狠狠操网,91中文字幕在线观看,精品久久香蕉国产线看观看亚洲,亚洲haose在线观看

反比例函數(shù)教案

反比例函數(shù)教案

  在教學工作者實際的教學活動中,通常需要用到教案來輔助教學,編寫教案有利于我們準確把握教材的重點與難點,進而選擇恰當?shù)慕虒W方法。怎樣寫教案才更能起到其作用呢?以下是小編收集整理的反比例函數(shù)教案,歡迎閱讀,希望大家能夠喜歡。

  反比例函數(shù)教案 篇1

  從容說課

  我們學習知識的目的就是為了應用,如能把書本上學到的知識運用到實際生活中,這就說明確實把知識學好了,會用了。

  用函數(shù)觀點處理實際問題的關鍵在于分析實際情境、建立函數(shù)模型,并進一步提出明確的數(shù)學問題,教學時應注意分析的過程,即將實際問題置于已有知識背景之中,用數(shù)學知識重新解釋這是什么?可以看成什么?讓學生逐步學會用數(shù)學的眼光考查實際問題.同時,在解決問題的過程中,要充分利用函數(shù)的圖象,滲透數(shù)形結合的思想。

  此外,解決實際問題時.還要引導學生體會知識之間的聯(lián)系以及知識的綜合運用。

  教學目標  (一)教學知識點

  1.經(jīng)歷分析實際問題中變量之間的關系,建立反比例函數(shù)模型,進而解決問題的過程。

  2.體會數(shù)學與現(xiàn)實生活的緊密聯(lián)系,增強應用意識.提高運用代數(shù)方法解決問題的能力。

  (二)能力訓練要求

  通過對反比例函數(shù)的應用,培養(yǎng)學生解決問題的能力。

  (三)情感與價值觀要求

  經(jīng)歷將一些實際問題抽象為數(shù)學問題的過程,初步學會從數(shù)學的角度提出問題。理解問題,并能綜合運用所學的知識和技能解決問題.發(fā)展應用意識,初步認識數(shù)學與人類生活的密切聯(lián)系及對人類歷史發(fā)展的作用。

  教學重點

  用反比例函數(shù)的知識解決實際問題。

  教學難點

  如何從實際問題中抽象出數(shù)學問題、建立數(shù)學模型,用數(shù)學知識去解決實際問題。

  教學方法

  教師引導學生探索法。

  教學過程

 、.創(chuàng)設問題情境,引入新課。

  [師]有關反比例函數(shù)的表達式,圖象的特征我們都研究過了,那么,我們學習它們的目的是什么呢?

  [生]是為了應用……

  [師]很好;學習的目的是為了用學到的知識解決實際問題.究竟反比例函數(shù)能解決一些什么問題呢?本節(jié)課我們就來學一學。

 、.新課講解

  某?萍夹〗M進行野外考察,途中遇到片十幾米寬的爛泥濕地.為了安全、迅速通過這片濕地,他們沿著前進路線鋪墊了若干塊木板,構筑成一條臨時通道,從而順利完成了任務;你能解釋他們這樣做的道理嗎?當人和木板對濕地的壓力一定時隨著木板面積S(m2)的變化,人和木板對地面的壓強p(Pa)將如何變化?如果人和木板對濕地地面的壓力合計600N,那么:

  (1)用含S的代數(shù)式表示p,p是S的反比例函數(shù)嗎?為什么?

  (2)當木板畫積為0.2m2時。壓強是多少?

  (3)如果要求壓強不超過6000Pa,木板面積至少要多大?

  (4)在直角坐標系中,作出相應的函數(shù)圖象

  (5)清利用圖象對(2)和(3)作出直觀解釋,并與同伴進行交流

  [師]分析:首先要根據(jù)題意分析實際問題中的兩個變量,然后看這兩個變量之間存在的關系,從而去分析它們之間的關系是否為反比例函數(shù)關系,若是則可用反比例函數(shù)的有關知識去解決問題。

  請大家互相交流后回答

  [生](1)由p=得p=

  p是S的反比例函數(shù),因為給定一個S的值.對應的就有唯一的一個p值和它對應,根據(jù)函數(shù)定義,則p是S的反比例函數(shù)

  (2)當S=0.2m2時,p==3000(Pa)

  當木板面積為0.2m2時,壓強是3000Pa.

