?磥泶寺凡煌,那又該在哪里找出路呢?
2、適時引導(dǎo),自主探索
教師結(jié)合剛才的板書引導(dǎo)學(xué)生發(fā)現(xiàn),我們已經(jīng)會計(jì)算長方形的面積了,是否能把平行四邊形轉(zhuǎn)化成長方形來求面積呢?
(1)學(xué)生操作
學(xué)生動手實(shí)踐,尋求方法。
學(xué)情預(yù)設(shè):學(xué)生可能會有三種方法出現(xiàn)。
第一種是沿著平行四邊形的頂點(diǎn)做的高剪開,通過平移,拼出長方形。 第二種是沿著平行四邊形中間任意一高剪開。
第三種是沿平行四邊形兩端的兩個頂點(diǎn)做的高剪開,把剪下來的兩個小直角三角形拼成一個長方形,再和剪后得出的長方形拼成一個長方形。
。2)觀察比較
剛才同學(xué)們把平行四邊形轉(zhuǎn)化成長方形,在操作時有一個共同點(diǎn),是什么呢?為什么要這樣呢?
。3)課件演示
是不是任意一個平行四邊形都能轉(zhuǎn)化成一個長方形呢?請同學(xué)們仔細(xì)觀察大屏幕,讓我們再來體會一下。
3、公式推導(dǎo),形成模型
既然我們可以把一個平行四邊形轉(zhuǎn)化成一個長方形,那么轉(zhuǎn)化前的平行四邊形究竟和轉(zhuǎn)化后的長方形有怎樣的聯(lián)系呢?怎樣能想出平行四邊形的面積怎么計(jì)算呢?
先獨(dú)立思考,后小組合作、討論,如小組有困難,可提供“思考提示”。
A、拼成的長方形和原來的平行四邊形比,什么變了?什么沒有改變?
B、拼成的長方形的長和寬與原來的平行四邊形的底和高有什么關(guān)系?
C、你能根據(jù)長方形面積計(jì)算公式推導(dǎo)出平行四邊形的面積計(jì)算公式嗎?)
學(xué)情預(yù)設(shè):學(xué)生通過討論很快就能得出拼成的長方形和原來的平行四邊形之間的關(guān)系,并據(jù)此推導(dǎo)出平行四邊形的面積計(jì)算公式。在此環(huán)節(jié)中,教師要引導(dǎo)學(xué)生盡量用完整、條理的語言表達(dá)其推導(dǎo)思路:“把一個平行四邊形轉(zhuǎn)化成為一個長方形,它的面積與原來的平行四邊形的面積相等。這個長方形的長與平行四邊形的`底相等,這個長方形的寬與平行四邊形的高相等,因?yàn)殚L方形的面積等于長乘寬,所以平行四邊形的面積等于底乘高!辈⒐桨鍟缦拢
長方形的面積=長×寬
平行四邊形的面積=底×高
4、變化對比,加深理解
引導(dǎo)學(xué)生比較前后兩種變化情況,思考:第一次的長方形變成平行四邊形與第二次的平行四邊形變成長方形,這兩種情況有什么不一樣?哪種變化能說明平行四邊形的面積計(jì)算方法的來源呢?為什么?
5、自學(xué)字母公式,體會作用
請同學(xué)們打開課本第81頁,告訴老師,如果用字母表示平行四邊形的
面積計(jì)算公式,應(yīng)該怎樣表示?你覺得用字母表達(dá)式比文字表達(dá)式好在哪里?
三、實(shí)踐應(yīng)用
1、出示課本第82頁題目,一個平行四邊形的停車位底邊長5m,高2.5m,它的面積是多少?(學(xué)生獨(dú)立列式解答,并說出列式的根據(jù))
2、看圖口述平行四邊形的面積。3分米2.5厘米
3、這個平行四邊形的面積你會求嗎?你是怎樣想的?
4、分別計(jì)算圖中每個平行四邊形的面積,你發(fā)現(xiàn)了什么?(單位:厘米)這樣的平行四邊形還能再畫多少個?
版權(quán)聲明:本文內(nèi)容由互聯(lián)網(wǎng)用戶自發(fā)貢獻(xiàn),該文觀點(diǎn)僅代表作者本人。本站僅提供信息存儲空間服務(wù),不擁有所有權(quán),不承擔(dān)相關(guān)法律責(zé)任。如發(fā)現(xiàn)本站有涉嫌抄襲侵權(quán)/違法違規(guī)的內(nèi)容, 請發(fā)送郵件至 yyfangchan@163.com (舉報時請帶上具體的網(wǎng)址) 舉報,一經(jīng)查實(shí),本站將立刻刪除