向量知識(shí)點(diǎn)與公式總結(jié)(最新8篇)
想學(xué)好平面向量就必須掌握平面向量的概念及運(yùn)算,小編分享了8篇向量知識(shí)點(diǎn)與公式總結(jié),希望對(duì)于您更好的寫(xiě)作向量知識(shí)點(diǎn)與公式總結(jié)有一定的參考作用。
向量的的數(shù)量積 篇一
定義:已知兩個(gè)非零向量a,b。作OA=a,OB=b,則角AOB稱作向量a和向量b的夾角,記作〈a,b〉并規(guī)定0≤〈a,b〉≤π
定義:兩個(gè)向量的數(shù)量積(內(nèi)積、點(diǎn)積)是一個(gè)數(shù)量,記作ab。若a、b不共線,則ab=|a||b|cos〈a,b〉;若a、b共線,則ab=+-∣a∣∣b∣。
向量的數(shù)量積的坐標(biāo)表示:ab=xx'+yy'。
向量的數(shù)量積的運(yùn)算律
ab=ba(交換律);
(λa)b=λ(ab)(關(guān)于數(shù)乘法的結(jié)合律);
(a+b)c=ac+bc(分配律);
向量的數(shù)量積的。性質(zhì)
aa=|a|的平方。
a⊥b 〈=〉ab=0。
|ab|≤|a||b|。
向量的數(shù)量積與實(shí)數(shù)運(yùn)算的主要不同點(diǎn)
1、向量的數(shù)量積不滿足結(jié)合律,即:(ab)c≠a(bc);例如:(ab)^2≠a^2b^2。
2、向量的數(shù)量積不滿足消去律,即:由 ab=ac (a≠0),推不出 b=c。
3、|ab|≠|(zhì)a||b|
4、由 |a|=|b| ,推不出 a=b或a=-b。
向量的加法 篇二
向量的加法滿足平行四邊形法則和三角形法則。
AB+BC=AC。
a+b=(x+x',y+y')。
a+0=0+a=a。
向量加法的運(yùn)算律:
交換律:a+b=b+a;
結(jié)合律:(a+b)+c=a+(b+c)。
向量的向量積 篇三
定義:兩個(gè)向量a和b的向量積(外積、叉積)是一個(gè)向量,記作a×b。若a、b不共線,則a×b的模是:∣a×b∣=|a||b|sin〈a,b〉;a×b的方向是:垂直于a和b,且a、b和a×b按這個(gè)次序構(gòu)成右手系。若a、b共線,則a×b=0。
向量的向量積性質(zhì):
∣a×b∣是以a和b為邊的平行四邊形面積。
a×a=0。
a‖b〈=〉a×b=0。
向量的向量積運(yùn)算律
a×b=-b×a;
(λa)×b=λ(a×b)=a×(λb);
(a+b)×c=a×c+b×c.
注:向量沒(méi)有除法,“向量AB/向量CD”是沒(méi)有意義的。
向量知識(shí)點(diǎn)與公式總結(jié) 篇四
1.向量的基本概念
(1)向量
既有大小又有方向的量叫做向量。物理學(xué)中又叫做矢量。如力、速度、加速度、位移就是向量。
向量可以用一條有向線段(帶有方向的線段)來(lái)表示,用有向線段的長(zhǎng)度表示向量的大小,用箭頭所指的方向表示向量的方向。向量也可以用一個(gè)小寫(xiě)字母a,b,c表示,或用兩個(gè)大寫(xiě)字母加表示(其中前面的'字母為起點(diǎn),后面的字母為終點(diǎn))
(2)平行向量
方向相同或相反的非零向量,叫做平行向量。平行向量也叫做共線向量。
若向量a、b平行,記作a∥b.
規(guī)定:0與任一向量平行。
(3)相等向量
長(zhǎng)度相等且方向相同的向量叫做相等向量。
①向量相等有兩個(gè)要素:一是長(zhǎng)度相等,二是方向相同,二者缺一不可。
②向量a,b相等記作a=b.
