狠狠操网,91中文字幕在线观看,精品久久香蕉国产线看观看亚洲,亚洲haose在线观看

初中數(shù)學(xué)相似三角形知識點

初中數(shù)學(xué)相似三角形知識點

  學(xué)習(xí)可以這樣來看,它是一個潛移默化、厚積薄發(fā)的過程。小編編輯了初中數(shù)學(xué)相似三角形知識點,希望對您有所幫助!

  初中數(shù)學(xué)相似三角形知識點1

  1.相似三角形定義:

  對應(yīng)角相等,對應(yīng)邊成比例的三角形,叫做相似三角形。

  2.相似三角形的表示方法:用符號"∽"表示,讀作"相似于"。

  3.相似三角形的相似比:

  相似三角形的對應(yīng)邊的比叫做相似比。

  4.相似三角形的預(yù)備定理:

  平行于三角形一邊的直線和其他兩邊(或兩邊的延長線)相交,所截成的三角形與原三角形相似。

  從表中可以看出只要將全等三角形判定定理中的"對應(yīng)邊相等"的條件改為"對應(yīng)邊

  成比例"就可得到相似三角形的判定定理,這就是我們數(shù)學(xué)中的用類比的方法,在舊知識的基礎(chǔ)上找出新知識并從中探究新知識掌握的方法。

  6.直角三角形相似:

  (1)直角三角形被斜邊上的高分成兩個直角三角形和原三角形相似。

  (2)如果一個直角三角形的斜邊和一條直角邊與另一個直角三角形的斜邊和一條直角邊對應(yīng)成比例,那么這兩個直角三角形相似。

  7.相似三角形的性質(zhì)定理:

  (1)相似三角形的對應(yīng)角相等。

  (2)相似三角形的對應(yīng)邊成比例。

  (3)相似三角形的對應(yīng)高線的比,對應(yīng)中線的比和對應(yīng)角平分線的比都等于相似比。

  (4)相似三角形的周長比等于相似比。

  (5)相似三角形的面積比等于相似比的平方。

  8.相似三角形的傳遞性

  如果△ABC∽△A1B1C1,△A1B1C1∽△A2B2C2,那么△ABC∽A2B2C2

  初中數(shù)學(xué)相似三角形知識點2

  本章有以下幾個主要內(nèi)容:

  一、比例線段

  1、線段比,

  2、成比例線段,

  3、比例中項————黃金分割,

  4、比例的性質(zhì):基本性質(zhì);合比性質(zhì);等比性質(zhì)

  (1)線段比:用同一長度單位度量兩條線段a,b,把他們長度的比叫做這兩條線段的比。

 。2)比例線段:在四條線段a,b,c,d中,如果線段a,b的比等于線段c,d的比,那么,這四條線段叫做成比例線段。簡稱比例線段。

 。3)比例中項:如果a:b=b:c,那么b叫做a,c的比例中項。

 。4)黃金分割:把一條線段分成兩條線段,如果較長線段是全線段和較短線段的比例中項,那么這種分割叫做黃金分割。這個點叫做黃金分割點。

  頂角是36度的等腰三角形叫做黃金三角形

  寬和長的比等于黃金數(shù)的矩形叫做黃金矩形。

 。5)比例的性質(zhì)

  基本性質(zhì):內(nèi)項積等于外項積。(比例=等積)。主要作用:計算。

  合比性質(zhì),主要作用:比例的互相轉(zhuǎn)化。

  等比性質(zhì),在使用時注意成立的條件。

  二、相似三角形的判定

  平行線等分線段——平行線分線段成比例——平行于三角形一邊的直線截其他兩邊(或兩邊延長線),所截線段對應(yīng)成比例——(預(yù)備定理)平行于三角形一邊的直線和其他兩邊(或兩邊延長線)相交,所截三角形與原三角形相似——相似三角形的判定:類比于全等三角形的判定。

  三、相似三角形的性質(zhì)