  (3)當p=6000Pa時,

  S==0.1(m2)

  如果要求壓強不超過6000Pa,木板面積至少要0.1m2

  (4)圖象如下:

  (5)(1)是已知圖象上某點的橫坐標為0.2,求該點的縱坐標;(2)是已知圖象上點的縱坐標不大于6000,求這些點所處的位置及它們橫坐標的取值范圍。

  [師]這位同學回答的很好,下面我要提一個問題,大家知道反比例函數(shù)的圖象是兩支雙曲線、它們要么位于第一、三象限,要么位于第二、四象限,從(1)中已知p=>0,所以圖象應位于第一、三象限,為什么這位同學只畫出了一支曲線,是不是另一支曲線丟掉了呢?還是因為題中只給出了第一象限呢?

  [生]第三象限的曲線不存在,因為這是實際問題,S不可能取負數(shù),所以第三象限的曲線不存在。

  [師]很好,那么在(1)中是不是應該有條件限制呢?

  [生]是,應為p=(S>0)。

  做一做

  1、蓄電池的電壓為定值,使用此電源時,電流I(A)與電阻R(Ω)之間的函數(shù)關系如下圖;

  (1)蓄電池的電壓是多少?你能寫出這一函數(shù)的表達式嗎?

  (2)完成下表,并回答問題:如果以此蓄電池為電源的用電器限制電流不得超過10A,那么用電器的可變電阻應控制在什么范圍內(nèi)?

  [師]從圖形上來看,I和R之間可能是反比例函數(shù)關系.電壓U就相當于反比例函數(shù)中的.k.要寫出函數(shù)的表達式,實際上就是確定k(U),只需要一個條件即可,而圖中已給出了一個點的坐標,所以這個問題就解決了,填表實際上是已知自變量求函數(shù)值。

  [生]解:(1)由題意設函數(shù)表達式為I=

  ∵A(9,4)在圖象上,

  ∴U=IR=36

  ∴表達式為I=

  蓄電池的電壓是36伏

  (2)表格中從左到右依次是:12,9,7.2,6,4.5,3.6

  電源不超過10A,即I最大為10A,代入關系式中得R=3.6,為最小電阻,所以用電器的可變電阻應控制在R≥3.6這個范圍內(nèi)。

  2、如下圖,正比例函數(shù)y=k1x的圖象與反比例函數(shù)y=的圖象相交于A,B兩點,其中點A的坐標為:

  (1)分別寫出這兩個函數(shù)的表達式:

  (2)你能求出點B的坐標嗎?你是怎樣求的?與同伴進行交流

  [師]要求這兩個函數(shù)的表達式,只要把A點的坐標代入即可求出k1,k2,求點B的坐標即求y=k1x與y=的交點。

  [生]解:(1)∵A(,2)既在y=k1x圖象上,又在y=的圖象上

  ∴k1=2,2=

  ∴k1=2,k2=6

  ∴表達式分別為y=2x,y=

  ∴x2=3

  ∴x=±

  當x=?時,y=?2

  ∴B(?,?2)

 、.課堂練習

  1.某蓄水池的排水管每時排水8m3,6h可將滿池水全部排空

  (1)蓄水池的容積是多少?

  (2)如果增加排水管,使每時的排水量達到Q(m3),那么將滿池水排空所需的時間t(h)將如何變化?

  (3)寫出t與Q之間的關系式;

  (4)如果準備在5h內(nèi)將滿池水排空,那么每時的排水量至少為多少?

  (5)已知排水管的最大排水量為每時12m3,那么最少多長時間可將滿池水全部排空?

  解:(1)8×6=48(m3)

  所以蓄水池的容積是48m3

  (2)因為增加排水管,使每時的排水量達到Q(m3),所以將滿池水排空所需的時間t(h)將減少。

  (3)t與Q之間的關系式為t=

  (4)如果準備在5h內(nèi)將滿池水排空,那么每時的排水量至少為=9.6(m3)

  (5)已知排水管的最大排水量為每時12m3,那么最少要=4小時可將滿池水全部排空。

  Ⅳ、課時小結

  節(jié)課我們學習了反比例函數(shù)的應用.具體步驟是:認真分析實際問題中變量之間的關系,建立反比例函數(shù)模型,進而用反比例函數(shù)的有關知識解決實際問題。

  Ⅴ課后作業(yè)

  習題5.4

  板書設計

  §5.3反比例函數(shù)的應用

  一、1、例題講解

  2、做一做

  二、課堂練習

  三、課時小節(jié)