③零向量都相等。
④任何兩個(gè)相等的非零向量,都可用同一有向線段表示,但特別要注意向量相等與有向線段的起點(diǎn)無(wú)關(guān)。
2.對(duì)于向量概念需注意
(1)向量是區(qū)別于數(shù)量的一種量,既有大小,又有方向,任意兩個(gè)向量不能比較大小,只可以判斷它們是否相等,但向量的模可以比較大小。
(2)向量共線與表示它們的有向線段共線不同。向量共線時(shí),表示向量的有向線段可以是平行的,不一定在同一條直線上;而有向線段共線則是指線段必須在同一條直線上。
(3)由向量相等的定義可知,對(duì)于一個(gè)向量,只要不改變它的大小和方向,它是可以任意平行移動(dòng)的,因此用有向線段表示向量時(shí),可以任意選取有向線段的起點(diǎn),由此也可得到:任意一組平行向量都可以平移到同一條直線上。
向量的三角形不等式 篇五
1、∣∣a∣-∣b∣∣≤∣a+b∣≤∣a∣+∣b∣;
① 當(dāng)且僅當(dāng)a、b反向時(shí),左邊取等號(hào);
② 當(dāng)且僅當(dāng)a、b同向時(shí),右邊取等號(hào)。
2、∣∣a∣-∣b∣∣≤∣a-b∣≤∣a∣+∣b∣。
① 當(dāng)且僅當(dāng)a、b同向時(shí),左邊取等號(hào);
② 當(dāng)且僅當(dāng)a、b反向時(shí),右邊取等號(hào)。
定比分點(diǎn) 篇六
定比分點(diǎn)公式(向量P1P=λ向量PP2)
設(shè)P1、P2是直線上的兩點(diǎn),P是l上不同于P1、P2的任意一點(diǎn)。則存在一個(gè)實(shí)數(shù) λ,使 向量P1P=λ向量PP2,λ叫做點(diǎn)P分有向線段P1P2所成的比。
若P1(x1,y1),P2(x2,y2),P(x,y),則有
OP=(OP1+λOP2)(1+λ);(定比分點(diǎn)向量公式)
x=(x1+λx2)/(1+λ),
y=(y1+λy2)/(1+λ)。(定比分點(diǎn)坐標(biāo)公式)
我們把上面的式子叫做有向線段P1P2的定比分點(diǎn)公式
三點(diǎn)共線定理
若OC=λOA +μO(píng)B ,且λ+μ=1 ,則A、B、C三點(diǎn)共線
三角形重心判斷式
在△ABC中,若GA +GB +GC=O,則G為△ABC的重心
[編輯本段]向量共線的重要條件
若b≠0,則a/《小編·》/b的重要條件是存在唯一實(shí)數(shù)λ,使a=λb。
a//b的重要條件是 xy'-x'y=0。
零向量0平行于任何向量。
[編輯本段]向量垂直的充要條件
a⊥b的充要條件是 ab=0。
a⊥b的充要條件是 xx'+yy'=0。
零向量0垂直于任何向量。
設(shè)a=(x,y),b=(x',y')。
向量知識(shí)點(diǎn)與公式總結(jié) 篇七
考點(diǎn)一:向量的概念、向量的基本定理
【內(nèi)容解讀】了解向量的實(shí)際背景,掌握向量、零向量、平行向量、共線向量、單位向量、相等向量等概念,理解向量的幾何表示,掌握平面向量的基本定理。
注意對(duì)向量概念的理解,向量是可以自由移動(dòng)的,平移后所得向量與原向量相同;兩個(gè)向量無(wú)法比較大小,它們的?杀容^大小。
考點(diǎn)二:向量的運(yùn)算