  1、定義:相似三角形對應(yīng)角相等

  對應(yīng)邊成比例。

  2、相似三角形對應(yīng)線段(對應(yīng)角平分線、對應(yīng)中線、對應(yīng)高等)的比等于相似比

  3、相似三角形周長的比等于相似比

  4、相似三角形面積的比等于相似比的平方

  四、圖形的位似變換

  1、幾何變換:平移,旋轉(zhuǎn),軸對稱,相似變換

  2、相似變換:把一個圖形變成另一個圖形,并保持形狀不變的幾何變換叫做相似變換。

  3、位似變換:兩個圖形不但相似,而且對應(yīng)點連線過同一點的相似變換叫做位似變換。這兩個圖形叫做位似圖形。

  4、位似變換可把圖形放大或者縮小。

  5、外位似(同向位似圖形)位似中心在對應(yīng)點連線外的位似叫外位似。這兩個圖形叫同向位似圖形。

  內(nèi)位似(反向位似圖形)位似中心在對應(yīng)點連線上的位似叫內(nèi)位似。這兩個圖形叫反向位似圖形。

  6、以原點為位似中心,相似比為k,原圖形上點的坐標(biāo)(x,y)則同向位似變換后對稱點的坐標(biāo)為(kx,ky)

  以原點為位似中心,相似比為k,原圖形上點的坐標(biāo)(x,y)反向位似變換后對稱點的坐標(biāo)為(—kx,—ky)

  初中數(shù)學(xué)相似三角形知識點3

  定義

  對應(yīng)角相等,對應(yīng)邊成比例的兩個三角形叫做相似三角形

  比值與比的概念

  比值是一個具體的數(shù)字如:AB/EF=2

  而比不是一個具體的數(shù)字如:AB/EF=2:1判定方法

  證兩個相似三角形應(yīng)該把表示對應(yīng)頂點的`字母寫在對應(yīng)的位置上。如果是文字語言的“△ABC與△DEF相似”,那么就說明這兩個三角形的對應(yīng)頂點可能沒有寫在對應(yīng)的位置上,而如果是符號語言的“△ABC∽△DEF”,那么就說明這兩個三角形的對應(yīng)頂點寫在了對應(yīng)的位置上。

  方法一(預(yù)備定理)

  平行于三角形一邊的直線截其它兩邊所在的直線,截得的三角形與原三角形相似。(這是相似三角形判定的定理,是以下判定方法證明的基礎(chǔ)。這個引理的證明方法需要平行線與線段成比例的證明)

  方法二

  如果一個三角形的兩個角與另一個三角形的兩個角對應(yīng)相等,那么這兩個三角形相似。

  方法三

  如果兩個三角形的兩組對應(yīng)邊成比例,并且相應(yīng)的夾角相等,

  那么這兩個三角形相似

  方法四

  如果兩個三角形的三組對應(yīng)邊成比例,那么這兩個三角形相似

  方法五(定義)

  對應(yīng)角相等,對應(yīng)邊成比例的兩個三角形叫做相似三角形

  三個基本型

  Z型A型反A型

  方法六

  兩個直角三角形中,斜邊與直角邊對應(yīng)成比例,那么兩三角形相似。一定相似的三角形

  1、兩個全等的三角形

  (全等三角形是特殊的相似三角形,相似比為1:1)

  2、兩個等腰三角形

  (兩個等腰三角形,如果其中的任意一個頂角或底角相等,那么這兩個等腰三角形相似。)

  3、兩個等邊三角形

  (兩個等邊三角形,三角都是60度,且邊邊相等,所以相似)

  4、直角三角形中由斜邊的高形成的三個三角形(母子三角形)

  圖形的學(xué)習(xí)需要大家對于知識的詳細(xì)了解和滲透,而不是一帶而過。

  初中數(shù)學(xué)相似三角形知識點4

  一、平行線分線段成比例定理及其推論:

  1、定理:三條平行線截兩條直線,所得的對應(yīng)線段成比例。

  2、推論:平行于三角形一邊的直線截其他兩邊(或兩邊的延長線)所得的對應(yīng)線段成比例。

  3、推論的逆定理:如果一條直線截三角形的兩邊(或兩邊的延長線)所得的對應(yīng)線段成比例,那么這條線段平行于三角形的第三邊。

  二、相似預(yù)備定理:

  平行于三角形的一邊,并且和其他兩邊相交的直線,截得的三角形的三邊與原三角形三邊對應(yīng)成比例。

  三、相似三角形:

  1、定義:對應(yīng)角相等,對應(yīng)邊成比例的三角形叫做相似三角形。

  2、性質(zhì):

  (1)相似三角形的對應(yīng)角相等;

 。2)相似三角形的對應(yīng)線段(邊、高、中線、角平分線)成比例;