  四、課后作業(yè)(習題5.4)

  反比例函數(shù)教案 篇2

  教學目標:

  1、理解反比例函數(shù),并能從實際問題中抽象出反比例關系的函數(shù)解析式;

  2、會畫出反比例函數(shù)的圖象,并結合圖象分析總結出反比例函數(shù)的性質;

  3、滲透數(shù)形結合的數(shù)學思想及普遍聯(lián)系的辨證唯物主義思想;

  4、體會數(shù)學從實踐中來又到實際中去的研究、應用過程;

  5、培養(yǎng)學生的觀察能力,及數(shù)學地發(fā)現(xiàn)問題,解決問題的能力。

  教學重點:

  結合圖象分析總結出反比例函數(shù)的性質;

  教學難點:描點畫出反比例函數(shù)的圖象

  教學用具:直尺

  教學方法:小組合作、探究式

  教學過程:

  1、從實際引出反比例函數(shù)的概念。

  我們在小學學過反比例關系。例如:當路程S一定時,時間t與速度v成反比例。

  即vt=S(S是常數(shù));

  當矩形面積S一定時,長a與寬b成反比例,即ab=S(S是常數(shù))。

  從函數(shù)的觀點看,在運動變化的過程中,有兩個變量可以分別看成自變量與函數(shù),寫成:

  (S是常數(shù))

  (S是常數(shù))

  一般地,函數(shù)(k是常數(shù),)叫做反比例函數(shù)。

  如上例,當路程S是常數(shù)時,時間t就是v的反比例函數(shù).當矩形面積S是常數(shù)時,長a是寬b的反比例函數(shù)。

  在現(xiàn)實生活中,也有許多反比例關系的例子.可以組織學生進行討論。

  2、列表、描點畫出反比例函數(shù)的圖象。

  例1、畫出反比例函數(shù)的圖象。

  解:列表

  說明:由于學生第一次接觸反比例函數(shù),無法推測出它的大致圖象.取點的時候最好多取幾個,正負可以對稱著取分別畫點描圖。

  一般地反比例函數(shù)(k是常數(shù))的圖象由兩條曲線組成,叫做雙曲線。

  3、觀察圖象,歸納、總結出反比例函數(shù)的性質。

  前面學習了三類基本的初等函數(shù),有了一定的基礎,這里可視學生的程度或展開全面的討論,或在老師的引導下完成知識的學習。

  顯示這兩個函數(shù)的圖象,提出問題:你能從圖象上發(fā)現(xiàn)什么有關反比例函數(shù)的性質呢?并能從解析式或列表中得到論證。

  (1)的.圖象在第一、三象限.可以擴展到k=0時的情形,即k=0時,雙曲線兩支各在第一和第三象限。從解析式中,也可以得出這個結論:xy=k,即x與y同號,因此,圖象在第一、三象限的討論與此類似。

  抓住機會,說明數(shù)與形的統(tǒng)一,也滲透了數(shù)形結合的數(shù)學思想方法.體現(xiàn)了由特殊到一般的研究過程。

  (2)函數(shù)的圖象,在每一個象限內(nèi),y隨x的增大而減小;

  從圖象中可以看出,當x從左向右變化時,圖象呈下坡趨勢。從列表中也可以看出這樣的變化趨勢。有理數(shù)除法說明了同樣的道理,被除數(shù)一定時,若除數(shù)大于零,除數(shù)越大,商越小;若除數(shù)小于零,同樣是除數(shù)越大,商越小。由此可歸納出,當k0時,函數(shù)的圖象,在每一個象限內(nèi),y隨x的增大而減小。

  同樣可以推出的圖象的性質。

  (3)函數(shù)的圖象不經(jīng)過原點,且不與x軸、y軸交.從解析式中也可以看出,.如果x取值越來越大時,y的值越來越小,趨近于零;如果x取負值且越來越小時,y的值也越來越趨近于零.因此,呈現(xiàn)的是雙曲線的樣子。同理,抽象出圖象的性質。

  函數(shù)的圖象性質的討論與次類似。

  4、小結:

  本節(jié)課我們學習了反比例函數(shù)的概念及其圖象的性質.大家展開了充分的討論,對函數(shù)的概念,函數(shù)的圖象的性質有了進一步的認識.數(shù)學學習要求我們要深刻地理解,找出事物間的普遍聯(lián)系和發(fā)展規(guī)律,能數(shù)學地發(fā)現(xiàn)問題,并能運用已有的數(shù)學知識,給以一定的解釋.即數(shù)學是世界的一個部分,同時又隱藏在世界中。