【內(nèi)容解讀】向量的運(yùn)算要求掌握向量的加減法運(yùn)算,會(huì)用平行四邊形法則、三角形法則進(jìn)行向量的加減運(yùn)算;掌握實(shí)數(shù)與向量的積運(yùn)算,理解兩個(gè)向量共線的含義,會(huì)判斷兩個(gè)向量的平行關(guān)系;掌握向量的數(shù)量積的運(yùn)算,體會(huì)平面向量的數(shù)量積與向量投影的關(guān)系,并理解其幾何意義,掌握數(shù)量積的坐標(biāo)表達(dá)式,會(huì)進(jìn)行平面向量積的運(yùn)算,能運(yùn)用數(shù)量積表示兩個(gè)向量的夾角,會(huì)用向量積判斷兩個(gè)平面向量的垂直關(guān)系。
【命題規(guī)律】命題形式主要以選擇、填空題型出現(xiàn),難度不大,考查重點(diǎn)為模和向量夾角的定義、夾角公式、向量的`坐標(biāo)運(yùn)算,有時(shí)也會(huì)與其它內(nèi)容相結(jié)合。
考點(diǎn)三:定比分點(diǎn)
【內(nèi)容解讀】掌握線段的定比分點(diǎn)和中點(diǎn)坐標(biāo)公式,并能熟練應(yīng)用,求點(diǎn)分有向線段所成比時(shí),可借助圖形來(lái)幫助理解。
【命題規(guī)律】重點(diǎn)考查定義和公式,主要以選擇題或填空題型出現(xiàn),難度一般。由于向量應(yīng)用的廣泛性,經(jīng)常也會(huì)與三角函數(shù),解析幾何一并考查,若出現(xiàn)在解答題中,難度以中檔題為主,偶爾也以難度略高的題目。
考點(diǎn)四:向量與三角函數(shù)的綜合問(wèn)題
【內(nèi)容解讀】向量與三角函數(shù)的綜合問(wèn)題是高考經(jīng)常出現(xiàn)的問(wèn)題,考查了向量的知識(shí),三角函數(shù)的知識(shí),達(dá)到了高考中試題的覆蓋面的要求。
【命題規(guī)律】命題以三角函數(shù)作為坐標(biāo),以向量的坐標(biāo)運(yùn)算或向量與解三角形的內(nèi)容相結(jié)合,也有向量與三角函數(shù)圖象平移結(jié)合的問(wèn)題,屬中檔偏易題。
考點(diǎn)五:平面向量與函數(shù)問(wèn)題的交匯
【內(nèi)容解讀】平面向量與函數(shù)交匯的問(wèn)題,主要是向量與二次函數(shù)結(jié)合的問(wèn)題為主,要注意自變量的取值范圍。
【命題規(guī)律】命題多以解答題為主,屬中檔題。
考點(diǎn)六:平面向量在平面幾何中的應(yīng)用
【內(nèi)容解讀】向量的坐標(biāo)表示實(shí)際上就是向量的代數(shù)表示。在引入向量的坐標(biāo)表示后,使向量之間的運(yùn)算代數(shù)化,這樣就可以將“形”和“數(shù)”緊密地結(jié)合在一起。因此,許多平面幾何問(wèn)題中較難解決的問(wèn)題,都可以轉(zhuǎn)化為大家熟悉的代數(shù)運(yùn)算的論證。也就是把平面幾何圖形放到適當(dāng)?shù)淖鴺?biāo)系中,賦予幾何圖形有關(guān)點(diǎn)與平面向量具體的坐標(biāo),這樣將有關(guān)平面幾何問(wèn)題轉(zhuǎn)化為相應(yīng)的代數(shù)運(yùn)算和向量運(yùn)算,從而使問(wèn)題得到解決。
【命題規(guī)律】命題多以解答題為主,屬中等偏難的試題。
高二數(shù)學(xué)向量公式
1.單位向量:?jiǎn)挝幌蛄縜0=向量a/|向量a|
2.P(x,y)那么向量OP=x向量i+y向量j