 。3)相似三角形的周長比等于相似比,面積比等于相似比的平方。

  說明:

 、俚雀呷切蔚拿娣e比等于底之比,等底三角形的面積比等于高之比;

 、谝⒁鈨蓚圖形元素的對應(yīng)。

  3、判定定理:

 。1)兩角對應(yīng)相等,兩三角形相似;

 。2)兩邊對應(yīng)成比例,且夾角相等,兩三角形相似;

  (3)三邊對應(yīng)成比例,兩三角形相似;

 。4)如果一個直角三角形的斜邊和一條直角邊與另一個直角三角形的斜邊和一條直角對應(yīng)成比例,那么這兩個直角三角形相似。

  數(shù)學(xué)學(xué)習(xí)技巧

  1、求教與自學(xué)相結(jié)合

  在學(xué)習(xí)過程中,即要爭取教師的指導(dǎo)和幫助,但是又不能過分依賴教師,必須自己主動地去學(xué)習(xí)、去探索、去獲取,應(yīng)該在自己認(rèn)真學(xué)習(xí)和研究的基礎(chǔ)上去尋求教師和同學(xué)的幫助。

  2、學(xué)習(xí)與思考相結(jié)合

  在學(xué)習(xí)過程中,對課本的內(nèi)容要認(rèn)真研究,提出疑問,追本究源。對每一個概念、公式、定理都要弄清其來龍去脈、前因后果、內(nèi)在聯(lián)系,以及蘊(yùn)含于推導(dǎo)過程中的數(shù)學(xué)思想和方法。在解決問題時,要盡量采用不同的途徑和方法,要克服那種死守書本、機(jī)械呆板、不知變通的學(xué)習(xí)方法。

  3、學(xué)用結(jié)合,勤于實踐

  在學(xué)習(xí)過程中,要準(zhǔn)確地掌握抽象概念的本質(zhì)含義,了解從實際模型中抽象為理論的演變過程。對所學(xué)理論知識,要在更大范圍內(nèi)尋求它的具體實例,使之具體化,盡量將所學(xué)的理論知識和思維方法應(yīng)用于實踐。

  4、博觀約取,由博返約

  課本是獲得知識的主要來源,但不是唯一的來源。在學(xué)習(xí)過程中,除了認(rèn)真研究課本以外,還要閱讀有關(guān)的課外資料,來擴(kuò)大知識領(lǐng)域。同時在廣泛閱讀的基礎(chǔ)上,進(jìn)行認(rèn)真研究,掌握其知識結(jié)構(gòu)。

  5、既有模仿,又有創(chuàng)新

  模仿是數(shù)學(xué)學(xué)習(xí)中不可缺少的學(xué)習(xí)方法,但是決不能機(jī)械地模仿,應(yīng)該在消化理解的基礎(chǔ)上,開動腦筋,提出自己的見解和看法,而不拘泥于已有的框框,不囿于現(xiàn)成的模式。

  6、及時復(fù)習(xí)增強(qiáng)記憶

  課堂上學(xué)習(xí)的內(nèi)容,必須當(dāng)天消化,要先復(fù)習(xí),后做練習(xí),復(fù)習(xí)工作必須經(jīng)常進(jìn)行,每一單元結(jié)束后,應(yīng)將所學(xué)知識進(jìn)行概括整理,使之系統(tǒng)化、深刻化。

  7、總結(jié)學(xué)習(xí)經(jīng)驗,評價學(xué)習(xí)效果

  學(xué)習(xí)中的總結(jié)和評價有利于知識體系的建立、解題規(guī)律的掌握、學(xué)習(xí)方法與態(tài)度的調(diào)整和評判能力的提高。在學(xué)習(xí)過程中,應(yīng)注意總結(jié)聽課、閱讀和解題中的收獲和體會。

  數(shù)學(xué)什么叫和什么叫差

  差是數(shù)學(xué)運(yùn)算的一種,特指兩個數(shù)的減法的結(jié)果。和是指兩個及兩個以上同屬性的事物相加所獲得的新事物,也可以狹義地理解為兩個數(shù)相加所得的結(jié)果。和的產(chǎn)生:加數(shù)+加數(shù)=和。

  初中數(shù)學(xué)相似三角形知識點5

  1、概念:三條邊對應(yīng)成比例,三個角對應(yīng)相等的兩個三角形叫相似三角形。

  2、相似比:在相似三角形中,對應(yīng)邊的比叫作這兩個三角形的相似比。

  3、全等三角形:形狀和大小都相同的三角形稱為全等三角形。全等三角形是相似三角形的特例。

  例:

  1、兩個全等三角形一定相似嗎?為什么?