  5、布置作業(yè)習題13.81-4

  反比例函數(shù)教案 篇3

  教學目標:

  1、能利用反比例函數(shù)的相關的知識分析和解決一些簡單的實際問題。

  2、能根據(jù)實際問題中的條件確定反比例函數(shù)的解析式。

  3、在解決實際問題的過程中,進一步體會和認識反比例函數(shù)是刻畫現(xiàn)實世界中數(shù)量關系的一種數(shù)學模型。

  教學重點、難點:

  重點:能利用反比例函數(shù)的相關的知識分析和解決一些簡單的實際問題。

  難點:根據(jù)實際問題中的條件確定反比例函數(shù)的解析式。

  教學過程:  一、情景創(chuàng)設:

  為了預防“非典”,某學校對教室采用藥熏消毒法進行消毒,已知藥物燃燒時,室內(nèi)每立方米空氣中的含藥量y(mg)與時間x(min)成正比例.藥物燃燒后,y與x成反比例(如圖所示),現(xiàn)測得藥物8min燃畢,此時室內(nèi)空氣中每立方米的含藥量為6mg,請根據(jù)題中所提供的信息,解答下列問題:

  (1)藥物燃燒時,y關于x的函數(shù)關系式為:________,自變量x的取值范圍是:_______,藥物燃燒后y關于x的函數(shù)關系式為_______。

  (2)研究表明,當空氣中每立方米的含藥量低于1.6mg時學生方可進教室,那么從消毒開始,至少需要經(jīng)過______分鐘后,學生才能回到教室;

  (3)研究表明,當空氣中每立方米的含藥量不低于3mg且持續(xù)時間不低于10min時,才能有效殺滅空氣中的病菌,那么此次消毒是否有效?為什么?

  二、新授:

  例1、小明將一篇24000字的社會調(diào)查報告錄入電腦,打印成文。

  (1)如果小明以每分種120字的速度錄入,他需要多少時間才能完成錄入任務?

 。2)錄入文字的速度v(字/min)與完成錄入的時間t(min)有怎樣的函數(shù)關系?

  (3)小明希望能在3h內(nèi)完成錄入任務,那么他每分鐘至少應錄入多少個字?

  例2某自來水公司計劃新建一個容積為的長方形蓄水池。

 。1)蓄水池的底部S與其深度有怎樣的函數(shù)關系?

 。2)如果蓄水池的深度設計為5m,那么蓄水池的`底面積應為多少平方米?

  (3)由于綠化以及輔助用地的需要,經(jīng)過實地測量,蓄水池的長與寬最多只能設計為100m和60m,那么蓄水池的深度至少達到多少才能滿足要求?(保留兩位小數(shù))

  三、課堂練習

  1、一定質量的氧氣,它的密度(kg/m3)是它的體積V(m3)的反比例函數(shù),當V=10m3時,=1.43kg/m3.(1)求與V的函數(shù)關系式;(2)求當V=2m3時求氧氣的密度。

  2、某地上年度電價為0.8元度,年用電量為1億度.本年度計劃將電價調(diào)至0.55元至0.75元之間.經(jīng)測算,若電價調(diào)至x元,則本年度新增用電量y(億度)與(x-0.4)(元)成反比例,當x=0.65時,y=-0.8。

  (1)求y與x之間的函數(shù)關系式;

  (2)若每度電的成本價為0.3元,則電價調(diào)至多少元時,本年度電力部門的收益將比上年度增加20%?[收益=(實際電價-成本價)(用電量)]

  3、如圖,矩形ABCD中,AB=6,AD=8,點P在BC邊上移動(不與點B、C重合),設PA=x,點D到PA的距離DE=y.求y與x之間的函數(shù)關系式及自變量x的取值范圍。

版權聲明:本文內(nèi)容由互聯(lián)網(wǎng)用戶自發(fā)貢獻,該文觀點僅代表作者本人。本站僅提供信息存儲空間服務,不擁有所有權,不承擔相關法律責任。如發(fā)現(xiàn)本站有涉嫌抄襲侵權/違法違規(guī)的內(nèi)容, 請發(fā)送郵件至 yyfangchan@163.com (舉報時請帶上具體的網(wǎng)址) 舉報,一經(jīng)查實,本站將立刻刪除