高中常考的一次函數(shù)的數(shù)學(xué)公式
高中?嫉囊淮魏瘮(shù)的數(shù)學(xué)公式
導(dǎo)語(yǔ):歲月是百代的過(guò)客,而逝去的年華也是旅客。下面是小編為大家整理的,數(shù)學(xué)學(xué)習(xí)方法。希望對(duì)大家有所幫助,歡迎閱讀,僅供參考,更多相關(guān)的知識(shí),請(qǐng)關(guān)注CNFLA學(xué)習(xí)網(wǎng)!
一、定義與定義式:
自變量x和因變量y有如下關(guān)系:
y=kx+b
則此時(shí)稱(chēng)y是x的一次函數(shù)。
特別地,當(dāng)b=0時(shí),y是x的正比例函數(shù)。
即:y=kx(k為常數(shù),k≠0)
二、一次函數(shù)的性質(zhì):
1.y的變化值與對(duì)應(yīng)的x的變化值成正比例,比值為k
即:y=kx+b(k≠0)1.y的變化值與對(duì)應(yīng)的x的變化值成正比例,比值為k
即:y=kx+b(k≠0)(k不等于0,且k,b為常數(shù))
2.當(dāng)x=0時(shí),b為函數(shù)在y軸上的交點(diǎn),坐標(biāo)為(0,b).
當(dāng)y=0時(shí),該函數(shù)圖象在x軸上的交點(diǎn)坐標(biāo)為(-b/k,0)
3.k為一次函數(shù)y=kx+b的斜率,k=tanΘ(角Θ為一次函數(shù)圖象與x軸正方向夾角,Θ≠90°)
4.當(dāng)b=0時(shí)(即y=kx),一次函數(shù)圖象變?yōu)檎壤瘮?shù),正比例函數(shù)是特殊的.一次函數(shù).
5.函數(shù)圖象性質(zhì):當(dāng)k相同,且b不相等,圖像平行;
當(dāng)k不同,且b相等,圖象相交于Y軸;
當(dāng)k互為負(fù)倒數(shù)時(shí),兩直線垂直;
6.平移時(shí):上加下減在末尾,左加右減在中間(k不等于0,且k,b為常數(shù))
2.當(dāng)x=0時(shí),b為函數(shù)在y軸上的交點(diǎn),坐標(biāo)為(0,b).
當(dāng)y=0時(shí),該函數(shù)圖象在x軸上的交點(diǎn)坐標(biāo)為(-b/k,0)
3.k為一次函數(shù)y=kx+b的斜率,k=tanΘ(角Θ為一次函數(shù)圖象與x軸正方向夾角,Θ≠90°)
形、取、象、交、減。
4.當(dāng)b=0時(shí)(即y=kx),一次函數(shù)圖象變?yōu)檎壤瘮?shù),正比例函數(shù)是特殊的一次函數(shù).
5.函數(shù)圖象性質(zhì):當(dāng)k相同,且b不相等,圖像平行;
當(dāng)k不同,且b相等,圖象相交于Y軸;
當(dāng)k互為負(fù)倒數(shù)時(shí),兩直線垂直;
6.平移時(shí):上加下減在末尾,左加右減在中間
點(diǎn)擊查看:高中數(shù)學(xué)公式大全
三、一次函數(shù)的圖像及性質(zhì):
1.作法與圖形:通過(guò)如下3個(gè)步驟:
(1)列表:每確定自變量x的一個(gè)值,求出因變量y的一個(gè)值,并列表,
(2)描點(diǎn):一般取兩個(gè)點(diǎn),根據(jù)“兩點(diǎn)確定一條直線”的道理;
(3)連線:可以作出一次函數(shù)的圖象——一條直線。因此,作一次函數(shù)的圖象只需知道2點(diǎn),并連成直線即可。(通常找函數(shù)圖象與x軸和y軸的交點(diǎn)分別是-與(-b/k,0),0與b)
2.性質(zhì):(1)在一次函數(shù)上的任意一點(diǎn)P(x,y),都滿(mǎn)足等式:y=kx+b(k≠0)。(2)一次函數(shù)與y軸交點(diǎn)的坐標(biāo)總是(0,b),與x軸總是交于(-b/k,0)正比例函數(shù)的圖象都是過(guò)原點(diǎn)。
3.函數(shù)不是數(shù),它是指某一變化過(guò)程中兩個(gè)變量之間的關(guān)系。
4.k,b與函數(shù)圖象所在象限:
y=kx時(shí)(即b等于0,y與x成正比,此時(shí)的圖象是一條經(jīng)過(guò)原點(diǎn)的直線)
當(dāng)k>0時(shí),直線必通過(guò)一、三象限,y隨x的增大而增大;
當(dāng)k<0時(shí),直線必通過(guò)二、四象限,y隨x的增大而減小。
y=kx+b(k,b為常數(shù),k≠0)時(shí):
當(dāng) k>0,b>0, 這時(shí)此函數(shù)的圖象經(jīng)過(guò)一,二,三象限;
當(dāng) k>0,b<0, 這時(shí)此函數(shù)的圖象經(jīng)過(guò)一,三,四象限;
當(dāng) k<0,b>0, 這時(shí)此函數(shù)的圖象經(jīng)過(guò)一,二,四象限;
當(dāng) k<0,b<0, 這時(shí)此函數(shù)的圖象經(jīng)過(guò)二,三,四象限。
當(dāng)b>0時(shí),直線必通過(guò)一、二象限;
當(dāng)b<0時(shí),直線必通過(guò)三、四象限。
特別地,當(dāng)b=0時(shí),直線通過(guò)原點(diǎn)O(0,0)表示的是正比例函數(shù)的圖象。
這時(shí),當(dāng)k>0時(shí),直線只通過(guò)一、三象限,不會(huì)通過(guò)二、四象限。當(dāng)k<0時(shí),直線只通過(guò)二、四象限,不會(huì)通過(guò)一、三象限。
4、特殊位置關(guān)系
當(dāng)平面直角坐標(biāo)系中兩直線平行時(shí),其函數(shù)解析式中K值(即一次項(xiàng)系數(shù))相等.
當(dāng)平面直角坐標(biāo)系中兩直線垂直時(shí),其函數(shù)解析式中K值互為負(fù)倒數(shù)(即兩個(gè)K值的乘積為-1.[1]
5.直線y=kx+b的圖象和性質(zhì)與k、b的關(guān)系如下表所示:
k>0,b>0:經(jīng)過(guò)第一、二、三象限
k>0,b<0:經(jīng)過(guò)第一、三、四象限
k>0,b=0:經(jīng)過(guò)第一、三象限(經(jīng)過(guò)原點(diǎn))
結(jié)論:k>0時(shí),圖象從左到右上升,y隨x的增大而增大。
k<0b>0:經(jīng)過(guò)第一、二、四象限
k<0,b<0:經(jīng)過(guò)第二、三、四象限
k<0,b=0:經(jīng)過(guò)第二、四象限(經(jīng)過(guò)原點(diǎn))
結(jié)論:k<0時(shí),圖象從左到右下降,y隨x的增大而減小。
6.將函數(shù)向上平移n格,函數(shù)解析式為y=kx+b+n,將函數(shù)向下平移n格,函數(shù)解析式為y=kx+b-n,將函數(shù)向左平移n格,函數(shù)解析式為y=k(x+n)+b,將函數(shù)向右平移n格,函數(shù)解析式為y=k(x-n)+b.
一次函數(shù)表達(dá)方法
一次函數(shù)是一條直線
y=kx(o,0)(1,k)
y=kx+b(0,b)與y軸的交點(diǎn)
1、解析式法
用含自變量x的式子表示函數(shù)的方法。
2、列表法
把一系列x的值對(duì)應(yīng)的函數(shù)值y列成一個(gè)表來(lái)表示的函數(shù)關(guān)系的方法叫做列表法。
3、圖像法
用圖象來(lái)表示函數(shù)關(guān)系的方法叫做圖象法。
版權(quán)聲明:本文內(nèi)容由互聯(lián)網(wǎng)用戶(hù)自發(fā)貢獻(xiàn),該文觀點(diǎn)僅代表作者本人。本站僅提供信息存儲(chǔ)空間服務(wù),不擁有所有權(quán),不承擔(dān)相關(guān)法律責(zé)任。如發(fā)現(xiàn)本站有涉嫌抄襲侵權(quán)/違法違規(guī)的內(nèi)容, 請(qǐng)發(fā)送郵件至 yyfangchan@163.com (舉報(bào)時(shí)請(qǐng)帶上具體的網(wǎng)址) 舉報(bào),一經(jīng)查實(shí),本站將立刻刪除