|向量OP|=根號(hào)(x平方+y平方)
3.P1(x1,y1)P2(x2,y2)
那么向量P1P2={x2-x1,y2-y1}
|向量P1P2|=根號(hào)[(x2-x1)平方+(y2-y1)平方]
4.向量a={x1,x2}向量b={x2,y2}
向量a*向量b=|向量a|*|向量b|*Cosα=x1x2+y1y2
Cosα=向量a*向量b/|向量a|*|向量b|
(x1x2+y1y2)
根號(hào)(x1平方+y1平方)*根號(hào)(x2平方+y2平方)
5.空間向量:同上推論
(提示:向量a={x,y,z})
6.充要條件:
如果向量a⊥向量b
那么向量a*向量b=0
如果向量a//向量b
那么向量a*向量b=±|向量a|*|向量b|
或者x1/x2=y1/y2
7.|向量a±向量b|平方
=|向量a|平方+|向量b|平方±2向量a*向量b
=(向量a±向量b)平方
向量的減法 篇八
如果a、b是互為相反的向量,那么a=-b,b=-a,a+b=0. 0的反向量為0
AB-AC=CB. 即“共同起點(diǎn),指向被減”
a=(x,y) b=(x',y') 則 a-b=(x-x',y-y').
4、數(shù)乘向量
實(shí)數(shù)λ和向量a的乘積是一個(gè)向量,記作λa,且∣λa∣=∣λ∣∣a∣。
當(dāng)λ>0時(shí),λa與a同方向;
當(dāng)λ<0時(shí),λa與a反方向;
當(dāng)λ=0時(shí),λa=0,方向任意。
當(dāng)a=0時(shí),對(duì)于任意實(shí)數(shù)λ,都有λa=0。
注:按定義知,如果λa=0,那么λ=0或a=0。
實(shí)數(shù)λ叫做向量a的系數(shù),乘數(shù)向量λa的幾何意義就是將表示向量a的有向線段伸長(zhǎng)或壓縮。
當(dāng)∣λ∣>1時(shí),表示向量a的有向線段在原方向(λ>0)或反方向(λ<0)上伸長(zhǎng)為原來(lái)的∣λ∣倍;
當(dāng)∣λ∣<1時(shí),表示向量a的有向線段在原方向(λ>0)或反方向(λ<0)上縮短為原來(lái)的∣λ∣倍。
數(shù)與向量的乘法滿足下面的運(yùn)算律
結(jié)合律:(λa)b=λ(ab)=(aλb)。
向量對(duì)于數(shù)的分配律(第一分配律):(λ+μ)a=λa+μa.
數(shù)對(duì)于向量的分配律(第二分配律):λ(a+b)=λa+λb.
數(shù)乘向量的消去律:① 如果實(shí)數(shù)λ≠0且λa=λb,那么a=b。② 如果a≠0且λa=μa,那么λ=μ。
夫參署者,集眾思,廣忠益也。以上這8篇向量知識(shí)點(diǎn)與公式總結(jié)是來(lái)自于小編的向量知識(shí)點(diǎn)與公式總結(jié)的相關(guān)范文,希望能有給予您一定的啟發(fā)。
版權(quán)聲明:本文內(nèi)容由互聯(lián)網(wǎng)用戶自發(fā)貢獻(xiàn),該文觀點(diǎn)僅代表作者本人。本站僅提供信息存儲(chǔ)空間服務(wù),不擁有所有權(quán),不承擔(dān)相關(guān)法律責(zé)任。如發(fā)現(xiàn)本站有涉嫌抄襲侵權(quán)/違法違規(guī)的內(nèi)容, 請(qǐng)發(fā)送郵件至 yyfangchan@163.com (舉報(bào)時(shí)請(qǐng)帶上具體的網(wǎng)址) 舉報(bào),一經(jīng)查實(shí),本站將立刻刪除