  相似.因為對應(yīng)角相等,對應(yīng)邊成比例

  2、兩個直角三角形一定相似嗎?為什么?

  兩個直角三角形不一定相似。因為對應(yīng)角不一定相等,對應(yīng)邊也不一定成比例.

  3、兩個等腰直角三角形呢?

  兩個等腰直角三角形相似.因為對應(yīng)角相等,對應(yīng)邊成比例.

  4、兩個等腰三角形一定相似嗎?為什么?

  兩個等腰三角形不一定相似.

  5、兩個等邊三角形呢?

  相似三角形的判定

  1.兩個三角形的兩個角對應(yīng)相等

  2.兩邊對應(yīng)成比例,且夾角相等

  3.三邊對應(yīng)成比例

  4.平行于三角形一邊的直線和其他兩邊或兩邊延長線相交,所構(gòu)成的三角形與原三角形相似。

  相似三角形的判定方法

  根據(jù)相似圖形的特征來判斷。(對應(yīng)邊成比例,對應(yīng)邊的夾角相等)

  1.平行于三角形一邊的直線和其他兩邊(或兩邊的延長線)相交,所構(gòu)成的三角形與原三角形相似;

  (這是相似三角形判定的引理,是以下判定方法證明的基礎(chǔ)。這個引理的證明方法需要平行線分線段成比例的證明)

  2.如果一個三角形的兩個角與另一個三角形的兩個角對應(yīng)相等,那么這兩個三角形相似;

  3.如果兩個三角形的兩組對應(yīng)邊的比相等,并且相應(yīng)的夾角相等,那么這兩個三角形相似;

  4.如果兩個三角形的三組對應(yīng)邊的比相等,那么這兩個三角形相似;

  5.對應(yīng)角相等,對應(yīng)邊成比例的兩個三角形叫做相似三角形(用定義證明)

  絕對相似三角形

  1.兩個全等的三角形一定相似。

  2.兩個等腰直角三角形一定相似。(兩個等腰三角形,如果頂角或底角相等,那么這兩個等腰三角形相似。)

  3.兩個等邊三角形一定相似。

  直角三角形相似判定定理

  1.斜邊與一條直角邊對應(yīng)成比例的兩直角三角形相似。

  2.直角三角形被斜邊上的高分成的兩個直角三角形與原直角三角形相似,并且分成的兩個直角三角形也相似。

  射影定理

  三角形相似的判定定理推論

  推論一:頂角或底角相等的兩個等腰三角形相似。

  推論二:腰和底對應(yīng)成比例的兩個等腰三角形相似。

  推論三:有一個銳角相等的兩個直角三角形相似。

  推論四:直角三角形被斜邊上的高分成的兩個直角三角形和原三角形都相似。

  推論五:如果一個三角形的兩邊和其中一邊上的中線與另一個三角形的對應(yīng)部分成比例,那么這兩個三角形相似。

  推論六:如果一個三角形的兩邊和第三邊上的中線與另一個三角形的對應(yīng)部分成比例,那么這兩個三角形相似。1.相似三角形的一切對應(yīng)線段(對應(yīng)高、對應(yīng)中線、對應(yīng)角平分線、外接圓半徑、內(nèi)切圓半徑等)的比等于相似比。

  2.相似三角形周長的比等于相似比。

  3.相似三角形面積的比等于相似比的平方

  注意:全等是特殊的相似,即相似比為1:1的情況

版權(quán)聲明:本文內(nèi)容由互聯(lián)網(wǎng)用戶自發(fā)貢獻(xiàn),該文觀點僅代表作者本人。本站僅提供信息存儲空間服務(wù),不擁有所有權(quán),不承擔(dān)相關(guān)法律責(zé)任。如發(fā)現(xiàn)本站有涉嫌抄襲侵權(quán)/違法違規(guī)的內(nèi)容, 請發(fā)送郵件至 yyfangchan@163.com (舉報時請帶上具體的網(wǎng)址) 舉報,一經(jīng)查實,本站將立刻刪除